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1 INTRODUCTION 
Intense competition in manufacturing places a continuous 

demand on developing cost-effective manufacturing processes 
with acceptable dimensional accuracy. High-speed milling 
offers these benefits provided appropriate operating 
parameters are selected. Some typical applications include, but 
are not limited to, end milling (pocketing) of airframe panels 
and ball end milling of stamping dies in automotive 
manufacturing. 

However, the selection of these preferred operating 
parameters is not trivial. Existing barriers to the full 
realization of the potential productivity gains in manufacturing 
environments include: 1) the requirement for multiple tool 
point dynamic measurements; 2) sensitivity of part quality to 
small changes in process variables; and 3) the difficulty in 
concurrently considering stability, accuracy, and surface finish 
in an analytical framework. Therefore, balancing the multiple 
requirements, including high material removal rate, MRRf , 

minimum surface location error SLEf , sufficient tool life, 

chatter avoidance, and adequate surface finish, to arrive at an 
optimum solution is difficult without the aid of optimization 
techniques. 

Multi-objective optimization addresses the issue of 
competing objectives using concepts developed by Pareto [1], 
the French-Italian economist who established an optimality 
concept in the field of economics based on multiple 
objectives. A Pareto front [2] is generated that allows 
designers to trade off one objective against others. However, 
generating a Pareto front is typically much more expensive 
than optimization of a single objective. The Temporal Finite 
Element Analysis (TFEA) [3-7] approach is used here to 
obtain rapid process performance calculations of surface 
location error, fSLE , and stability. The computational 

efficiency of TFEA compared to conventional time-domain 
simulation methods makes it the most attractive candidate for 
use in the optimization algorithm. Additionally, TFEA 
provides a clear and distinct definition of stability boundaries 
(i.e., eigenvalues of the milling equation with an absolute 
value greater than one identify unstable conditions, see 
Section 2). 

In this paper, an initial effort to apply analytical tools that 
find optimum cutting parameters (spindle speed, Ω and axial 
depth of cut, b, for peripheral end milling operations are 
considered at this stage) is attempted. Two objectives are 

simultaneously addressed, MRRf  and SLEf , where only 

stability and side constraints of the design variables are 
considered. At this stage, no consideration is given to 
limitations of spindle power, torque or tool strength. The 
tradeoff method [8] is used to generate the Pareto front of 

MRRf  and SLEf . Here, the two-objective problem is 

transformed into a series of single objective problems by 
establishing a set of different limits on the second objective. 
Solution of the optimization problem is performed using 
Matlab’s Sequential Quadratic Programming algorithm (SQP) 
and Particle Swarm Optimization (PSO) [9]. 

The paper is organized as follows: Section 2 gives the 
milling model description and solution technique; Section 3 
defines the optimization problem standard form and 
optimization methods used; Section 4 summarizes the main 
conclusions of the paper. 

2 MILLING MODEL 
The schematic for a two-degree of freedom (2-DOF) 

milling process is shown in Figure 1. With the assumption of 
either a compliant tool or structure, a summation of forces 
gives the following equation of motion: 

 
Figure 1. Schematic of 2-DOF milling tool. 
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where the terms mx,y, cx,y, and kx,y are the modal mass, viscous 
damping, and stiffness terms and Fx,y are the cutting forces in 
the x and y directions, respectively. A compact form of the 
milling process can be found by considering the chip thickness 
variation and forces on each tooth (a detailed derivation is 
provided in references [3-7]): 
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where ( ) ( ) ( ) T
X t x t y t= ⎡ ⎤⎣ ⎦ is the two-element position 

vector and M, C, and K are the 2x2 modal mass, damping, 
and stiffness matrices, Kc and 0f  are defined in references [3-
7], τ = 60/(NΩ) is the tooth passing period, Ω is given in 
rev/min (rpm), and N is the number of teeth on the cutting 
tool. 

