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abstract: Prior studies of the evolution of species’ niches and
ranges have identified the importance of within-population genetic
variance, migration rate, and environmental heterogeneity in deter-
mining evolutionarily stable patterns of species’ range and habitat
use. Different combinations of these variables can produce either
habitat specialists or generalists and cause either stable range limits
or unbounded expansion. We examine the effect of density regulation
on a species’ range and habitat use within a landscape comprised of
two discrete habitats and along continuous environmental gradients.
Using the theta-logistic formulation, we demonstrate the following.
(1) Spatially uniform density regulation generally weakens gene
swamping and opposes habitat specialization and range limitation.
(2) The form of density regulation should play an important role in
determining whether the equilibrium species’ range is limited by gene
flow. (3) Even when no long-term limited-range equilibrium occurs,
quasi-stable (or even contracting) range limits may be maintained
for a long period during the initial phases of an invasion; the length
of this period depends on the form of density regulation. (4) The
steady state invasion speed in heterogeneous environments depends
on the form of density regulation. Implications for the study of
biological invasions are discussed, and directions for further explo-
ration are sketched.
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Species’ borders are a unifying theme in ecology (Holt and
Keitt 2005; Antonovics et al. 2006). The study of range
limits is strongly related to the study of other important
ecological and evolutionary phenomena, such as niche
conservatism, local adaptation, and biological invasions
(e.g., Holt et al. 2005a; Wiens and Graham 2005; Bridle
and Vines 2007). Species’ range limits emerge from the
interplay of many processes, both demographic and evo-
lutionary, as well as history and chance events. Analyzing
this interplay is central to understanding the many reg-
ularities observed in the study of species’ ranges (e.g., Gas-
ton 2003) and biological invasions (e.g., Shigesada and
Kawasaki 1997).

A theoretical framework integrating evolution and ecol-
ogy in the study of both range limits and invasions has
been gradually developing over the past decade (see Holt
and Gomulkiewicz 1997a; Kirkpatrick and Barton 1997;
Gomulkiewicz et al. 1999; Case and Taper 2000; Holt and
Keitt 2000; Barton 2001; Keitt et al. 2001; Garcı́a-Ramos
and Rodriguez 2002; Holt 2003; Peck and Welch 2004;
Case et al. 2005; Holt et al. 2005a, 2005b; Travis et al.
2005). This framework stresses the interaction of ecological
(demographic) processes with evolutionary processes in
generating stable and quasi-stable (i.e., slowly changing),
as well as rapidly changing, range limits. One such im-
portant (demographic) process is density-dependent pop-
ulation regulation. Several authors have suggested that reg-
ularities exist in the pattern of density dependence across
species’ ranges. Gaston (2003) reviewed several studies
suggesting “that towards the edges of geographic ranges
local populations … experience less density-dependent
regulation” (Gaston 2003, p. 54). According to this hy-
pothesis, density-independent processes (e.g., mortality
due to abiotic stress) control the dynamics of peripheral
populations. Maurer and Taper (2002), by contrast, pro-
vide examples in which density dependence (i.e., the mar-
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ginal effect on per capita growth rates of a small change
in density) is stronger near range edges.

Analyses of range limits and of biological invasions are
closely related; a range limit occurs wherever an invasion
stops, that is, where invasion speed drops to 0. The dis-
tinction between density-dependent dynamics at the center
of the geographic distribution and density independence
at the periphery is implicit in models of invasion dynamics
(e.g., Holmes et al. 1994; Shigesada and Kawasaki 1997;
Hastings et al. 2005). In these models, a species’ invasion
speed is determined solely by the (density-independent)
dynamics at the periphery (i.e., at the invasion wave front).
For purely negative density dependence, maximum per
capita growth occurs at low densities, and populations at
the invasion front are source populations with positive
growth. Thus, invasion speed depends only on the max-
imum per capita growth rate and not on the specific form
of density dependence.

By contrast, when an Allee effect is present, invasion
speed may depend on the specifics of density dependence
(e.g., Lewis and Kareiva 1993). The Allee effect depresses
per capita growth at low densities and may cause popu-
lations at an invasion front to have a negative growth rate.
The growth and advance of the invasion front then depend
on immigration from higher-density populations within
the species’ range, where density dependence can signifi-
cantly affect population growth, the flux of immigrants,
and, therefore, indirectly, invasion speed (Lewis and Kar-
eiva 1993). As we show in this article, source-sink dynam-
ics also arise when peripheral populations are maladapted
to their newly invaded environment, and so invasion dy-
namics can depend on the form of density dependence,
even for purely negative density regulation.

Both theoretical and empirical work have shown that
evolutionary processes can play an important role in in-
vasion and range dynamics (e.g., Lee 2002; Lambrinos
2004; Holt et al. 2005a and references therein; Urban et
al. 2007). During invasions, species may encounter novel
and spatially changing environments, leading to selection
for local adaptation. Garcı́a-Ramos and Rodriguez (2002)
studied invasion dynamics along an environmental gra-
dient and showed that the expanding wave front of pop-
ulation density is followed by a similarly expanding wave
front of local adaptation to the newly invaded environ-
ments. Invasion speed monotonically decreased as the gra-
dient became steeper, until at some steepness threshold
the invasion was stopped, and stable range limits arose.
This invasion model builds on earlier work by Kirkpatrick
and Barton (1997) on the evolution of a species’ range
(see also Garcı́a-Ramos and Kirkpatrick 1997; Case and
Taper 2000; Barton 2001; Case et al. 2005). Kirkpatrick
and Barton (1997) explored how stable range limits may
arise through the feedback between demography (popu-

lation growth and dispersal) and evolution (adaptation and
gene swamping). This feedback is at the heart of many
theoretical studies on the evolution of species’ ranges and
niches (e.g., Pease et al. 1989; Holt and Gaines 1992; Holt
and Gomulkiewicz 1997b; Barton 1999; Gomulkiewicz et
al. 1999; Barton 2001; Holt et al. 2003, 2004b). An im-
portant point of contact between demography and evo-
lution is through the process of gene swamping (e.g., Le-
normand 2002). Asymmetric gene flow from high- to
low-density populations can oppose local adaptation to
peripheral environments and cause stable range limits
(e.g., Kirkpatrick and Barton 1997; Barton 2001). The
strength of gene swamping should increase as the spatial
gradient in population density becomes steeper. Density
dependence can influence this gradient and thus modulate
the swamping effect of gene flow.

