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Abstract—A strain gage was mounted to a 6061 T6 aluminum 

cantilever beam and wired into a three-wire configuration 

Wheatstone quarter-bridge circuit that was connected to a strain 

gage amplifier.  This instrumented cantilever beam setup was 

used to measure the weight of objects placed at the free end of the 

beam.  The weight was calculated through a mechanics of 

materials approach and a calibration curve method. In the 

mechanics of materials, the weight is computed based on the 

measured strain and beam geometry.  In the calibration curve 

method, bridge voltages readings for known calibration weights 

are used to produce a linear trendline.  After comparison of the 

weight calculations and the propagation of uncertainty in both 

methods, it was determined that the mechanics of materials 

approach provided a smaller uncertainty.  The mechanics of 

materials approach had a propagated uncertainty of 25.0 g and a 

statistical uncertainty of 1.6 g. The students average gulp size was 

found to be 26.8 g with a standard deviation of 4.4 g. 

 
Index Terms—bending stress, calibration curve, cantilever 

beam, strain gage amplifier, three-wire quarter-bridge circuit  

I. INTRODUCTION 

N this report, a strain gage was mounted to an aluminum 

cantilever beam to approximate the weight of objects placed 

at the free end of the beam. The weight of the object was first 

determined using a mechanics of materials approach that 

related the strain experienced by the strain gage to the applied 

load at the free end of the beam. The weight of the object was 

also calculated using an experimentally determined linear 

trendline relating the amplified bridge voltage to the applied 

load [1]. 

 This lab used a three-wire configuration Wheatstone 

quarter-bridge circuit with one active strain gage (seen in Fig. 

1). In a three-wire configuration, the bridge voltage is 

measured through a lead wire with the same resistance,   , as 

the lead wires used to connect the gage to the Wheatstone 

bridge circuit [2].  

 
 

Fig. 1.  This image was taken from [3]. It shows a three-wire configuration 

Wheatstone quarter-bridge circuit. The resistance of the lead wires is indicated 

by   . The resistance of the active strain gage is   . The differential voltage 

between the two voltage dividers is   . The source voltage,   , powers the 

Wheatstone bridge. 

 

For the quarter-bridge circuit, the strain is related to the 

source voltage,   , the gage factor,   , and the change in 

bridge voltage    , through the following relation [1]: 

 

   
    

    

 (1). 

 

The bridge voltage,   , is amplified with a gain of 220 using 

a Tacuna Systems Model EMBSGB200-M strain gage 

amplifier to give an amplified signal,     . The amplified 

signal is also shifted by a trim potentiometer to 2.5V. The 

bridge voltage,   , is related to the measured      by the 

following relation involving the gain,   [4, 5]: 

 

   
    

 
 (2). 

 

 

The strain can be calculated more accurately using the 

amplifier because small deviations in bridge voltage,   , are 

converted into large deviations in     . The data acquisition 

device (DAQ) can measure this amplified voltage with greater 

precision than the unamplified bridge voltage. Thus, the use of 

the strain gage amplifier reduces the uncertainty in strain 

measurements, despite the fact that the gain has its own 

uncertainty. 

 Applying topics from mechanics of materials, the applied 

force at the free end of a cantilever beam can related to the 

strain experienced by the gage.  For a beam, the bending 

stress,  , is related to the applied moment,  , the moment of 

inertia of the beam,  , and the distance from the neutral axis,  , 

through the equation: 

 

  
  

 
 (3). 

 

In this lab, the moment,  , is equal to the applied load,  , 

multiplied by the moment arm from the point of application of 

the force to the strain gage,  . For the rectangular cross-

section being considered, the distance to the centroid is half 

the height,  . In addition, the moment of inertia is given by the 

width,  , and the height,  , through the equation [6]: 

  

  
   

  
 (4). 
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Substituting these values into (3) gives: 

 

       
   

  
 (5). 

  

The conversion factor         
 

 
 is introduced so that 

when all lengths are given in millimeters and the weight is 

given in grams, the stress is given in megapascals. 

Now, applying Hooke’s law to express stress,  , as the 

product of strain,  , and the modulus of elasticity,  : 

 

     (6). 

