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Abstract

A linear list is a collection of items that can be accessed sequentially. The cost of a request
is the number of itemns that need to be examined before the desired item is located, i.e.
the distance of the requested item from the beginning of the list. The transposition rule
is ane of the algorithms designed to reduce the search cost by organizing the list. In
particular, upon a request for a given item, the item is transposed with the preceding one.
We develop a new approach for analyzing the algorithm, based on a coupling to a certain
constrained asymmetric exclusion process. This allows us to establish an asymptotic
optimality of the rule for two families of request distributions.
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1. Introduction

The linear list, a collection of items that can be accessed sequentially, is one of basic data
structures known in computer science. A primary operation defined on the list is search. A
requested item is found in the list by sequentially examining items from the beginning of the
list. The cost of search is defined to be the distance of the requested item from the beginning
of the list, i.e. the number of items that need to be examined in order to locate the desired
item. Intuitively, one would like to place frequently requested items at the front of the list,
s0 as to minimize the number of search steps. If the request sequence were known a priori,
one could place items in an order that minimizes the search cast. Yet, often properties of the
request sequence are either not known in advance or are time dependent. Hence, it is desirable
to employ an algorithm that organizes the list based on past requests. The two best-known
self-organizing algorithms are the move-to-front rule and the transposition rule [11, Section 6].
In addition to being simple, these rules are memory-free, i.e. they require ne memory for their
aperation.

List-organizing algorithms have been analyzed over the past fifty years — see, for example,
the review on self-organizing linear search in [8]. While the literature on the move-to-front
rule (and the comesponding least-recently-used caching algorithm) is extensive (see, e.g. [3],
{41, {51, {71, [9], [14]. and references therein), results on the transposition rule are scarce. Early
analysis of the transposition rule can be found in [{3]. In that paper it was conjectured that
the rule is optimal with respect to the expected value of the search cost. However, it was
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236 D. GAMARNIK AND P MOMCILOVIC

shown in [1] that this conjecture is not true, in general. Except for the papers mentioned above,
the probabilistic analysis of the transposition rule is either limited to the case of simplistic
distributions [10], [15] or to numerical studies [2], [12]. The reader is referred o [14] for a
combinatorial (amortized) analysis of the transposition rule.

In the present paper we develop a new approach for analyzing the transposition rule, based
on a coupling to a constrained asymmetric exclusion process. This allows us to establish an
asymptotic optimality of the rule for two families of request distributions. Specifically, we
prove that the logarithm of the tail probability of the search cast is asymptatically optimal
under the transposition rule when the request distribution is either power law or geometric.

The rest of the paper is organized as follows. The model description and main results can
be found in the next section. In Section 3, we describe an associated asymmetric exclusion
process and characterize its stationary behavior. In Section 4, we relate the exclusion process
to the transposition rule for self-organizing lists. Section 5 contains the proofs of the results
stated in Section 2. Our canclusions, and some open questions, are discussed in Section 6.

2. Model and results

We consider an infinite list of items L = {1,2,...,N,...} = M. At integer times
t =0,1,2, ... arequest arrives for an item from L. The item requested at time ¢ is denated by
R(t). The requests are independent and identically distributed, and m; denotes the probability
of item i being requested, such that 3., m; = 1. Without loss of generality, we assume that
m; > 741 for all i. Let R be equal in distribution to R{z), i.e. P[R =i] = m;.

The evelution of the list L is governed by the transposition rule. At time ¢ = 0 the list is
assumed tobe ordered as {1, 2, ..., N, ...}. Upen every request, the requested object is moved
forward (i.e. to the left) by one position in the list whiie the object in front of it is moved one
pasition back (i.e. to the right). If the first item in L 1s requested, the list does not change. The
basic idea 1 that frequently requested items are moved closer to the beginning of the list over
time; on the other hand, items with low request probabilities end up at some distance from the
beginning of the list.