Our study focuses on how the form of density depen-
dence influences niche conservatism and the dynamics of
species’ ranges and invasions. Although most of the studies
cited above assumed some form of density regulation, the
consequences of density dependence for niche and range
evolution and for invasion dynamics have not yet been
systematically explored. We first consider how density de-
pendence influences the evolution of habitat specialization
and generalization in a landscape comprised of two dis-
crete habitat patches. We then turn to range edges along
a continuous environmental gradient. The form of density
regulation has major effects, qualitative as well as quan-
titative, on both the equilibrium outcome of range evo-
lution and transient invasion dynamics. We show as well
that some forms of density regulation may cause a phase
of range contraction before range expansion.

The Evolution of Species’ Ranges in
Two-Habitat Landscapes

The geometry of species’ ranges can be highly complex,
exhibiting a patchwork of occupied areas and gaps, mul-
tiple abundance peaks, and ragged and at times ill-defined
edges (e.g., Brown et al. 1995; Sagarin and Gaines 2002;
Fortin et al. 2005). But it is useful in theoretical studies
to first consider much simpler landscapes so as to begin
to tease apart the action of different ecological and evo-
lutionary forces acting on species’ distributions. We start
by examining the evolution of a species with a potential
range comprised of two distinct habitats. The interplay of
density dependence, dispersal, and selection can influence
whether the species is a generalist, occupying both habitats
in high numbers, or instead is a specialist, largely restricted
to just one habitat.

Prior theoretical studies have examined how the recip-
rocal effects of demography, including density dependence,
and local adaptation can mold the distribution of a species
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in a two-habitat landscape (Holt 1996, 2003; Kawecki
2000; Ronce and Kirkpatrick 2001; Kawecki and Holt 2002;
Kisdi 2002). Holt (1996), for instance, took an evolution-
ary game approach to examine adaptive evolution. He
argued that increasing the strength of density dependence
in a sink habitat (while leaving the source unchanged)
should make specialization to the source more likely, be-
cause natural selection can be biased toward habitats with
higher fitness, simply because more individuals occur
there, and they have a higher reproductive value. Increas-
ing negative density dependence in the sink magnifies this
demographic asymmetry (see also Gomulkiewicz et al.
1999).

Ronce and Kirkpatrick (2001) considered a comple-
mentary model of the evolution of a quantitative trait
determining fitness in a randomly mating species exposed
to each of two habitats coupled by migration, with logistic
density dependence in each. If a species (a specialist) is
initially adapted to one habitat and maladapted to the
other, random mating between immigrants and residents
in the suboptimal habitat can lead to gene flow over-
whelming selection there, thus preventing adaptation.
Moreover, a species initially adapted to both habitats (a
generalist) might be vulnerable to loss of adaptation in
one habitat, so that the generalist contracts its range and
becomes a specialist—a phenomenon Ronce and Kirk-
patrick call “migrational meltdown.” The interplay of gene
flow, demography, and selection can readily lead to such
alternative evolutionary states in heterogeneous landscapes
(Kirkpatrick and Barton 1997; Holt 2003; Holt et al.
2004b).

Generalized Ronce-Kirkpatrick Model

We follow the notation of Ronce and Kirkpatrick (2001)
and refer the reader to that article for the detailed deri-
vation of the model, which we modify by generalizing the
form of density dependence. There are two habitats (in-
dexed by ) of equal area; for each, we track pop-i p 1, 2
ulation density ni and the mean phenotype . The fitnessz̄i

of an individual of phenotype z is given by the sum of a
density-dependent growth term and a term due to sta-
bilizing selection toward a habitat-specific phenotypic op-
timum (for mathematical expressions and derivations, see
the appendix in the online edition of the American Nat-
uralist). It is assumed that the intrinsic growth rate, car-
rying capacity, and strength of stabilizing selection are the
same in both habitats and that phenotypes are normally
distributed in each habitat with means . Phenotypic andz̄i

genetic variances are fixed parameters, independent of
habitat. The per capita rate of migration between habitats
is m (assumed to be symmetrical; i.e., no habitat selection).

After rescaling into dimensionless variables (see appen-
dix), the equation for trait evolution in habitat i is

NdY ji p �GY � M (H � Y � Y ), (1)i i jdT Ni

where j is the habitat opposite to i, G is the standardized
intensity of selection (proportional to the genetic vari-
ance), H represents the difference in phenotypic optima
between the habitats (a measure of environmental hetero-
geneity), and M is the rescaled migration parameter (for
details, see appendix). The quantity Yi in equation (1) is
the maladaptation in habitat i, that is, the difference be-
tween the mean phenotype and the local optimum (di-
vided by the genetic standard deviation; see appendix),
and Ni is the normalized population density. The first term
in equation (1) describes how natural selection acts on the
trait in habitat i. In the absence of migration, the phe-
notype in each habitat should equilibrate at its respective
local optimum ( ). The second term describes howY p 0i

movement with random mating induces a migrational load
because of trait admixture due to mating between im-
migrants and residents. The maladaptive influence of mi-
gration is greater in the habitat with lower abundance.

The equation for change in population size in habitat
i is

dN Gi 2p U(N )N � Y N � M(N � N ). (2)i i i i j idT 2

The third term in equation (2) describes how migration
changes local population size. There is a net flow of in-
dividuals from high- to low-density habitats, which in the
absence of countervailing forces would equalize densities
in both habitats. The second term in equation (2) is the
demographic load in habitat i due to maladaptation, that
is, the depression in local growth because of the difference
between the mean trait value and its optimum. Finally, the
first term in equation (2) is population growth including
local density dependence U(Ni), which for most results
below is assumed to be theta-logistic, given by U(N) p

(Gilpin and Ayala 1973; Gilpin and Case 1976;v1 � N
Diserud and Engen 2000; Sæther and Engen 2002; Sæther
et al. 2002). The theta-logistic model is flexible and de-
scribes phenomenologically many different forms of den-
sity dependence, depending on the value of v (linear for

; convex for ; concave for ). There arev p 1 0 ! v ! 1 v 1 1
empirical estimates of v in many natural populations (see
“Discussion”).