  

Plugging (6) into (5), the relation in (5) becomes [6]: 

 

        
   

  
 (7). 

  

 The conversion factor   from (5) is again used to give the 

weight in grams. 

 An alternative method, known as the calibration curve 

method, was also used to calculate the applied load at the free 

end of the cantilever beam.  The calibration curve method 

relates the weight in grams,  , to the amplified voltage,     , 

through the following linear function with experimentally 

determined constants,   and  : 

 

          (8). 

The relationship in (6) can be determined by placing known 

calibration weights at the end of the beam.  Then, the 

measured value of      was correlated to the value of the 

calibration weight.  This method allows for weights to be 

measured using the cantilever beam without any knowledge of 

the mechanics of materials behind the problem.  Because the 

value of the unknown applied load is computed differently 

than in the mechanics of materials approach, the calibration 

curve method has its own uncertainty in measurements [7]. 

II. PROCEDURE 

Part 1: LabVIEW Program 

A LabVIEW program (VI) was needed to calculate the 

weight of the applied load in grams given the beam geometry, 

the amplified bridge voltage,     , and the source voltage,   .  

The VI took the measured     , tared it to 2.5V, and divided 

it by the amplifier’s gain of 220 to yield   .  The VI then 

computed the strain using (1). This strain, along with the beam 

geometry, was plugged into (7) to calculate the weight in 

grams [1]. 

 

Part 2: Instrumented Cantilever Beam 

A strain gage was applied to a 6061 T6 Aluminum bar 

according to the instructions in [8]. As seen in Fig. 2, the gage 

was centered along the width of the beam and places such that 

the center of the gage was approximately 8 inches from the 

free end [1]. 

 
Fig. 2.  This figure, taken from [1], shows the placement of the strain gage on 
the aluminum bar. The moment arm of the applied load is taken to be the 

distance from the center of the gage to the center of mass of object being 

weighed. 

 

Marks were made on the aluminum beam to improve the 

repeatability of placement of the calibration weights and water 

bottle at the free end of the beam.  The marks were made such 

that the water bottle is flush with the end of the beam.  The 

calibration weights were centered on a line offset from the end 

of the beam by the radius of the water bottle (as seen in Fig. 

3). The instrumented aluminum bar was then clamped to a 

fixture as a cantilever beam, with one fixed end and one free 

end [1]. 

 

 
Fig. 3.  The figure, taken from [1], shows the alignment marks used to ensure 

repeatable placement of the calibration weights and water bottle at the free 

end of the beam. 

 

 The strain gage was wired to the strain gage amplifier, 

within which is a quarter-bridge Wheatstone circuit. The DAQ 

was wired to the amplifier in order to acquire the voltage 

readings for    and      on the windows -10V to 10V and -5V 

to 5V, respectively. The amplified voltage,     , was set to 

approximately 2.5V using the trim potentiometer in the 

amplifier and then the VI was used to tare      to 2.5V [1].  
 

Part 3: Strain and Calibration Based Weights 

A. Weigh Calibration Weights 

 In this part of the lab, calibration weights were used to 

determine the accuracy of the strain based weight readings and 

to acquire the experimental data needed to determine the 

constants in (6) for the calibration curve method. 

 The calibration weights were weighed on a commercial 

scale to determine their actual weight.  Then, data was 

acquired as the 50g, 100g, 200g, 300g, and 350g calibration 

weights were placed on the free end of the instrumented 

cantilever beam [1].  
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B. Weigh Water Bottle 

The weight of a water bottle was determined using the 

mechanics of materials strain based approached, as well as by 

applying the calibration curve method. First, the unopened 

water bottle was weighed 10 times on the cantilever beam.  

This weight data was used to provide a measure of the 

repeatability of placement of the water bottle on the free end 

of the beam and its effect on the weight measurements.  To 

determine the accuracy of measurements, this weight was 

compared to the weight given by the commercial scale. 

 The strain measurement and calibration curve method 

weights were recorded for the water bottle after each gulp was 

drunk until the bottle was empty [1]. 

