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ABSTRACT 
 
This paper describes the propagation of 

uncertainty contributors through the analytical 
milling stability models developed by Tlusty et al. 
and Altintas and Budak. These analyses provide 
graphical representations of the limiting axial 
depth of cut for chatter-free milling as a function 
of spindle speed in the form of stability lobes. In 
this work, confidence intervals are added to 
these stability lobes to improve their utility at the 
shop floor level. Using Monte Carlo simulation 
techniques, uncertainties in the model inputs, 
including the tool point frequency response 
function, cutting force model coefficients, and 
radial depth of cut, are used to determine the 
associated uncertainty in the predicted stability 
limit at each spindle speed. 
 
 
INTRODUCTION 
 
As stated in NIST Technical Note 1297 

[Taylor and Kuyatt], ‘the result of a 
measurement is only an approximation or 

estimate of the value of the specific quantify in 
question, that is, the measurand, and thus the 
result is complete only when accompanied by a 
quantitative statement of its uncertainty’. The 
inclusion of a defensible uncertainty statement 
enables the user to determine his/her 
confidence in the measurement and its 
usefulness in decision making. This concept can 
be extended to simulation results based on 
measured input quantities. Again, the user 
requires some indication of the reliability of the 
analysis output to gage its usefulness.  
 
Guidelines for evaluating the uncertainty in 

measurement results are described in [ISO, 
ANSI, Taylor and Kuyatt, and Bevington and 
Robinson], for example. Often the measurand is 
not observed directly, but is expressed as a 
mathematical function of multiple input 
quantities. In this case, the fundamental steps in 
uncertainty estimation are to define the 
measurand, identify the input uncertainty 
contributors and their distributions, and 
propagate the uncertainties through the 
measurand using either analytical (Taylor series 
expansion) or sampling (Monte Carlo, Latin 
hypercube) approaches. 
 
The goal of this work is to identify the 

combined standard uncertainty, uc, which 



incorporates the separate influences of the 
variances in the input uncertainties and 
represents one standard deviation of output 
variation, of the milling stability limit as defined 
by the analytical analyses of [Tlusty et al.] and 
[Altintas and Budak]. Because the stability limit 
is described as a function of spindle speed, uc is 
also a function of spindle speed in this analysis. 
In this treatment, potential limitations of the 
stability models will not be considered as part of 
the uncertainty analysis. However, comparisons 
between the two approaches are presented, as 
well as experimental results. 
 

 
STABILITY ANALYSES REVIEW 
 
Although the Tlusty et al. and Altintas and 

Budak approaches are available in the literature, 
they will be summarized here to: 1) identify the 
input variables; and 2) make the paper self 
contained. 
 
Tlusty et al. analysis 
 
In this approach, an approximate analytical 

solution to the time-delayed differential 
equations of motion for milling is obtained by 
assuming an average position of the tooth in the 
cut (defined by the radial immersion). The 

cutting force, F, inclined at an angle β relative to 
the surface normal for this average position is 
projected into the x (feed) and y directions within 
the plane of the cut and then into the surface 
normal. In this way, the real part of the ‘oriented’ 

frequency response function, Gorient(ω) = µxGx + 

µyGy, is determined, where ω is the circular 
frequency (rad/s), µx/y are the projections (or 
directional orientation factors) and Gx/y are the 
real parts of the x and y direction frequency 
response functions (or FRFs) measured at the 
free end of the cutting tool, or tool tip (assuming 
the workpiece is rigid relative to the tool). Figure 

1 depicts the average cutting tooth position for a 
50% radial immersion down milling situation. 
 