Ronce and Kirkpatrick (2001) used logistic density reg-
ulation ( ; ). However, differentU(N) p 1 � N v p 1
mechanisms can lead to different forms of density depen-
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Figure 1: Stability of equilibria as influenced by density dependence at
low numbers. At symmetric equilibria, the species is a generalist, adapted
equally to both habitats. At asymmetric equilibria, the species is a spe-
cialist, well adapted (and near carrying capacity) in one habitat and poorly
adapted (and at low abundance) in the other. The solid lines are the
maximal degree of habitat heterogeneity for which the symmetric equi-
libria are locally stable in the two-habitat model for four different values
of v. Below the solid lines, the symmetric equilibria are locally stable,
and above them, they are unstable. The dashed line separates stability
domains for asymmetric equilibria. Above the dashed line (which, note,
converges on the solid line as M increases), the asymmetric equilibria
are locally stable, whereas below the dashed line, they are unstable. Be-
tween the solid and dashed lines for a given v, both kinds of equilibria
are locally stable, so the system can exhibit alternative stable states. The
figure shows that making density dependence stronger at lower abun-
dances (decreasing v) increases the range of parameter space over which
the asymmetric equilibria alone are stable. The intensity of selection

.G p 0.1

dence. For instance, contest competition for territories
may occur only at high abundances, so density dependence
is weak at low N and increases at high N ( ). Byv 1 1
contrast, in scramble competition for quickly depleted re-
sources, density dependence can be strong at low density
and weaker near carrying capacity (so ). We examinev ! 1
how the behavior of model equations (1) and (2) is altered
by different forms of density dependence, assuming the
same value of v in both habitats. Density dependence does
not directly enter into equation (1), so it does not directly
alter how selection drives trait evolution. Instead, nonlin-
earities in density dependence affect population density
(eq. [2]), which in turn indirectly affects the strength of
gene flow acting against selection in equation (1). Because
the force of gene flow is determined by the fraction of
individuals comprised of immigrants each generation, any
factor changing local population size can modify the
strength of gene flow.

The above model can have a symmetric equilibrium
(representing a generalist) for which population size and
degree of maladaptation are spatially uniform at

HM∗ ∗ ∗Y p Y { Y p , (3a)1 2 2M � G

1/v

G G∗ ∗ ∗ �1 ∗2 ∗2N p N { N p U Y p 1 � Y (3b)1 2 ( ) ( )2 2

(for the theta-logistic), where indicates the inverse of�1U
function U. As Ronce and Kirkpatrick (2001) note, the uni-
form generalist population is unviable (i.e., ) if the∗N ! 0
difference in habitat optima is too large; by adapting equally
to both habitats, the species may be too poorly adapted to
persist. A necessary condition for demographic persistence
is that there is a positive N for which . For∗ ∗2U(N ) p GY /2
the theta-logistic form, this reduces to 1/2H ! 2 (2M �

(the same as in Ronce and Kirkpatrick 2001),1/2G)/(MG )
which is independent of v (as the threshold H is approached,

approaches 0, so density dependence becomes negligi-∗N
ble). Therefore, nonlinear density dependence does not af-
fect the existence of a symmetric equilibrium. It does,
however, affect the condition for local stability of this equi-
librium. Using standard local stability analysis (as in app.
2 in Ronce and Kirkpatrick 2001), the symmetric equilib-
rium can be shown to be stable if and only if M 1

, where is the general∗ ∗ ∗2U(N ) � (N /2)dU(N)/dNF N∗NpN

solution in equation (3b). All else being equal, increasing
the strength of density dependence at the equilibrium re-
duces the right-hand side and so enhances the stability of
the symmetric equilibrium. For the theta-logistic, this
stability condition reduces to 1/2H ! [2(2M � v)] (2M �

(fig. 1). If the symmetric equilibrium1/2G)/{M[G(4 � v)] }

exists but is not stable, the system will go to an asymmetric
equilibrium, in which the population is specialized to one
of the habitats. Thus, evolutionarily stable generalization is
easier with higher v (in fig. 1, note that symmetric equilibria
are stable below the solid lines).

Density dependence strongly affects the conditions for
an asymmetric equilibrium in which the species is a spe-
cialist largely adapted to one of the two habitats. Because
no analytical solution was possible, we identified asym-
metric equilibria numerically by setting the derivatives in
equations (1) and (2) to 0 and solving. Local stability of
these equilibria was then determined by simulating the
system (and evaluating the eigenvalues numerically). (An
approximate analytical solution is possible assuming small
M, as in Ronce and Kirkpatrick 2001. Including theta-
logistic density dependence has very little effect on this
limiting case.) The minimum difference in the phenotypic
optima (H) required for asymmetric equilibria increases
with higher v, making specialization harder (in fig. 1, below
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the dashed line for a given v, a system that starts at a
specialized asymmetric equilibrium [if it exists], if per-
turbed, will evolve toward habitat generalization). For suf-
ficiently large M, the two boundaries coincide, so a species
will always evolve to be either a generalist or a specialist,
regardless of initial conditions; whichever one occurs de-
pends on H. At low M, the asymmetric boundary is lower,
which allows alternative stable equilibria (i.e., a species
could end up either a generalist or a specialist to either
habitat) for parameter combinations between the two
boundaries (this area is larger for higher v; fig. 1).

Figure 2 displays examples of symmetric and asym-
metric equilibria in local abundances and trait values as
a function of the movement rate M for different values of
v. Consider figures 2A and 2B, which show the equilibria
for various values of M, when (a fairly strong de-H p 7
gree of spatial heterogeneity in the adaptive optimum) and

(density dependence is weak until density nearsv p 8
carrying capacity). In this example, above a value of M of
around 0.34, only a symmetric equilibrium exists, with
equal numbers in both habitats and equal degrees of mal-
adaptation. Movement slightly depresses population size
below that observed in an isolated, adapted population
( ). Below , there are in addition equilibriaM p 0 M p 0.34
with one habitat well adapted and at high density (e.g.,
denoted by the X) and the other maladapted and at low
density (denoted by the asterisk). These equilibria can ei-
ther be stable (solid lines) or unstable (dashed lines). In
this region, a species that starts out specialized to one
habitat will likely stay specialized, and a generalist is likely
to remain a generalist (unless there is a substantial per-
turbation). For asymmetric equilibria, the maladaptation
in one habitat is high and approximately independent of
M. The existence of maladaptation is determined by gene
flow, but the magnitude of such maladaptation at equi-
librium may not greatly depend on the rate of movement
(for another example, see Holt et al. 2004b). The popu-
lation size at this equilibrium is low and increases directly
with M; because the population in this habitat is main-
tained by migration, an increase in migration boosts its
numbers. The evolutionary force of gene flow is deter-
mined by the ratio , so the numerical effect of move-M/N
ment on population size in effect moderates the genetic
effect.