C. Weigh Object from Pocket 

The beam was ultimately used to measure the weight of an 

object from the student’s pocket. A Samsung Galaxy S3 cell 

phone was selected as the object to be weighed.  The weights 

for this cell phone were recorded using the strain based 

calculation, the calibration curve method, and the commercial 

scale. 

 While the cell phone was on the beam, the student’s thumb 

was placed on the strain gage.  The variations in the data in 

response to this touching the gage were observed and recorded 

[1]. 

III. RESULTS 

Cantilever Beam Geometry 

 The geometry of the cantilever beam was measured in order 

to calculated the strain-based weight using (7).  The length 

from the center of the gage to the applied load,  , was 

measured with a ruler, the width,  , with a  dial caliper, and 

the height,  , with a micrometer.  The dimesions are shown in 

Table I. 

 
TABLE I 

CANTILEVER BEAM DIMENSIONS 

Dimension 
Measuring 

Device 
Measurement Converted (mm) 

L Ruler 17.29 cm 172.9 

b Dial caliper 1.003 in 25.476 

h Mircormeter 0.1275 in 3.2385 

 

 

Calibration Weights 

 The values stamped on the calibration weights were 

confirmed with the commercial scale. Then, the average value 

of      for each calibration weight was recorded in Table II.  

Using Microsoft Excel, the values for      produced by the 

various calibration weights were used to produce a linear 

trendline of the form in (6). The trendline that relates      to 

weight is given by: 

 

                [
 

 
]               (9). 

 

Equation (9) makes up the calibration curve method.  The 

calibration curve in (9) gives the calibration curve weight, 

    , for any value of     . 

 
TABLE II 

CALIBRATION WEIGHTS, AMPLIFIED VOLTAGE, AND STRAIN-BASED WEIGHT 

Calibration 

Weight (g) 
     (V)      (g)      (g) 

50 2.483 50.8 48.8 

100 2.468 97.8 92.0 

200 2.434 204.4 191.9 
300 2.404 298.5 278.8 

350 2.388 348.6 324.4 

 
 

Weigh Water Bottle 

In this part of the lab, a water bottle was repeatedly placed 

on the free end of the cantilever beam. The measured weight 

of the water bottle was recorded for ten different instances.  

The average value of the calculated weight for each placement 

of the water bottle is shown in Table III. 

 
TABLE III 

STRAIN-BASED WEIGHT FOR REPEATED PLACEMENT OF WATER BOTTLE 

Placement Number      (g)      (g) 

1 266.8 248.8 

2 270.2 251.9 
3 272.3 253.8 

4 273.8 255.3 

5 266.0 248.0 
6 267.6 249.6 

7 268.2 250.1 

8 267.9 249.8 
9 271.8 253.4 

10 268.8 250.6 

 

Weigh Water Bottle with Gulps 

 Next the weight of the water bottle was recorded after gulps 

were taken.  As seen in Table IV, these weights were recorded 

using both the strain based method and the calibration curve 

method.  The reported weight is the average weight for that 

instance of placing the bottle on the beam. This data was used 

to determine the average gulp size and the standard deviation 

of gulps sizes.  The empty bottle, which is the reading for gulp 

number 10 in Table IV, weighed 10 g on the commercial 

scale. 

 
TABLE IV 

WEIGHT OF WATER BOTTLE WITH GULPS TAKEN 

Number of Gulps      (V)      (g)      (g) 

1 2.413 269.1 250.9 

2 2.422 240.6 224.6 

3 2.434 205.2 192.0 
4 2.443 176.1 165.0 

5 2.451 150.2 141.1 
6 2.461 118.5 111.7 

7 2.471 88.0 83.6 

8 2.482 53.5 51.8 
9 2.491 26.6 26.9 

10 2.497 8.4 10.0 
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Weigh Object From Pocket 

 The cantilever beam scale was finally used to weigh a cell 

phone.  The cell phone weight was recorded in Table V using 

the strain based calculation, the calibration curve method, and 

the commercial scale (      ). 