At every time ¢, the list is represented as some permutation ¢ : N — N, Let X;{¢) be
the pasition of the item { in the list at time 1. Our focus is on the hehavior of the position
C(t) := Xpg((r) of the requested item, i.e. the search cost, as r — oo, We note that if the
permutation o is fixed, then the distribution of C(¢) is determined completely by & := {m;}72,.
In this case, we use C? ta denote the random position of the selected element . Namely, C7 is
simply the (random) search cost required to locate the requested item in a list of giver order ¢.
Thus, there exist two sources of randomness affecting the search cosi: one due to the random
arrangement ¢ of the items, and one due to the randomness of the requested item R.

Our first lemma is a simple observation stating that, for every permutation o, the tail
asymptotics of C7 dominates the tail asymptotics of R.

Lemma 1. For any distribution t, permutation o, and for every x € N,
P{C? > x] = P[R > x].
Proof. By the definition of the search cost,
PIC" >x]= ) 7,2 7 =P[R >x],
WEE:{VES, i=x

where the inequality holds by the monotonicity of the elements of .
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Thus, as far as the tail probability asymptotics is concerned, no list-ordering algorithm can
achieve a better performance than the one under the optimal static arrangement. Note that
arranging the items in (decreasing) arder of 7; is feasible only if the distribution 7 is known in
advance.

We say that R is distributed as a power law with parameter ¢ > 1 if 7; = ¢i ™ for all i,
where ¢7! = ¥, {7 is the normalization constant. Random variable R is defined to be
asymptatically geometric, with parameter 0 < v < 1, when i~Yogm — logu asi —» oo.
The nexr result states that the transposition rule is asymptotically optimal with respect to the
logarithm of the tail asymptotics for these two distribution families.

Theorem 1. Ler m be either power law with parameter « > 1 or asymptotically geometric
with parameter 0 < v < 1. Then

. log P[C(1) = x]
limsuyp ————— -~ =
x—0a, I —0a [0g P[R > X]

Proof. See Section 5.

Often it is of interest to consider lists that contain only a finite number of items, i.e. such
that w has a finite support. Although we will not make use of the following fact, we remark
that, for every distribution 7 with finite support on Ly = (1, 2,..., N} (so that m; = @ for
all i = N), the described system is an irreducible, reversible, aperiodic Markov chain, and the
unique stationary solution is of the following product form:

N _‘I.f'
9 =
E(k|\._,,kN]6PN n;:[ 7

where Py denotes the set of all permutations of the list Ly. A natural way to introduce a
power law and geometric distribution for the case of finite support is to take the distribution
conditioned on the event {i < N). Denote by my the truncated distribution, and let the random
variable Ry be defined by P[Ry > x] := P[R » x | R < N]. Note that the existence of
a unique stationary distribution for every N allows us to consider the stationary search cost,
denated by Cy.

PIXi=i(,X2=i2,.. . Xy =iy]l= %

Theorem 2. Ler either (i} 7wy be truncated power law with parameter « > | and x [N < y
Jor some y < 1; ar (ii) my be truncated asymptotically geomeltric with parameter 0 < v < |
and x < N. Then

togP[Cw > x]

1 =
oo logP[Ry > x]

Proof. See Section 5.

3. Constrained asymmetric exclusion process

In this section, we consider a certain constrained asymmetric exclusion process in which
we examine the deviation of the baundary particle from its minimal position. In particular,
we consider an #-particle system on countably many slots on a half-line, enumnerated from
left to right as [, 2, .... Each particle is associated with an independent Paisson process of
unit intensity (the actual rate 1s not important). At the arrival times of their corresponding
Poisson processes, particles move left ar right with probability p or g, respectively. Multiple
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FiGURE 1: An example of evolution of the system with five particles. The arrows indicate intended
movements of particles. Movements actually occur only in the upper two instarices.

occupancies are not allowed, and a move actually occurs only if the target slot is empty (see
Figure | for an illustration of this). A particle cannot move left if it is located in the first stot.
Assume that p > g and define 8 := g/p < 1. Given that particles are enurerated from left
to right using natural numbers, let Z; be the paosition (slot number) of the ith particle. We first
verify in a straightforward manner that the stationary disteibution is of the following form:

PIZI =i, 22 = in...., 2y =in) = 0 AEI=1 (1)
forall 1 < i) < i» < -+ < i,, Where 1, is the normalization constant. To this end, notice that

Z ﬂf}elf;‘s Z Z ﬁEj*:.i;

| =iy =fg - iy l=j=nl=i;=00

ﬁ n
(i) <=

implying that the normalization constant 5, is finite. It is easy to check that the underlying
Markov chain is irreducible, reversible, and aperiodic, and that (1} satisfies the stationary
equation. Hence, (1) indeed describes the stationary distribution.

We point out that the mlmmal possiblevalueof Y7 Z;is Y7 i = 2?1(?1-‘{-1) Throughout
the paper we interpret [_L (y=1fork < j.

Lemma 2. The normalization constant satisfies
n
1/
=R
i=1

Praof. For each integer k > 0, let 1, 4 denote the sum of ,Bzr}ﬂ ' aver the feasible choices
of i; such that maxi«<;<.{i;} < n+ k. Then, clearly, 1,0 < 1,5 < --- and Bp g —> N a8
k — oo, We claim that, for every n and k,

— ghila+1)/2 1 — ﬁﬂﬂH
R = B H — )
i=1

The expression for 7, follows immediately, by taking the limit as £ — o in (2).
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The proof of (2) is by induction. It is trivial to verify both that 5, g = @ +1/2 n > 1, and
me= Zk“ B', k > 0, conform to (2). Next, we assume that (2) holds for 7; jforalliand j
stch that either i < nand j < &, ori < n and j < k, and show that the statement is true for
My 4. The quantity n, ;. satisfies the following equality:

Mok = Qnk—1 + B 01 i (3)

the first term corresponds to the case maxi<;<a{{;} < n + k, and the second one to the case
Mmaxi<;jea{ij} = n+4, i.e the final (nth) particle is in the slot # +&. From (3) and the inductive
assumption, we find that

l__ﬁn —1+i

Mk = ﬁn(n+1)/2 n
- g

i=1

s L= 8"\ pnonrny2 77 L= 8"
(”‘6 ﬁ)ﬁ ﬂ s

(n—1m/24n+k
=y ﬂ

1= ﬁ nti
r{n+1}/2
ﬁ l_[ 1 — ﬁ!
This concludes the proof.

Next, we use (1) to examine the stationary deviation «, of the last particle from its minimal
position, i.e. K, := Z, —n = 0. Expressions (1) and (2}, and Lemma 2, yieid

LRt
Pli, = i] = Mn—1.i i
M
. n_l - -
=g -p[Ja-g"
j=1
<f )
and, thus,
Plc, > il < (L — )~ 'A". (5)

Interestingty, this implies that there exists a limiting behavior for the case when the number
of particles n grows to infinity. Indeed, as n — oo, the random variabie «, converges in
distribution to a random variable x with distribution given by

Pl =i] =8 I—[(l Hﬂ}

From this, we conclude that x is asymptotically geometric and stochastically monatone in the
parameter 8, and that

Jim Plx =il =

[—» D0

Finally, we note that for § < or, equivalently, for 2g < p, the most probable value of « i5 0.
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4. Coupling

The following lemma relates the stationary properties of list L, operating under the trans-
position rule and as ¢ —» oo, to characteristics of the particle system studied in Section 3. Let
«; (8 explicitly denote the dependency of the random variable «; on parameter 8 (see (4)}, and
set § = mie1/m < L

Proposition 1. Foreveryx > i > 1,

lim sup PI:\/ Xit)> x:] < Ple;(8) + i > x].

E—+ 00 j=l

Remark 1. When the support of 7 is finite, there exists a vnique stationary solution and,
therefore, the left-hand side of the preceding inequality converges as ¢t — oa.