The limiting axial depth of cut, blim, is then 

defined as a function of Gorient, the cutting force 
coefficient, Ks, which relates F to the cross-
sectional area of the uncut chip, and m

*
, the 

average number of teeth engaged in the cut. 
See Eq. 1. Equation 2 relates the chatter 

frequency, ωc (rad/s), should it occur, to spindle 

speed, Ω (rev/s), so that the stability lobe 
diagram may be plotted. In Eq. 2, m is the 
number of cutter teeth, N = 0, 1, 2, … is the 
integer number of vibration waves between teeth 

(lobe number), and ε (rad) is defined in Eq. 3, 
where Horient is the imaginary part of the oriented 
FRF. 
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Altintas and Budak analysis 
  
 In the Altintas and Budak approach, the time 
varying coefficients of the dynamic milling 
equations, which depend on the angular 
orientation of the cutter as it rotates through the 
cut, are expanded into a Fourier series and then 
truncated to include only the average 
component. The stability analysis is posed as an 
eigenvalue problem similar to the form det (A - 

λI) = 0, where λ represents the system complex 
eigenvalues and A is defined in Eq. 4, where 
Gx/y and Hx/y are again the real and imaginary 
parts of the tool point FRFs in the x and y 

directions, respectively. The terms αxx, αxy, αyx, 

and αyy depend on the selected radial immersion 
and the cutting force coefficient, Kr, which 
relates the radial cutting force component, Fr, to 
the tangential cutting force component, Ft, as 
shown in Eq. 5. 
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FIGURE 1. AVERAGE TOOTH POSITION 
APPROXIMATION FOR TLUSTY ANALYSIS. 



 The resulting stability relationships are shown 
in Eqs. 6-8, where Kt relates Ft to the uncut chip 
area and the remaining variables are defined as 
before. The reader may note that these 
equations differ slightly from those in [Altintas 
and Budak] because the eigenvalue problem 
has been recast to match the format expected 

by Matlab, the software used in this study. 
The explicit relationships between the Tlusty 
et al. and Altintas and Budak cutting force 
coefficients are provided in Eqs. 9 and 10. 
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In both approaches, a number of stability 

lobes are computed (i.e., N = 0, 1, 2, …) which, 
when taken together, define the stability limit. 
For our purposes it was necessary to determine 
the stability boundary as a single curve for the 
range of selected spindle speeds. This boundary 
was obtained by: 1) selecting a spindle speed 
within the range of interest; 2) determining the 
two points on each of the N stability lobes (if 
applicable) that bracketed the selected speed; 3) 
linearly interpolating to find the blim values; and 
4) recording the minimum blim value from all N 
lobes. 

 
 

UNCERTAINTY CONTRIBUTORS 
 
From the previous section, the analysis 

inputs are: 1) the tool point FRF; 2) the cutting 
force coefficients; and 3) radial immersion. The 
variances in these inputs lead to blim uncertainty. 
Additional details regarding the first two are 
provided in the following subsections. Although 
spindle speed uncertainty could also be 
incorporated so that confidence intervals are 
included in both the vertical (blim) and horizontal 

(Ω) directions on the stability lobe diagram, Ω is 
typically known quite well and has not been 
treated here. 
 
Tool point FRF 

 
There are many sources which can 

influence the machine-spindle-holder-tool FRF 
as reflected at the tool point. These include the 
tool overhang length, diameter, flute geometry, 
and material properties; the tool-holder 
connection stiffness and damping; the holder 
geometry and material properties; the holder-
spindle connection stiffness and damping; and 
spindle variations. The source of the spindle 
variations could include changes in dynamic 
stiffness with rotating speed and thermal 
fluctuations [e.g., Shin, Jorgenson and Shin, 
Schmitz et al., Cao and Altintas], although the 
non-rotating tool point FRF measurement is 
typically assumed to provide a reasonable 
approximation of the spindle response at speed. 
An important consideration in identifying the 
FRF uncertainty is that it is a frequency 
dependent, complex function [Hall]. 

 
Cutting force coefficients 

 
Cutting force models may be: developed by 

transformation of orthogonal cutting parameters 
such as shear angle, shear stress, and friction 
coefficient to the geometry in question; obtained 
from previously tabulated data; or determined 
from mechanistic identification. Because the 
cutting coefficients are a function of both the 
workpiece material and cutting tool 
characteristics (as well as the cutting conditions 
in some cases), the mechanistic approach is 
often applied. 