 
TABLE V 

WEIGHT OF CELL PHONE 

       (g)      (V)      (g)      (g) 

184 2.442 180.8 169.3 

  

While the cell phone was on the cantilever beam, the 

student placed his thumb on the strain gage.  Placing his 

thumb on the strain gage caused a smaller weight reading for 

both the strain-based weight reading (shown in Fig. 4) and the 

calibration curve weight (shown in Fig. 5). The changes in the 

weight readings can be attributed to the change in      seen in 

Fig. 6. 

 

 
Fig. 4.  The figure shows the strain-based weight,     , over time.  The cell 

phone was placed on the cantilever beam at about 12 s. At around 17 s, the 

student’s thumb was placed on the strain gage.  The weight reading is seen to 

decrease to a lower value while the thumb was placed on the gage. 

 

 
Fig. 5.  The figure shows the calibration curve weight,     , over time.  The 

data in the graph was taken at the same time as the data in Fig. 4. Again, the 

weight reading is seen to decrease to a lower value while the thumb was 

placed on the gage. 

 

 
Fig. 6.  The figure shows the amplified bridge voltage,     , over time.  The 

data in the graph was taken at the same time as the data in Fig. 4. The 

amplified bridge voltage was seen to increase when the thumb was placed on 

the gage. 

IV. DISCUSSION 

Maximum Weight Measureable with Beam 

 Knowing the yield stress for the material and the 

dimensions of the beam, the maximum weight that can be 

measured with the scale without plastically deforming the 

cantilever beam can be calculated using (5).  The yield stress 

for 6061 T6 aluminum is taken as                [6].  The 

beam dimensions (given in Table I) were measured to be 

          ,           , and            . 

Plugging these values into (5) yields: 

 

                  
                

        
        (10). 

  

 Thus, the maximum weight that can be measured is 6.3 kg. 

 

Weight of Full Bottle 

 The full water bottle was weighed using both the mechanics 

of materials approach and the calibration curve method in the 

first reading in table IV.  When weighed with the commercial 

scale, the full water bottle weighed 269 g. The weight of the 

water bottle using the mechanics of materials approach was 

recorded as 250.9 g.  Using the calibration curve method, the 

full water bottle was found to weigh 269.1 g.  The calibration 

curve method produced a more accurate weight reading in this 

instance, but an analysis of the uncertainty of both weight 

measurement methods must be conducted to determine which 

approach is consistently more precise. 

 

Uncertainty in Weight Measurements  

 The detailed calculation for the uncertainty of both weight 

measurements can be found in the appendix.  In short, the 

mechanics of materials approach uncertainty was determined 

using the Root Sum Squares (RSS) method for propagation of 

uncertainty through the steps in the calculation [9].  The 

uncertainty for the calibration curve method was determined 

using a Monte Carlo simulation combined with the RSS 

method.  The Monte Carlo method was used to determine the 

uncertainty in the slope of the calibration curve linear 

trendline given the possible variation in the calibration 
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weights and the amplified voltage.  Then the uncertainty in the 

slope was propagated through the linear relation in (9) in order 

to determine the uncertainty in the calibration curve method 

weight [10]. The uncertainty analysis in the appendix 

determined that the uncertainty in the mechanics of materials 

weight was,      
        , and the uncertainty in the 

calibration curve weight was,      
        .  Evidently, the 

mechanics of materials approach has a much smaller 

uncertainty than the calibration curve method.  This large 

uncertainty for the calibration curve method is due to the large 

slope of the linear trendline.  This large slope means that small 

variations due to uncertainty in      result in large deviations 

in     .  In addition, the calibration curve method relies on a 

single measurement of      to calculate the weight for a given 

reading.  Conversely, the mechanics of materials approach 

utilizes an understanding of the physical set-up of the 

cantilever beam in order to relate the beam geometry, material 

properties, and the measured strain to the weight. From this 

point on, the mechanics of materials approach calculated 

weights will be used due to its advantage of having a smaller 

uncertainty. 

 

Repeated Water Bottle Weight Measurements 

  The weight of the full water bottle was measured ten times 

and recorded in Table III using both the strain-based 

calculation and the calibration curve method.  However, the 

strain-based mechanics of materials approach has since been 

determined to have the smallest accuracy of the two methods. 