4.1. Proof of Propaosition 1

The proof is based on a coupling argument. We start by exploiting a Poisson embedding
technique. (See [6] for an application of this technique in the context of the move-to-front
rule.) The requests for item / form a Poisson process of intensity 7r;, meaning that the limiting
behavior (as 1 — o) of the original discrete-time system is the same as that of the system with
the Poisson request patterns.

Given a Poisson process (a set of arrival times) A with rate A, let A(p) denote its subset,
A(p) C A, formed by including each element of A in A(p) independently with probability p.
Let [A;} be the set of request times for item i € [.

Next we construct a modified list L consisting of the same items as the original list L ~
parameters of the new system are denoted with the ‘hat’ symbol (caret). Specifically, X ()
denates the position of element j at time ¢ in the list L. Bach element j € L is associated with
an independent Poisson process A defined as

2 Aj(ri /i), 1< j=i,
AUEYALUAY, s
1 J'l j > 1,

where A:r is an independent Poisson process with rate 7; ) — ;. Note that the processes A; i
are constructed in such a way that they are Poisson, with rates m; for | < j < i and 74 for
J = i. In addition, observe thatA CA;forl =j<iand AJ 3 A for j = i. Furthermore,
let the function ¢, (t) be defined as follows:

1 — . f < i
0;(0) = [1{3k>:: X=X -1y J"— i
@Besic R=R;-1p0 4 7 b
where 1y} denotes the indicator of the event {-}. That is the function ¢; () indicates whether

item j is preceded by an item k such that the rates of A and Ak differ.
The request praocess AoflistLisa superposition of Pmsson pracesses AJ,

A= ) A )

Lepel=11

Item J is requested from Lattimer =TifT & A“F N A. Tn other words, item j < i is requested
according to AJ anly if it is preceded by an item in {i + 1,i + 2, ...}. On the other hand,
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Figure 2: An example of reordering by the operator R; (in the case i = 4 and N = 8). The initial
states of the lists are shown on the left. The modified list Ly is divided into two subhists: {1, 2, 3, 4j and

{5, 6,7, 8} Upon reordering items in each of the sublists according to Ly, the new ordering in Ly is
shown on the right.

requests for item j > [ are placed according to A; only if element ; is preceded by an item
in (1,....#}. Note that the set of Poisson processes included in A changes with the evolution
of list LA In addition, the number of elements in the union in (6) is always finite and bounded
from above by 2i.

The modified list L operates under the transposition rule with one madification. Namely,
after the transposition rule rearranges items in either of the lists (Lar L) a reordering operator
R; 1s applied to L. The operator works as follows. The list L is divided into two sublists:
(1,2,...,i}and {{ + 1,1 + 2, ...}. The operator R; reorders each sublist so that the order of
the elements within the sublists is the same as it is in the original list L. However, only items
belonging 1o the same sublist are allowed to exchange positions in the list. An example of how
R operates is shown in Figure 2.

Next, assume that both lists are in the same permutation at time ¢ = 0. We then appeal to
the following lemma.

Lemma 3. Foreveryvt e By and 1 < j <,
X < X )

Proof. The lists change only at times of request to the cormesponding system; denate these
timesby 0 < T} = T2 < -+ « T, = ---. Since there are no changes in item order between
the times {7}, it is sufficient to prove that (7) holds for ¢ = T,+, n = 1. To this end, suppose
that (7) holds for t = T,_ |+ and consider the two lists at time ¢ = T,+. The following three
cases must be examined.

Case }. Attimer = Ty, item | < i is requested from L. By the construction off\, this event
implies that item J is requested in the modified list L only with some probability depending on
the state of L.

If item j is not requested from L, then the set of positions occupied by items {1, ..., {}
in L remains the same. On the Jther hand, the set of positions occupied by items {1, ..., i}
in L either does not change (when an item io {1, ..., {} precedes item j or j is the first item
in the list) or is pairwise smaller {when an item in {i + 1, ..., M} precedes item 7). This, in
conjunction with the fact that the relative order of items (I,...,{} in L and fate=T,+is
the same {due to the action of [R;), implies that (7) holds forr = Ty+.