 
In this method, cutting tests are completed 

for a selected radial immersion and axial depth 
at a range of chip loads. The mean cutting 
forces for each chip load are recorded and a 
linear regression to the data is performed 
[Altintas]. The slope values for the x and y 
direction mean force data, mx and my, are then 
used to determine the coefficients; Eqs. 11 and 
12 give the expressions for slotting. One 
potential influence not often considered is 
variation in the coefficients with spindle speed. 
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NUMERICAL STUDY 
 
In this section a comparison of the spindle 

speed dependent uncertainty for the Tlusty and 
Altintas and Budak stability lobes is provided. 
Single degree of freedom, lumped parameter 
dynamics have been assumed in the x and y 
directions. The natural frequency, fn, stiffness, k, 

and viscous damping ratio, ζ, values for the 
slightly asymmetric dynamics are listed in Table 
1. A frequency dependent uncertainty equal to 
15% of the magnitude at any given point on the 
real and imaginary curves was applied. The 
cutting force coefficients and standard 

deviations, σ, are provided in Table 2. Note that 
the Kt/Kr and Ks/β means and standard 
deviations are equivalent. The cutter was 
selected to have two teeth. Results for two radial 
immersions are presented: 1) 25% down milling 

(a radial depth of cut uncertainty of 25 µm was 
assumed); and 2) 100% radial immersion, or 
slotting (no radial depth uncertainty was 
applied). 
 
TABLE 1. SYSTEM DYNAMICS MEAN VALUES 
FOR NUMERICAL CASE STUDY. 

 fn (Hz) k (N/m) ζ 

x 1000 8x10
6
 0.02 

y 950 7x10
6
 0.02 

 
TABLE 2. CUTTING COEFFICIENTS AND 
STANDARD DEVIATIONS FOR NUMERICAL CASE 
STUDY. 

 Mean σ 

Ks 794 N/mm
2
 121 N/mm

2
 

β 71.8 deg 6 deg 

Kt 750 N/mm
2
 100 N/mm

2
 

Kr 0.33 0.06 

 
Monte Carlo simulations were completed to 

determine the mean stability limit and 2uc, or 
95%, confidence intervals (1000 repetitions). In 
these simulations, it was necessary to define the 
correlation between input variables. We 
assumed 100% correlation between individual 
frequencies, real and imaginary parts, and the x 
and y directions for the frequency response 
functions. This is based on the observation that 
physical changes to the tool-holder-spindle 
system can impact both the x and y directions at 
approximately the same level. We also assumed 

100% correlation between the Kt/Kr and Ks/β 
pairs because they are computed from cutting 
forces obtained in a single test (when using the 
mechanistic approach). All other correlations 

were taken to be zero. Normal distributions were 
assumed in all cases. 

 

 
Results for the 25% radial immersion case 

are shown in Fig. 2. The mean stability 
boundaries agree, while the uncertainty for the 
Tlusty approach (gray lines) gives increased 
uncertainty to the right of the stability lobe 
peaks. Slotting results are shown in Fig. 3. Here 
the mean predictions diverge substantially (also 
reported in [Altintas and Weck]). This is due to 
the average cutting tooth orientation assumed in 
the Tlusty et al. approach. Because the 
associated surface normal in slotting is parallel 
to the x direction, the y dynamics have no 
influence on the stability boundary (i.e., the 
projection is zero). The uncertainty for the Tlusty 
et al. lobes is also much larger. This is again a 
function of the average cutting direction. 

Because the x direction projection is (cos β) in 
slotting, this case is highly sensitive to β 
variations. Figure 4 demonstrates this high 

FIGURE 2. NUMERICAL RESULTS FOR 25% 
RADIAL IMMERSION. 

FIGURE 3. NUMERICAL RESULTS FOR 100% 
RADIAL IMMERSION. 



sensitivity by comparing the results from using 

the mean value of β from Table 2 with zero 
standard deviation to the mean value with the 
standard deviation (from Table 2). As expected, 
the mean stability limits agree, but the 
uncertainty is significantly reduced when no 

variation in β is allowed. 
 

 
EXPERIMENTAL RESULTS 
 
Input data uncertainty evaluations 

 
As noted previously, the primary uncertainty 

contributors in the stability limit calculations are 
the tool point FRF and the cutting force 
coefficients. In the following sections, we provide 
experimental results and uncertainty 
identifications for a particular setup. 
 