Using the commercial scale, the water bottled was found to 

weigh 269 g. The mean value of the strain based weight, 

      was 251.1 g with a standard deviation of 2.3 g. 

 The statistical uncertainty of the weight of the unopened 

water bottle for the data set in Table III can be determined 

using a t-distribution for a 95% confidence interval [9]. With 

ten samples (    ), then the t-value is given by        .  

Then the random uncertainty,   , can be calculated as a 

function of the t-value, the sample standard deviation,   , and 

the sample size,  , as follows:  

 

    
  

√ 
      (

   

√  
)          (11). 

 

 Repeatability of placement of the can is not an issue.  The 

standard deviation is small enough such that uncertainty due to 

other causes, such as the measurement of voltages, dominates 

the uncertainty.  Using the guiding marks on the beam, the 

water bottle was able to be placed consistently enough such 

that the location of placement of the bottle does not play a 

significant role in the uncertainty of the overall measurements. 

 

Mean and Standard Deviation for Gulp Size 

 The weight of the water bottle was recorded in Table IV 

after successive gulps were taken.  The mechanics of materials 

approach weights will be used to determine the mean and 

standard deviation of the student’s gulp size.  The mean gulp 

size was 26.8 g with a standard deviation of 4.4 g. 

Variation in Empty Water Bottle Weight 

 The empty water bottle was weighed using both the 

cantilever beam and the commercial scale. The empty water 

bottle weighed 10 g on the commercial scale. The empty water 

bottle was also recorded to weight 10 g using the mechanics of 

materials calculation on the cantilever beam. 

 The major variation in between the commercial scale and 

the beam scale is that the beam scale could not be effectively 

tared to 0 g. The beam scale always read some value of weight 

despite attempts to tare it to zero.  This is a result of the 

random error in the beam scale measurement.  Conversely, 

when the commercial scale was zeroed, it consistently read 0 

g. The commercial scale, which had a printed sensitivity of 1 

g, and hence an uncertainty of 0.5 g, has a much smaller 

uncertainty than the beam scale.  All in all, the commercial 

scale gave much more stable weight readings than the beam 

scale, which showed fluctuations in the measured weight even 

with no weight applied. 

 

Improvements to Reduce Uncertainty 

 There are a variety of sources of uncertainty for the 

mechanics of materials approach for calculating the weight.  

The uncertainty in weight is propagated from the uncertainty 

in voltage measurement, amplifier gain, youngs modulus, and 

beam dimensions.  The uncertainty in measurement of bridge 

voltage    was mitigated through use of an amplifier.  The 

amplifier amplified the bridge voltage to a level that can be 

easily read with the DAQ.  Although this introduces an 

uncertainty in gain of the amplifier, the overall result was to 

reduce uncertainty. 

 The height of the cross-section of the beam contributed 

greatly to the uncertainty in the weight.  This indicates the 

need for great accuracy when measuring the height,  .  

Although a micrometer was already used to reduce uncertainty 

in this measurement, a further reduction in uncertainty would 

reduce the overall uncertainty in weight.  Another major 

contributor to uncertainty in the weight was the uncertainty in 

the elastic modulus of aluminum.  If a more accurate value for 

the elastic modulus was used, uncertainty in the weight 

measurement would be reduced.  Lastly, the use of a more 

elastic material would reduce the uncertainty of 

measurements.  If the material whose strain was measured to 

calculate weight showed greater deformation under the applied 

load, the changes in measured voltage would be greater and 

the young’s modulus would be smaller. 

 

Effect of Weight of Beam on Calibration 

 When calculating the weight using the mechanics of 

materials approach, the weight of the beam was not taken into 

account.  In reality, the cantilever beam will experience an 

applied load due to its own weight. This weight of the beam 

will produce a bending strain measurable by the strain gage. 

However, due to the taring of     , this effect can be taken 

out of the calculation by setting the weight equal to zero when 

no mass is placed on the free end. 

 For the calibration curve method, the weight of the beam 

affects the data to which the linear trendline was fit.   The 
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voltage readings were taken to correspond to an applied load 

equal to the value of the calibration weight placed on the free 

end.  However, due to the weight of the beam itself, the actual 

applied load was due to the weight of the beam in addition to 

the calibration weight.  The calibration curve method would 

experience an error due to not including the weight of the 

beam itself. 