On the other hand, if item j is requested in both lists, then the only case that needs to be
examined in detail is the one in which j is preceded by item { < i in L; note that, from (6), it
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follows that j is preceded by anitem v > { in L. Since Xi(Tp—) = }?;(Tn—) and the order of
the items {1, ..., i} is the same in both lists, we have

Xj(Ty=)+ 1 < X{(Tu—). (8)

The fact that items j and ! are transposed in L but not in L means that the order of j and [ is
different in the two lists before R; is applied. Thus, R, exchanges the positions of items j and
L in L. This means that

Xi(Tut) = X(Ty—) > X(Ty=) = X{(Tn4)
and
X(Ty+) = X (T=) — | = X;(T—) = Xp(Tu ),

where the inequality in the first equation follows from the inductive assumption, and that in the
second is due to (8). Thus, we conclude that (7} holds for ¢t = T, +.

Case 2. Attimet = T, item | > i is requested from ‘E; The argument is very similar to
that in Case 1. In this case, j is preceded by some v < i in L (see (6)).

If item j is not requested from L or is preceded {in L) by an item v > i, then the positions
accupied by items (1, ..., i} in L do not change. However, in ﬁ, item j must be preceded by
v = i and, thus, v is moved one position back by the transposition rule. Alternatively, if in
L, item j is requested and preceded by ! < i, then either v = { and X(T,,~) = )A(U(T,I—), ar
v #{and

X(Tu=) < Xe(Tu—) + 1,
Xu(T—) < Xu(Ti—) + L.
In either case, after the items are transposed we have
X((Tut} < X(To+)

and
Xo(Tut+) < XolTut).

Case 3. Attimet = T, item | > i Is requested from L but not from L. This implies that j
is preceded in L by an item v > i (see (6)). If j is preceded in L by an item { > i, then the
positions occupied by items {1, ..., i} do not change in either list. Therefore, we need only
consider the case tn which j is preceded by { < i. However, in that case, we necessarily have

X((Tu—) = Xe(Tu—) + 1,
which implies that
Xi(Tut) = X((Ta =) + 1 < Xp(Ty—=) = X;(T+).

The resuits of these three cases establish (7), proving Lemma 3.
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Next, let the variables Z;(¢), | < j < i, be defined by
(Z\(0), ..., Zi()) = (X1 0), ..., Ki(D)),

where 4§ is the sorting (in increasing order) operator. Note that the definition of Z; () and (7)
imply that

i

AGERVE 10} )

Jj=1
Observe that the evolution of {Z;(#)} is probabilistically the same as in the constrained particle
system described in Section 3 (recall that there Z;(r} denotes the position of the jth particle
at time ), with p = = /(n; + miy ) and ¢ = w4 /(T + 7:41). Indeed, Z,(¢) increases by
1 at Poisson rate w4 only if Z;11(¢) # Z;(r) + |, and it decreases by 1 at rate 7; only if
Zi #2Z;()~ L.
Taking maximums on both sides of (9), and applying the operator P[- > x], leads to

P[\/ X(t) > x} < P[Zi(t) > x|,

i=1

from which we obtain

\ X0 > x] < P[Z: > x]

lim sup P[
=1

=00
=P« (A) +i > x],

where the last equality follows from the definition of «;(f) in Section 3 and the fact that
B =mit1 /7.
5. Proofs

Proposition 1 is the primary tool in establishing our results on the performance of the
transposition rule. The following lemma is a simple consequence of Proposition 1.

Lemma 4. Forany y > | and distribution of requests I,

limsupP[C(t) > x] < Pley{myst/my) > x — ¥} + PR > ¥, R+ «p(mpy1/mp) > x].