In figure 2C–2F, v is progressively decreased, making
density dependence stronger at low densities. The sym-
metric equilibrium now becomes unstable for a range of
movement rates M, and this range is widened as v is de-
creased. The region of alternative stable equilibria (a gen-
eralist vs. a specialist for either habitat) is narrowed to
values of for as a result of the instabilityM ! 0.05 v p 0.5
of the symmetric equilibrium. Asymmetric equilibria are
present for an increasing range of M as v is decreased.

Overall, the effect of a low v in strongly heterogeneous
environments is that over most movement rates, one ob-
serves only asymmetric equilibria, which have one habitat
with high densities and a mean trait value near the local
optimum and the other with low numbers and substantial
maladaptation due to recurrent gene flow (a source-sink
population structure). Thus, strong density dependence at
low densities (low v) is likely to result in a distribution
that is evolutionarily restricted largely to a single habitat,
because the impact of gene flow is magnified. Weakening
density dependence at low densities (high v), by contrast,
makes it harder for gene flow to inhibit local adaptation
sufficiently to prevent a species from adapting to both
habitats. When density dependence is weak, an increase
in immigration boosts population size proportionally, so
that the fraction of the population comprised of immi-
grants each generation is largely unchanged; hence, the
force of gene flow is not greater (even though immigration
may be). By contrast, with strong density dependence, an
increase in immigration does not change abundance much
but does increase the fraction of the population made up
of migrants and so directly increases gene flow.

The Evolution of Species’ Ranges along a
Continuous Environmental Gradient

Basic Formulation

Kirkpatrick and Barton (1997) provided a model of the
joint evolution of population density and the mean of a
quantitative trait along continuous environmental gradi-
ents. Their model can be viewed as a continuous space
version of the Ronce-Kirkpatrick model analyzed above.
The genetic variance is also a fixed parameter of the Kirk-
patrick and Barton model, and the intrinsic growth rate,
carrying capacity, and strength of stabilizing selection are
assumed to be uniform across space (for additional details,
see appendix). In addition, the Kirkpatrick and Barton
model considers space explicitly, which introduces the
space variable x and its dimensionless form X (see ap-
pendix). We now modify the dimensionless Kirkpatrick
and Barton equations (eqq. [9], [10] in Kirkpatrick and
Barton 1997; for details, see appendix) to account for gen-
eral density dependence (rather than the specific logistic
or logarithmic forms of Kirkpatrick and Barton 1997 or
Barton 2001), leading to the following dynamical equa-
tions:

2�N � N 1
2p � U(N) � (Z � Z ) # N, (4a)opt2 [ ]�T �X 2

2�Z � Z �Z� ln N
p � 2 # � A(Z � Z ), (4b)opt2�T �X �X �X
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Figure 2: Symmetric and asymmetric equilibria for the generalized Ronce-Kirkpatrick model for differing degrees of nonlinearity in density
dependence. In each row, the left side shows the equilibrial population size and the right side the degree of maladaptation for equilibria of equations
(1) and (2) as a function of M, the per capita rate of movement between the two habitats. The difference in phenotypic optima between the two
habitats is (a relatively large difference), and the intensity of selection is . Solid lines denote locally stable equilibria (i.e., stable toH p 7 G p 0.1
small perturbations), and dashed and dotted lines are unstable asymmetric and symmetric equilibria, respectively. The symmetric equilibria are given
by equations (3). For the stable asymmetric equilibria, one population will be at each of the two levels. The values of v in the figures are 8 (A, B),
2 (C, D), and 0.5 (E, F). Standard logistic growth is . Decreasing v corresponds to increasing the strength of density dependence at lowv p 1
densities. Overall, an increase in density dependence makes an asymmetrical equilibrium more likely. We show on the abscissa , because whenM ≤ 1

, movement occurs at the same rate as the intrinsic growth rate of the species; at higher movement rates, it seems more appropriate to viewM p 1
the system as a single, fairly well-mixed population. For and , one asymmetric equilibrium is indicated by an X and the other byv p 8 M p 0.3
an asterisk. There is a very narrow region of alternative stable equilibria near for .M p 0.55 v p 2

where T, X, Z, and N represent dimensionless variables of
time, space, phenotype, and population density, respec-
tively (see appendix).

Equations (4a) and (4b) are analogous to equations (2)
and (1), respectively, of the two-habitat model. Equation
(4a) describes demographic dynamics of local population
density, N(X, T), and equation (4b) represents evolution-
ary dynamics of the local mean phenotype, . De-Z(X, T)
mographic dynamics (eq. [4a]) are determined by random
dispersal (first term on right-hand side) and local popu-
lation growth (second term on right-hand side). The local

per capita growth rate is the sum of a density-dependent
component, U(N), and a maladaptation component that
arises because of the deviation of the local mean pheno-
type, , from the spatially varying local optimumZ(X, T)
phenotype, Zopt(X).

Local evolutionary dynamics (eq. [4b]) are determined
by the symmetric component of gene flow (due to random
dispersal; first term on right-hand side), by gene flow
asymmetry (which causes gene swamping; second term on
right-hand side), and by stabilizing selection toward the
local optimum Zopt(X) (third term on right-hand side).
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Note that gene swamping (second term on right-hand side
of eq. [4b]) depends on spatial gradients in the logarithm
of population density, causing net gene flow from high-
to low-density populations.

The effect of stabilizing selection on the evolution of
local mean phenotype is given by A, which is called the
genetic potential for adaptation (Kirkpatrick and Barton
1997; Case and Taper 2000; Barton 2001). The quantity A
combines the genetic variance within a local population
and the intensity of selection (see also Barton 2001) and
is identical to G of the two-habitat model (see appendix).
In this model, within-population genetic variance is as-
sumed to be a fixed parameter. Consequences of the evo-
lution of genetic variance itself were investigated by Barton
(2001) and are referred to in “Discussion.”

Finally, the dimensionless function U(N) represents
density dependence of the per capita growth rate. We con-
sider here only negative density dependence; that is, U(N)
is monotonically decreasing with density N. (Conse-
quences of inverse density dependence and Allee effects
for invasion and range dynamics have been explored by,
to cite only a few, Lewis and Kareiva [1993], Keitt et al.
[2001], Wang and Kot [2001], Holt et al. [2004a], and
Taylor and Hastings [2005].) At present, we assume no
specific form of density dependence. We later explore the
model using the theta-logistic equation.