 

Effect of Placing Thumb on Strain Gage 

As seen in Fig. 4 and Fig. 5, the calculated weight for both 

methods was reduced when the student’s thumb was placed on 

the strain gage.  This reduction in the weight reading is 

attributed to an increase in     , as seen in Fig. 6, when the 

thumb was placed on the gage.  Because (9) is a decreasing 

linear function, an increase in      produces a decrease in  

    .  As seen in Fig. 6, the increase in      brings the 

amplified voltage value closer to its initial, unstrained voltage.  

This means there is a decrease in    , which, according to (1), 

translates into a decrease in strain.  As shown by (7), this 

decrease in strain leads to a corresponding decrease in     .  

Thus, it is clear that the increase in      when the student’s 

thumb was placed on the gage results in a decrease in weight 

calculated by both methods. The increase in      is due to the 

increase in temperature of the strain gage from the body heat 

transferred to the gage.  

V. CONCLUSION 

Instrumented Cantilever Beam 

 In this lab, an aluminum cantilever beam with a strain gage 

was used to measure the weight of objects placed at the free 

end.  Measurements of the geometry of the beam were taken 

using a ruler, a dial caliper, and a micrometer. The 

micrometer, which has the smallest uncertainty of the three 

measuring devices listed, was used to measure the height,  . 

In this way, the micrometer provided the smallest uncertainty 

for the dimension that had the largest impact on the 

uncertainty of the weight measurement.  The voltage readings 

from the Wheatstone bridge were amplified in order to reduce 

the uncertainty present in measuring the bridge voltage.  

Although this introduced an uncertainty in gain for the 

amplifier, the overall effect was a reduction of uncertainty 

compared to no amplifier. 

 

Uncertainty of Both Weight Calculation Methods 

The weight measured using the aluminum cantilever beam 

was calculated using two different methods: the mechanics of 

materials approach and the calibration curve method. The 

mechanics of materials approach utilizes an understanding of 

the mechanics of the cantilever beam to relate the strain to the 

applied load.  The calibration curve method relies on fitting a 

linear trendline to the calibration data in order to relate      to 

the applied load.  This is done by taking readings of known 

calibration weights.  The mechanics of materials approach was 

found to have a smaller uncertainty than the calibration curve 

method. 

 

Mechanics of Materials Method Weight Measurements 

Once it was determined that the mechanics of materials 

approach produced the smallest uncertainty, it was used to 

calculate the weights in the remainder of the lab.  The 

repeatability of placement of the unknown weights was testing 

by placing the full water bottle on the free end of the beam ten 

times.  Using a t-distribution with a 95% confidence interval, 

the statistical uncertainty of the weight measurement was 

determined to be about 1.6 g.  Thus, the repeatability of 

placement the weights on the free end is not an issue.  

Uncertainty using this method was attributed to the 

uncertainty in voltage measurement, beam geometry, and 

aluminum elastic modulus.    

 

APPENDIX 

 
TABLE VI 

MEASUREMENT UNCERTAINTY 

Quantity Symbol Value Uncertainty 

Gain   220        

Amp Voltage      2.5 V            1 

Source Voltage    5 V            1 

Width   25.476 mm           2 

Height   3.2385 mm            2    

Length   172.9 mm          2 

Strain   0.000149 Equation (20) 

Stress   11.17 MPa Equation (24) 

Elastic Modulus   75000 MPa            

Gage Factor    2.1         

1 Obtained from [11].  2 Obtained from device.   

 

 

First, find the propagation of uncertainty in calculation of 

the bridge voltage,   . As seen in (2) the bridge voltage is a 

function of      and  .  Thus, applying the Root Sum Squares 

(RSS) method of uncertainty propagation, [9]: 

 

   
 √(

   

     
     

)

 

 (
   

  
  )

 

 (12). 

 

Where the values for      
 and    are taken from 

Table VI, and the partial derivatives are defined as 

follows: 
 

   

     

 
 

 
        (13). 

 

   

  
  

    

  
               (14). 