Tool point FRF. A 12.7 mm diameter, 4 
flute, 30 deg helix solid carbide end mill was 
inserted in a shrink fit holder with an overhang 
length of 70 mm and clamped in a 20000 rpm 
spindle. The non-rotating tool point frequency 
response was recorded in the x and y directions 
five times using impact testing. Between each 
test, the holder-tool was removed from the 
spindle and replaced. Further, the spindle was 
run at speeds of {5000, 10000, 15000, and 
20000) rpm for 30 seconds between the tests to 
include potential thermal effects. The five 
measurements and 95% confidence intervals 
about the mean value for the x and y directions 
are shown in Figs. 5 and 6. The increased 
variation in the y direction results at the 
maximum amplitude is caused by an interaction 
between a spindle mode and the tool 

fundamental bending mode near 2000 Hz 
[Duncan et al.]. 
 

 

 
TABLE 3. CUTTING COEFFICIENT DATA FOR 7475 
ALUMINUM. 

Ω 
(rpm) 

Kt (N/mm
2
) Kr 

1000 817 815 863 0.289 0.301 0.351 

8900 670 702 686 0.213 0.208 0.157 

Mean 759 0.253 

σ 82.2 0.072 

 
Cutting force coefficients. Slotting tests 

were performed in 7475 aluminum to 
mechanistically identify the cutting force 
coefficients. Tests were performed at two 
different spindle speeds, 1000 rpm and 8900 
rpm, with each set repeated three times (six total 
data sets). Further, the 1000 rpm cuts were 
completed with an axial depth of 3.05 mm and 

FIGURE 5. X DIRECTION FRF. MEASUREMENTS 
ARE SHOWN AS DOTTED LINES; 95% 
CONFIDENCE INTERVALS AS SOLID LINES. 

FIGURE 6. Y DIRECTION FRF. MEASUREMENTS 
ARE SHOWN AS DOTTED LINES; 95% 
CONFIDENCE INTERVALS AS SOLID LINES. 

FIGURE 4. COMPARISON OF TLUSTY ET AL. 
LOBES FOR SLOTTING WITH AND WITHOUT 

VARIATION IN β. 
 



the 8900 rpm cuts with an axial depth of 1.02 
mm. The chip loads for both cases were {0.03, 
0.05, 0.10, and 0.15} mm/tooth. The variable 
cutting conditions were included to incorporate 
their potential influence on the cutting 
coefficients and the resulting variance in the 
mean values. Using the linear regression 
analysis described previously, Kt and Kr values 
were determined for all six data sets. See Table 
3, where the mean values and standard 
deviations are also provided. The correlation 
between Kt and Kr was determined to be 97%. 
This relationship exists because the x and y 
cutting force data used to compute the 
coefficients are collected simultaneously during 
each cutting test (at the different chip loads) and 
exhibit ~100% correlation. The equivalent values 
for the Tlusty et al. coefficients were calculated 
using the relationships shown in Eqs. 9 and 10. 
 
Stability lobe verification 

 
The Monte Carlo simulation procedure 

requires selecting random samples from the 
input variable distributions and computing the 
output over many iterations. As noted, in this 
study it was necessary to consider the 
correlation between input variables. 

 
For the FRF data, we applied 100% 

correlation between individual frequencies and 
between the real and imaginary parts of the 
complex response. In other words, a single 
random value (from a unit variance normal 
distribution) was used to select the real and 
imaginary values at each frequency of the FRF. 
See Eq. 13, where a is the random variable, F is 
the input variable value for a given iteration of 

the Monte Carlo simulation, F  is its mean 
value, and σF is the standard deviation. The 

strong correlation between frequencies and 
real/imaginary parts occurs because the data is 
collected simultaneously in impact testing. It 
should be noted, however, that the uncertainty 

was frequency dependent, i.e., σF was a function 
of frequency in Eq. 13, and was larger near 
resonance as shown in Figs. 5 and 6. 