A Gaussian Approximation

Intuitively, density regulation causes high-density popula-
tions to grow more slowly than low-density populations.
When density dependence is spatially uniform, this has the
effect of making spatial density gradients more shallow, thus
weakening gene swamping (the term in eq. [4b]� ln N/�X
becomes smaller). Consequently, we expect density regu-
lation to oppose the maladaptive force of gene swamping
and to facilitate local adaptation and expansion of the spe-
cies’ range. We can demonstrate this effect analytically by
employing an approximation and verify our conclusion with
direct numerical solutions of equations (4) (see below).

We consider a linear environmental gradient:
, where the dimensionless parameter BZ (X) p B # Xopt

measures the steepness of the gradient. Additionally, we
approximate the population density spatial profile as a
Gaussian: , where k is a dimen-2N(X) ≈ N exp (�kX /2)0

sionless measure of range limitation (the higher the value
of k, the more confined is the range). (With no loss of
generality, we assume that the center of the species’ range
is at .) The motivation for such an approximationX p 0
comes from previous studies that also used a Gaussian
density profile (e.g., Kirkpatrick and Barton 1997) and
from the fact that such a Gaussian profile is an exact
solution of equations (4) in the density-independent case

(given ; see also “Unregulated Populations”)Z p B # Xopt

as well as for logarithmic density regulation (Barton 2001).
In contrast to the analysis by Kirkpatrick and Barton

(1997), we do the approximation around the center point
of the species’ range (i.e., around ), where popu-X p 0
lation density is maximal, rather than in the range’s pe-
riphery, where population density is very low (and thus
density dependence can be ignored). It can be shown (ap-
pendix) that the mean phenotype cline around the range
center is also approximated by a linear form: Z(X) p

. Consequently, a case of unlimited geographic rangebX
and perfect adaptation across the entire gradient is de-
scribed by and , while a case of limited geo-k p 0 b p B
graphic range and increasing levels of maladaptation is
described by a positive value of k and . If k is large,b ( B
the species’ abundance is very sharply peaked around a
single point on the gradient (i.e., the range center X p

).0
We can now derive the following equation for the dy-

namics of range limitation k:

�k
2 2p �f(N ) # k � 2k � (b � B) (5)0

�T

(details in appendix). Density dependence is incorporated
in equation (5) via the term

dU
f(N ) p �N # , (6)0 0 FdN NpN0

where N0 is the population density at the range center.
Thus, f is the strength of density regulation at the range
center ( ), where density is maximal. This expressionX p 0
(eq. [6]) was previously derived as a measure of the
strength of density regulation in purely demographic mod-
els of stochastic population dynamics (e.g., eq. [6] is equiv-
alent to of Lande et al. [2002] and Sæther�� ln l/� ln N
et al. [2002]). This same measure is implicated here in the
evolutionary dynamics of species’ ranges. Values of f are
positive, because we consider only negative density de-
pendence (i.e., ).dU/dN ! 0

Equation (5) represents the tension between “forces”
that oppose range limitation and those that promote it.
On the one hand, random dispersal (�2k2) and density
regulation ( ) strive to homogenize densities�f(N )k0

across space (decrease k), thus opposing range limitation.
On the other hand, local maladaptation (i.e., )2(b � B)
creates spatial differences in population growth rates along
the gradient, thus resulting in spatial density gradients and
asymmetric gene flow that works to maintain and increase
maladaptation and, consequently, range limitation. The
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balance between those opposing processes determines the
equilibrium range limitation keq, that is, whether the range
is limited at all and, if so, to what extent.

We have demonstrated that, in general, spatially uni-
form density regulation opposes the limitation of a species’
range and facilitates local adaptation along an environ-
mental gradient. Next, we describe conditions for limited-
range equilibria under different forms of density regula-
tion, and then we move to consider the effect of density
regulation on evolutionary invasion dynamics. The nu-
merical results and figures presented are based on nu-
merical integration of the original dynamical equations
(eqq. [4]; for an explanation of the numerical procedure,
see appendix).

Unregulated Populations

During the establishment phase, a newly invading species
may have a population density low enough that its dy-
namics are effectively unregulated. The density-indepen-
dent case of equations (4) (i.e., and )U(N) p 1 f p 0
was analyzed by Kirkpatrick and Barton (1997), who
showed that the outcome of range evolution is governed
by the dimensionless parameters A and B. For a given
selection intensity A, if the environmental gradient is not
too steep, so that , the species may expand1/2B ! B p A/2L

indefinitely. However, if , stable range limits ariseB 1 BL

and the species exhibits a limited-range equilibrium. In
addition, if the environmental gradient is even steeper, so
that , the species cannot persist and1/2B 1 B p (A � 2)/2U

becomes globally extinct. If it persists, because population
growth is unregulated, the species grows exponentially. In
the unlimited-range case, the steady state exponential
growth rate is (i.e., the steady state solution� ln N/�T p 1
is given by ), which is the maximal rateTN(T, X) p N e0

(using the dimensionless variables of eqq. [4]). In the
limited-range case, the steady state exponential growth rate
is given by

� ln N B � BUp , (7)��T 2

which is lower than 1 for limited-range solutions (i.e., for
) and negative when (as expected, becauseB 1 B B 1 BL U

the species becomes globally extinct in the latter case).
Therefore, a population with a limited range will also ini-
tially grow more slowly than one with an unlimited range.
This happens because of the source-sink dynamics that
develop in the limited-range equilibrium; central popu-
lations suffer a loss of individuals as a result of emigration
into peripheral environments where the species is mal-

adapted. As shown below, this expression (eq. [7]) has
important consequences for invasion dynamics.

Regulated Populations

Equation (5) captures the effects of density regulation (f)
on the dynamics of range limitation (k). The strength of
density regulation depends on central population density,
N0 (eq. [6]). Therefore, the form of density dependence
(U(N)) is potentially important in determining the equi-
libria, the limited-range threshold BL, and the dynamics
of the species’ range. For example, Barton (2001) dem-
onstrates how the limited-range threshold is increased (rel-
ative to of the unregulated case), given logistic1/2B p A/2L

or logarithmic density regulation (for the latter, f is in-
dependent of density). Therefore, with density regulation,
steeper environmental gradients are needed for limited-
range equilibria to be maintained by gene flow.