 

 

Plugging into (12), yields 

 

   
                (15). 
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Now, find the propagation of uncertainty in the calculation 

of the strain from (1). The strain,  , is a function of         

and   . Thus, applying the RSS method of uncertainty 

propagation [2], 

 

   √(
  

    
    

)

 

 (
  

   
   

)
 

 (
  

   
   

)

 

 (16). 

 

Where the values for    
 and    

 are taken from Table V, 

    
    

 is gotten from (15), and the partial derivatives are 

defined as follows, 

 
  

    
 

 

    

         (17). 

 
  

   
  

    

  
   

                (18). 

 

  

   

  
    

    
                 (19). 

 

Plugging into (16), yields 

 

                (20). 

 

 Next, find the propagation of uncertainty in the stress 

calculated in (6). The stress,  , is a function of     and  . Thus, 

applying the RSS method of uncertainty propagation [2], 

 

   √(
  

  
  )

 

 (
  

  
  )

 

 (21). 

 

Where the values for    is taken from Table VI, and 

   is given in (20). Then, the partial derivatives are 

defined as follows: 
 

  

  
            (22). 

 

  

  
         (23). 

 

Plugging into (21), yields 

 

              (24). 

 

Now, find the propagation of uncertainty in the calculation 

of the weight from (5). The weight,  , is a function of 

        and  . Thus, applying the RSS method of uncertainty 

propagation [2], 

 

   √(
  

  
  )

 

 (
  

  
  )

 

 (
  

  
  )

 

 (
  

  
  )

 

 (25). 

Where the value of    is taken from (24), the values for 

       and    are taken from Table VI, and the partial 

derivatives are computed as follows, 

 

  

  
  

   

  
        (26). 

 

  

  
    

   

   
         (27). 

 

  

  

  
   

  

  
         (28). 

 

  

  
   

  

  
          (29). 

 

 

Plugging into (25), yields 

 

     
         (30). 

 

 The above result is for the uncertainty in the strain-based, 

mechanics of materials approach weight calculation.  What 

follows is the discussion of uncertainty in the calibration curve 

calculated weight,     . 

 The uncertainty for the calibration curve method was 

derived using a Monte Carlo simulation. The spreadsheet 

provided in (10)  was used to derive the uncertainty.  In order 

to run this simulation, it was necessary to determine the values 

and uncertainty for the calibration weights and voltages,     , 

used to generate the calibration curve. 

 The uncertainty in      is given by the sum of the 

uncertainty of the amplifier and the uncertainty of the channel 

on the DAQ used to measure the voltage.  Thus, the 

uncertainty is given by, 

 

     
           

        

 
      (31). 

 

 The values for the uncertainty using (31) are given in Table 

VII.  The value for      is taken from the uncertainty data for 

channels on the DAQ taken in [11]. 
 TABLE VII 

CALIBRATION CURVE UNCERTAINTY 

Calibration Weight     (V)      (V)      (V)      
(V) 

50                                    

100                                    

200                                    

300                                    

350                                    

 

 Using the above calculated values for      
, and the 

uncertainty of the commercial scale which was marked as 

      , the Monte Carlo simulation was run.  In the 

simulation, the values of      for each calibration weight 
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were allowed to vary randomly within the uncertainty range 

     
.  Simultaneously, the calibration weights were allowed 

to randomly vary within their uncertainty range.  In this way, 

random values for      and each calibration weight were 

generating to provide 2000 simulated data runs.  The standard 

deviation and the mean of the calibration curve trendlines for 

each of these simulations was used to determine the 

uncertainty.  In this way, the uncertainty in the slope,  , was 

determined to be given as follows: 

 

          
 

 
 (32). 

  

To determine the uncertainty in the mass predicted by the 

calibration curve method, the RSS method must be applied to 

(9) as follows: 

 

   √(
  

  
  )

 

 (
  

     
     

)

 

 (33). 

 

Where the values for      
 is the average of its values 

in Table VII, and    is given in (32). Then, the partial 

derivatives are defined as follows: 
 

  

  
             (34). 

 
  

     

         (35). 

 

Plugging into (33), yields 

 

     
         (36). 
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