 

FaFF σ⋅+=   (13) 

 
Another consideration for the FRF data was 

potential correlation between the x and y 
direction measurements. It is possible that if the 
variation between measurements was caused 
by, for example, a change in the connection 

between the holder and spindle, then both 
directions could be influenced in a similar 
manner. Therefore, we evaluated the covariance 
between the FRFs measured in the two 

directions, σxy. The result is shown in Fig. 7; it is 
seen that the covariance is strongly dependent 
on frequency with the highest values near 
resonance and near zero levels everywhere 
else. Because we already identified 100% 
correlation between frequencies and the real 
and imaginary parts for the individual directions, 
it was not possible to allow a frequency 
dependent correlation between the two 
directions. Therefore, we elected to observe 
zero correlation (between the x and y directions) 
as the generally more conservative approach

1
. 

 
For the cutting force coefficients, 100% 

correlation was applied (i.e., the same random 
variable was used to sample both Kt and Kr, or, 

equivalently, Ks and β). The mean values and 
standard deviations provided in Table 3 were 
used. 

 
Results for 25% radial immersion down 

milling tests at a range of spindle speeds 
between 10000 rpm and 20000 rpm (in 
increments of 1000 rpm) are shown in Figs. 8 
and 9. At each speed, the axial depth was 
incrementally increased until chatter was 
observed. Unstable cuts were identified using 
the spectrum of the sound signal recorded 
during the cut [Delio et al.], as well as by the 

                                                
1
 For completeness, Monte Carlo simulations were 
executed for the limiting cases of zero and 100% 
correlation. The results were practically identical. 

FIGURE 7. (TOP PANEL) COVARIANCE 
BETWEEN X AND Y DIRECTION FRFS. (BOTTOM 
PANEL) X AND Y DIRECTION FRF MAGNITUDES. 

 



nature of the machined surface finish. Figure 8 
shows a comparison between the Altintas and 
Budak lobes with 2uc confidence intervals and 
the cutting tests results, while Fig. 9 shows the 
Tlusty et al. lobes and experimental data. [Note 
the different vertical scales.] For the Monte Carlo 
simulations, 1000 iterations were completed and 

a radial depth of cut uncertainty of 25 µm was 
assumed. 

 
A comparison of the two plots shows that 

the confidence intervals for the Tlusty et al. 
lobes are wider for equivalent input mean 
values, distributions, and correlations. In 
addition, the Tlusty et al. mean stability 
boundary tends to over predict the experimental 
stability limit for these tests. This may be the 
result of the asymmetric x and y direction FRFs. 

 

To interpret the confidence intervals in both 
cases, this region represents the axial depths, at 
the corresponding spindle speeds, where the 
cuts can either be stable or unstable (the shape 
of the distribution varies with the stability 
behavior and, therefore, spindle speed). Above 
the upper bound, cuts are expected to be 
unstable, while cuts should be stable below the 
lower bound (with 95% confidence). It is seen 
that these trends hold for the Fig. 8 data, except 
at 15000 rpm where a stable cut was recorded 
above the confidence interval. The wider 
intervals in Fig. 9 encompass all the unstable 
and the majority of the stable cuts. 

 
 

CONCLUSIONS 
 
This paper described a procedure for adding 

uncertainty bounds to the analytical milling 
stability limits predicted by the Tlusty et al. and 
Altintas and Budak approaches. This is an 
important consideration if users of the data are 
to evaluate their confidence in the predicted 
results, which is necessary for rational decision 
making. The primary uncertainty contributors 
included the tool point frequency response 
functions and the cutting force coefficients, 
which relate the cutting force to the uncut chip 
area. Monte Carlo simulation was used to 
propagate the input uncertainties through the 
analytical equations and determine the mean 
stability limit and associated spindle speed 
dependent uncertainties. For the cutting tests 
completed as part of this work, the Altintas and 
Budak results demonstrated closer agreement 
with experiment. However, the procedure should 
be applied to additional tests to verify the 
performance (and uncertainty) of both methods 
over a broader range of cutting conditions. 
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FIGURE 8. COMPARISON BETWEEN ALTINTAS 
AND BUDAK LOBES AND EXPERIMENTAL 
RESULTS. THE MEAN STABILITY BOUNDARY 
AND 2uc INTERVALS ARE SHOWN. 

FIGURE 9. COMPARISON BETWEEN TLUSTY ET 
AL. LOBES AND EXPERIMENTAL RESULTS. THE 
MEAN STABILITY BOUNDARY AND 2uc 
INTERVALS ARE SHOWN. 
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