Next, to provide a more concrete example, we consid-
ered the theta-logistic used in the two-habitat model

and numerically solved equations (4)v(U(N) p 1 � N )
for different combinations of A, B, and v (for more details,
see appendix). Figure 3 presents how BL (i.e., the limited-
range threshold) and BU (i.e., the extinction threshold)
vary with the selection intensity A for several values of v.
First, the extinction threshold curve is independent of the
value of v and is still given by (i.e., the1/2B p (A � 2)/2U

expression derived for unregulated dynamics; more details
in appendix). Note that for the two-habitat model above,
the condition for persistence was also independent of v.

Figure 3 also demonstrates that as v increases, the
limited-range threshold is increasingly pushed upward. For
a given value of A, steeper environmental gradients are
required to limit a species’ range as v increases. Overall,
as v increases, there is a shrunken range of the A-B pa-
rameter space that permits stable range limits. Why is that?
In the appendix, we demonstrate that the strength of den-
sity regulation at equilibrium is given by

f p v # (1 � k ) (8)eq eq

(using the previously described Gaussian approximation).
Hence, the strength of density regulation at equilibrium
increases with v (see also Sæther and Engen 2002), op-
posing range limitation more strongly (see eq. [5]) and
causing a higher limited-range threshold. Another way of
thinking about this is suggested by figure 4. Close to the
limited-range threshold (both above and below it), the
equilibrium population density is practically , thatN p 1
is, at the carrying capacity. Figure 4 shows that at high
densities (close to ), the strength of density regu-N p 1
lation, f, indeed increases with v, causing a higher limited-
range threshold.
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Figure 3: Limited-range threshold BL for different forms of density regulation (i.e., for unregulated dynamics and for different values of v) given
in the A-B parameter space. Combinations of A (genetic potential for adaptation) and B (steepness of environmental gradient) that cause unlimited
expansion are below that threshold curve. Combinations that cause stable range limits are above it. Combinations that end in global extinction lie
above the extinction threshold curve BU.

Comparison with the Two-Habitat Model

Both the previous two-habitat analysis and this analysis of
a continuous environmental gradient point to the same
effect of negative density dependence. As density depen-
dence is increasingly pushed into higher densities (e.g., as
v increases in the theta-logistic model), it becomes more
difficult to obtain stable range limits and habitat special-
ization. This effect of the form of density regulation is
evident both in figure 1 for the two-habitat model and in
figure 3 for the continuous gradient model. Asymmetric
solutions (i.e., habitat specialization) in the two-habitat
model require larger differences among habitat types
(larger H) as v increases. Similarly, in the continuous case,
stable range limits require steeper environmental gradients
(higher B) for greater values of v. Thus, despite differences
between the two models (most notably, the symmetric
solutions of the two-habitat model involve a uniform level
of maladaptation across all habitats; this can never be a
stable solution in the continuous case), the negative effect
of strong spatially uniform density regulation near the
population equilibria on habitat specialization and limi-
tation of a species’ range seems to be a robust result.
Conversely, if density dependence near equilibrium is weak
(low v), it is easier for evolution to constrain species’ niches
and geographical ranges.

Implications for Biological Invasions

Garcı́a-Ramos and Rodriguez (2002) studied biological in-
vasions using the equations of Kirkpatrick and Barton
(1997; i.e., eqq. [4] with logistic density dependence). They
demonstrated that because of local maladaptation in the
advancing wave front, the species’ invasion proceeds more
slowly than in the comparable purely demographic model
of Fisher (1937) and Skellam (1951). As the environmental
gradient becomes steeper, the invasion speed gradually de-
creases until it becomes 0 when B exceeds BL. However,
before reaching a steady state (of either range expansion
at a constant rate or a stable range limit), there is a period
of transient dynamics in which quite different behaviors
may be observed. This is the focus of the next section.

Quasi-Stable Range Limits

The steady state behavior of Garcı́a-Ramos and Rodriguez
(2002) is obtained once the central population of the newly
established species reaches carrying capacity (i.e., N very
close to 1). However, during the initial time period, for
example, shortly after introduction, all populations are low
in density. Hence, the species will exhibit effectively un-
regulated population growth for some time. The period
of time for such effectively unregulated behavior depends
on the form of density dependence (here the value of v).
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Figure 4: Strength of density regulation f as a function of density N. Given equation (6) for f and theta-logistic density dependence, f(N) p
, which is plotted for several values of v. Note that for (convex forms of density dependence), the strength of density regulation risesvvN v ! 1

sharply at low densities and then continues to grow slowly as density approaches carrying capacity. For (concave forms), the strength of densityv 1 1
regulation is effectively 0 at low densities and rises sharply only for intermediate and high densities. The range of densities in which such unregulated
dynamics ( ) is operating increases with v.f ≈ 0

As v increases, density dependence is pushed into increas-
ingly higher densities, below which population growth is
effectively unregulated (see fig. 4).

In figure 3, consider the region in A-B parameter space
that lies above the unregulated limited-range threshold
(i.e., ) but below that for density-regulated dy-1/2B 1 A/2
namics (curves labeled with values of v). Within this re-
gion, unregulated dynamics dictate limited-range equili-
bria, but density-dependent dynamics cause unlimited
expansion (i.e., invasion). The overall resulting dynamics
include transient quasi-stable range limits during the ini-
tial low-density phase of a biological invasion (i.e., shortly
after introduction). This quasi-stable phase lasts until den-
sity dependence is strong enough to initiate the steady
state phase with its constant rate of expansion. We note
that as v increases and BL increases (fig. 3), the region in
A-B parameter space with quasi-stable behavior expands.
Thus, as v increases, there are more opportunities (com-
binations of A and B) for steady state unlimited expansion
but also more opportunities for quasi-stable range limits
during the initial low-density phase of an invasion.

Biologically speaking, if the environmental gradient is
steep enough, the species may be confined to a limited
range during the initial phase of the invasion, because gene
swamping is strong enough to prevent local adaptation to
a new environment. The limited-range quasi equilibrium

is maintained until population densities become high
enough for density regulation to weaken gene swamping,
thus potentially “releasing” the species from the con-
straints of gene flow impeding local selection, initiating
an unlimited expansion.

Typical trajectories of a species’ range after introduction
are shown in figure 5A–5C. We adopt an operational def-
inition of range “size” based on statistical analyses of spe-
cies’ ranges (Gaston 2003, pp. 23–24; Fortin et al. 2005
and references therein). Range limits are defined as the
boundary outside which local population density drops
below 1% of the maximum. During the initial low-density
phase of the invasion, the species’ range tends toward the
quasi-stable equilibrium (denoted by kqs). However, when
density regulation finally becomes strong enough, the dy-
namics change (and quite abruptly for high values of v)
into steady state unlimited expansion (invasion). Also,
note that if the initial species’ range is wider than the quasi-
stable range size (fig. 5A), then initially the range actually
contracts. Initial dynamics of the species’ range may not
represent its eventual steady state invasion dynamics, and
thus monitoring the initial range change of a species in a
novel biome may lead to a very poor prediction of its
ultimate invasive potential.