{—+00

Proaf. Conditioning on the requested item, and using the monotonicity of the max operator,
results in

lim sup PLC(¢) > x] = lim sup (Z 7 PLXi() > x])
I— 00 =0 !21

¥ ¥ i
<Y = lirnsup[—"[\/ X > x] +y limsupP[v Xi@) > x]
i=1 i=1 =1

=] £2y+l £ X
< Play(myp/myy > x —y]+P[R > y, R + kp(mpy1/7R) > x],

where the last inequality follows from Proposition 1.
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At this point we present the proofs of Theorems 1 and 2.

5.1. Proof of Theorem 1

The lower bound is an immediate consequence of Lemma 1 and holds for any distribution
of requests 7. Hence, we only consider the upper bound.

We first examine the case in which = is asymptotically geometric with parameter v, Fix
an arbitrary, small £ > O such that v + ¢ < [. By the assumption, there exists i, such that
v—¢& < mip/m < v+eforalli = i,. Forany s = ute, setting v = I, in Lemma 4 vields

limsupP[C(t) > x} < Plu;, (v +€) > x —i;] + P[R + kplv + &) > x}
L—00
< P[Sicfg(l-'*“ﬁ) - SI—fs] +p[SR+KR(U+£) > 5%]

< S—J.’Sie ESK’Q(U-{—E] T+ S-mx E.&‘R+KR(U+E), (10)

where the last step is due to Markov’s inequality. From 571 > v+ ¢ and (5}, it follows that
E s®H0+e) o o, This bound, (5}, and (10) result in

x Uimsuplog P[C() > x] < —logs + x~} log(s's Es*e(Ve) 4 R gRtar(vtely
t— 00
— —logs asx — oc. (11}

On the ather hand, note that

P[R > x] = ng(u —g)i e
i=x
> (1 —v+e) - T,
implying that
linlyioréfx_l Jog P{R > x] > log(v — &). (12)

By combining (11) and (12}, we ohtain

log P[C{E) > x] - logs™!

lim sup =< ;
r—oo oo 10gP[R > x] log(v - £)

letting first s~! | v + £ and then £ | O yields the result.
Next, we consider the case in which 7 is power law with parameter « > 1. Lemma 4 and
(3) yield

limsupP[C(¢) > x] < Pley(myq1/my) > x — y] + P[R > y]

f—r 00
-1 x—y
P 3
5(1__3’_"'[) (@) +P[R > yl.
T, 7y

Letting y = ex/logx] for a sufficiently small £ = @ (where [-] denotes the smallest integer
greater than or equal to its argument) resuits in an estimate on the two terms in the preceding
expression: as x — oo,

-1 k—y
(IFM) (xw) = o 'eyx (1 + o(1))

Ty Ty
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and
PIR>yl=) i ®=0¢p").

=y

Therefore, as x — oo,

limsupP{C{) > x] < P[R = »|{1 + a(1)).

t— oo

The preceding equation, together with the fact that 7 i3 a2 power law, yields the statement of the
theorem.

5.2. Proof of Theorem 2

This proof is very similar to that of Theorem 1 and, thus, we omit the details. Since

logP[Cy > x]  logP[Cy > x] logP[R > x]
logP(Ry > x] - logP[R = x] logP(Ry > x]

and the upper bound on P[Cy > x] is the same as the one on lim sup P[C(¢) > x], we need
only verify that the final fraction in the preceding equality tendsto L asx — occand N — oo,
However, this fact follows easily from the assumptions of the theorem.

6. Concluding remarks

In this paper, we presented an analysis of the transposition rule based on a coupling to a
canstrained exclusion process. As an outcorne, we established an asymptotic optimality of the
transposition rule in linear lists. Specifically, when the probability distribution of the requests
is power law ar geometric, we showed that, under the transposition rule, the logarithm of the
tail probability of the search cost is asymptotically optimal.

While the steady-state distribution of the search cost is a primary quantity of inferest, in
practice, rates of convergence play an important role in assessing the applicability of self-
organizing algorithms. The proposed coupling may offer new directions for understanding
these rates under the transposition rule. The same question, for the related move-to-front
aigorithm, was investigated in (5)]. As was remarked there, the transpaosition rule is expected to
have slower rates of convergence than the move-to-front rule.
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