As discussed above, the duration of this quasi-stable
initial phase is longer for higher values of v. Recall that
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Figure 5: Dynamics of range size, given four different forms of density regulation (i.e., values of v) and three different initial range sizes: k(t p
, that is, initial range is wider than the quasi-stable range size (A, D); , that is, initial range is equal to the quasi-stable0) p 0.5k k(t p 0) p kqs qs

range size (B, E); and , that is, initial range is narrower than the quasi-stable range size (C, F). A–C present the range dynamicsk(t p 0) p 1.5kqs

during the initial quasi-stable phase. D–F extend the time axis to present the steady state behavior of range expansion. Note in A that because the
initial range is wider than the quasi-stable range size, then initially the species’ range actually contracts until density dependence becomes strong
enough to reverse this trend. The duration of this initial range contraction is longer for higher values of v. In B, because range size is initialized at
the quasi-stable level, then range size remains constant for a period of time that increases with v. In C, because initial range size is narrower than
the quasi-stable size, then range size initially approaches the quasi-stable size but in a decelerating manner until density dependence becomes strong
enough to initiate unlimited expansion. D–F demonstrate how the invasion speed at steady state increases with the value of v. In all cases, the
trajectories are obtained for and . The quasi-stable range limitation kqs is 0.21. Initial population size at range center isA p 0.5 B p 0.65 N (t p0

.0) p 0.01

the exponential growth rate of the unregulated limited-
range equilibrium decreases linearly as the environmental
gradient becomes steeper (i.e., as B increases; eq. [7]).
Hence, the duration of the quasi-stable phase not only
increases with v but also should be longer for steeper en-
vironmental gradients (i.e., ; eq. [7]). Other�1T ∼ (B � B)U

processes that can further depress the per capita growth
rate, such as demographic stochasticity and Allee effects
(both expected to operate at low population densities),
could also increase the duration of the quasi-stable phase.

Consequences for Accelerating and
Steady State Speeds of Invasion

During the initial phase of quasi-stable range limits, range
size may contract (if ), remain constant for ak ! ktp0 qs

while, or expand in a decelerating manner (fig. 5A–5C).
The transition into steady state expansion involves an in-
crease in the invasion speed; this is quite abrupt at large
values of v (e.g., ). This rapid transition arises be-v p 10
cause when density dependence finally begins to operate,
for large v values it does so very strongly (see fig. 4; eq.
[5]). Figure 5D–5F extends the curves in figure 5A–5C to
show a trend in the steady state speed of invasion. As v

increases, invasion speed also increases as a result of the
interplay of local adaptation and demography in newly
invaded sites along the gradient. Differences in steady state
invasion speed between different forms of density regu-
lation disappear in a homogenous selective environment
(i.e., when ), as expected (fig. 6). Finally, as notedB p 0
above, Garcı́a-Ramos and Rodriguez (2002) found that as
the environmental gradient is steepened, steady state in-
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Figure 6: Steady state invasion speed as a function of the steepness of the environmental gradient B, given three different values of A (genetic
potential for adaptation) and five different forms of density regulation (i.e., values of v). Invasion speed is given in rescaled, dimensionless space
time variables (see explanation of eqq. [4]). Therefore, its maximal value is 2 (see also Garcı́a-Ramos and Rodriguez 2002). Note that as the
environment becomes increasingly heterogeneous (as B increases), differences among forms of density regulation become more pronounced. Invasion
speeds are the same (equal to 2) when the environment is homogenous ( ). For each curve, the B-axis intercept defines the limited-rangeB p 0
threshold BL for those values of A and v.

vasion speed decreases, becoming 0 when B equals BL.
Figure 6 demonstrates this effect for several values of A
and v. In addition to the effect of the gradient, figure 6
also shows the effect of the form of density regulation (i.e.,
value of v) on the steady state invasion speed; increasing
v leads to faster invasion along steeper (higher B) gradients.

Discussion

We have explored how the form of density regulation af-
fects the interplay between demography and evolution that
determines both invasion dynamics and the potential for
evolutionarily stable ranges. We demonstrate that, in het-
erogeneous environments (either a mosaic of two discrete
habitats or a continuous gradient), the specific form of
negative density regulation influences steady state invasion
speed, and the appearance and duration of initial invasion
lags. Such effects of negative density dependence on in-
vasion dynamics are in sharp contrast to the results of
purely demographic models, for which invasion speed de-
pends only on the maximal intrinsic growth rate (e.g.,
Shigesada and Kawasaki 1997). The form of density reg-
ulation also affects conditions for being either a habitat
specialist or a generalist and conditions for stable range
limits to occur. Thus, when analyzing rates and patterns
of species invasions or range boundaries, it is important
to consider density dependence. General patterns of in-

vasions (e.g., initial lags and accelerating rates), as well as
the invasive potential of specific species, may very well be
connected to the form of the density dependence (see
below).

Using a two-habitat model, we demonstrated that hab-
itat specialization becomes less likely as density regulation
becomes increasingly concave (i.e., density dependence
that is weak at low densities and strong at high densities,
corresponding to increasing v in the theta-logistic model).
Larger differences between habitats are likewise required
for migrational meltdown to occur with more concave
patterns of regulation (fig. 1). Similarly, for a continuous
environmental gradient, we demonstrated that as density
regulation becomes increasingly concave, so that density
dependence is strong near equilibrium, there is less op-
portunity for stable range limits to arise, because steeper
gradients are needed to prevent unlimited invasion (see
fig. 3).

We have also demonstrated how gene swamping might
cause quasi-stable range limits, or even phases of range
collapse, during the initial phases of a biological invasion,
even when the ultimate range is unbounded. This transient
phase is followed by a phase of accelerating expansion; the
eventual steady state invasion speed depends on the form
of density regulation (e.g., in the theta-logistic model,
higher values of v lead to faster invasions). Differences in
steady state invasion speed in our model are not an out-
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come of different forms of density regulation per se but
rather are caused by the feedback between demography
and evolution in heterogeneous environments, which in
turn is altered by the form of density regulation.

One effect of a quasi-stable phase of invasion is an initial
time lag. Such lags are often observed in biological in-
vasions (e.g., Crooks 2005). Several alternative mecha-
nisms have been proposed to explain these lags. An Allee
effect may cause long initial periods of sluggish growth
and difficulty in adapting to novel environments (Lewis
and Kareiva 1993; Keitt et al. 2001; Wang and Kot 2001;
Holt et al. 2004a; Taylor and Hastings 2005). The level of
initial maladaptation to the novel environment at the point
of introduction can also influence establishment success
(Holt et al. 2005a; see also Holt and Gomulkiewicz 1997a).
Our results suggest a different mechanism. Gene swamping
during an initial phase of unregulated population growth
temporarily maintains habitat specialization, causing
quasi-stable range limits that eventually dissolve when
populations approach carrying capacity. This process de-
pends on the form of density dependence at intermediate
and high population densities and assumes the importance
of local adaptation along a gradient, unlike Allee effect–
based explanations, which depend on density dependence
at low densities and pertain even in spatially homogeneous
environments. The process we have identified may delay
species’ invasion, even when population density grows and
the Allee effect is no longer operating. Note that in the
specific scenarios we have explored, the central population
of the invading species is assumed to be locally adapted.
Initial maladaptation at the site of introduction is thus not
required for time lags to occur in invasion; our suggested
mechanism can cause time lags even in the absence of
initial maladaptation or Allee effects. Of course, all these
distinct explanations may operate in a complementary,
mutually reinforcing fashion.

Our models suggest a novel mechanism leading to ac-
celerating rates of invasion. The two current demographic
explanations for accelerating rates of invasion are Allee
effects and fat-tailed dispersal kernels (i.e., long-distance
dispersal; Hastings et al. 2005; Taylor and Hastings 2005).
These demographic processes operate in both homogenous
and heterogeneous environments. Holt et al. (2005a) sug-
gested an evolutionary mechanism for accelerating inva-
sion rates in homogenous environments. An initially mal-
adapted species gradually adapts to the novel environment;
its per capita growth rate (r) thus increases, resulting in
increasingly faster invasion speeds. We suggest that in het-
erogeneous environments, the feedback between demog-
raphy and evolution can also cause initially low invasion
rates, followed by acceleration to higher steady state in-
vasion speeds.

Prior studies of the Kirkpatrick and Barton model have

focused on equilibrium solutions (Kirkpatrick and Barton
1997; Case and Taper 2000; Barton 2001) or steady state
behavior (Garcı́a-Ramos and Rodriguez 2002), with little
attention given to transient behaviors. Moreover, previous
analyses of the model used logarithmic (Barton 2001) or
logistic (i.e., ; Kirkpatrick and Barton 1997) densityv p 1
regulation, for which a quasi-stable phase does not occur
or is very brief (see fig. 5 for the logistic form). Allowing
density dependence to be weak at low densities and strong
at high densities permits quasi-stable range limits. Finally,
our models assumed fixed genetic variance. By explicitly
including also the dynamics of genetic variance, Barton
(2001) showed that initially low genetic variance may
maintain a limited species’ range for long periods, until
enough additive genetic variance builds up to facilitate
adaptation and expansion (see also Lee 2002; Blows and
Hoffmann 2005). It would be interesting to examine how
the form of density regulation affects invasion and range
dynamics when the dynamics of the genetic variance are
also taken into account.

Other possible extensions of the models presented here
include spatial variation in the form of density regulation,
in addition to the spatial heterogeneity in selective optima
considered in this article. If marginal populations also have
unusually strong density dependence at low densities, then
the model of Holt (1996) and Gomulkiewicz et al. (1999)
suggests that gene flow may be particularly effective at
limiting local adaptation. An important open question is
analyzing coupled evolutionary and demographic dynam-
ics along gradients for species with age/size/stage structure.
For example, it may be that selection mostly occurs at the
juvenile phase, while density-dependent effects are most
strongly exerted by mature individuals that are more likely
to have locally favored genotypes. If traits that lead to local
adaptation also permit individuals to be superior in com-
petition before reproducing, selection against immigrants
can be amplified by density dependence. This should make
it more difficult for gene flow to prevent niche evolution
and range expansion.

Sæther and Engen (2002) give estimates of v ranging
from 0.15 to 11.17 for 11 bird species. The R variable of
Fowler (1988) can be readily translated into estimates of
v that fall between 0 and ∼20 (for more details, see ap-
pendix). Many studies provide evidence for strongly non-
linear forms of density regulation (e.g., Fowler 1981; Sibly
and Hone 2002; Sinclair 2003), including both convex
( ) and concave ( ) forms. In the face of thesev ! 1 v 1 1
wide ranges of estimated values of v from natural popu-
lations, all of the different dynamical behaviors described
in this article are potentially feasible in nature. Specifically,
the potential for quasi-stable range limits, transient range
contraction, and acceleration in invasion speeds would
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likely vary among species because of their correspondingly
different values of v.

In addition, the form of density regulation may reflect
life-history syndromes. For instance, Fowler (1988) and
Sæther and Engen (2002) find significant negative rela-
tionships between v (or R in Fowler’s study; see appendix)
and the intrinsic (i.e., maximal) per capita growth rate, r
(Sæther and Engen 2002), or the rate of increase per gen-
eration (rT, where T denotes here generation time; Fowler
1988). These correlations suggest that the form of density
regulation is related to other life-history characteristics
(e.g., the “slow-fast continuum” of Sæther and Engen
2002). Clades that differ in these life-history variables thus
might systematically differ in the likelihood of evolution-
ary constraints on range limits.

Predicting the invasion potential of species, based on
life-history traits and environmental characteristics, is the
Holy Grail of invasion biology (e.g., Kolar and Lodge 2001;
Grotkopp et al. 2002; Facon et al. 2006). So far, this has
been an elusive goal (e.g., Kolar and Lodge 2001). We
suggest that the form of density regulation may play an
underappreciated role in determining invasiveness (see
also Holt et al. 2004a). As noted above, life-history traits
related to invasiveness (e.g., Kolar and Lodge 2001) are
correlated with the form of density regulation. However,
much residual variation exists around those correlations
(e.g., Sæther and Engen 2002). Examining the form of
density regulation may help to sharpen differences between
invasive and noninvasive species. We suggest that the pre-
dictions outlined in this article concerning the role of den-
sity regulation in biological invasions involving adaptation
to novel heterogeneous environments open up a new path
for comparative, empirical, and field investigations of spe-
cies invasiveness and evolutionarily stable range limits.
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