TFEA [3-7] is used here to transform Eq. (2) into a discrete 
linear map. Stability of the milling process can be determined 
using eigenvalues of the dynamic map, while surface location 
error (see Figure 2) is found from the fixed points of the 
dynamic map. Details can be found in references [3-7]. 
 

Figure 2. Up-milling schematic showing surface location 
error in milling as a result of cutting tool vibrations. 

3 OPTIMIZATION PROBLEM STATEMENT 
The problem of minimizing surface location error 

SLEf and maximizing material removal rate MRRf is stated 

as follows: 

( ) ( )[ ]ΩΩ ,bf,,bfmin MRRSLE −                   (3) 

Subject to: ( ) ( ) 1≤ΩλΩλ ,bmax:,bg                  (4) 

where gλ is the stability constraint obtained from the 

dynamic map eigenvalues, SLEf  is found from the fixed 

points, and MRRf is given as: 

( ) ΩΩ Cb,bfMRR =                    (5) 

where C depends on the feed per tooth, number of teeth, and 
radial depth of cut.  

3.1 Tradeoff method 
As shown in Figure 3, the Pareto front (line connecting A 

to B) is comprised of a set of optimal points, also called non-
dominated points, in the function space consisting of all 
possible values of the objectives for feasible design points. In 

that space, the Pareto front is part of the boundary of the 
feasible function space, such that in moving from one point to 
another in the set, any improvement in one of the objective 
functions comes at the expense of at least one of the other 
objective functions [10]. Based on this definition, point C is 
not on the Pareto front (i.e., it is a dominated point), while 
points A and B belong to the non-dominated set (Pareto 
optimal set). In essence, the front defines a limit beyond which 
the objectives cannot be further improved simultaneously [10]. 
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Figure 3. Typical Pareto front as per [10]. 

As noted, to address the multi-objective problem the 
constraint method is used, where the two-objective problem is 
transformed into a single objective problem of minimizing one 
objective with a set of different limits on the second objective. 
Each time the single objective problem is solved, the second 
objective is constrained to a specific value until a sufficient set 
of optimum points are found that are used to generate the 
Pareto front [2] of the two objectives. The constrained form of 
the problem becomes: 
 

( )Ω,bSLEf min                                                            (6) 

Subject to: ( ) iMRR bf ε≤Ω− , , i = 1, …, k                (7) 

( ) ( ) 1,max:, ≤ΩΩ bbg λλ                                 (8) 

for a series of selected limits (ε  ) on MRRf . 

3.2 Robust optimization: SQP vs. PSO 
Two optimization algorithms were used to solve the two-

objective problem, namely Sequential Quadratic Programming 
(SQP) using Matlab and Particle Swarm Optimization (PSO). 
The former is a local, gradient-based search method, while the 
latter is a global, non-gradient-based approach. SQP was 
implemented by using a number of initial guesses along the 
constraint objective, where the number of initial guesses was 
chosen with the goal of finding a global optimum; therefore 
the spindle speed design range was divided into 20 and 40 



points. The finer division provided better Pareto optimal set. 
In generating the Pareto front for this problem using the SQP 

algorithm, the minimum SLEf  points were found to favor 

spindle speeds where the tooth passing frequency is equal to 
an integer fraction of the system natural frequency which 
corresponds to the most flexible mode (these are the 
traditionally-selected ‘best’ speeds which are located near the 
lobe peaks in stability lobe diagrams). Figure 4 shows a 
stability lobe diagram, which describes the allowable axial 
depth of cut as a function of the spindle speed. Any (Ω, b) 
combination which lies above the boundary, represented by a 
heavy dashed line, gives chatter, or unstable cutting 
conditions. The diagram also gives the values of the objective 
functions: constant material removal rate is seen along the 
dotted MRRf lines and the surface location error magnitude is 

given by the thin SLEf lines. The optimum points obtained 

using SQP are superimposed on the plot (circles).  

Because SLEf can undergo large changes in value for 

small perturbations in Ω at the optimum points, the 
formulation provided in Eqs. (6)-(8) leads to optima which are 
highly sensitive to spindle speed variation. Therefore, the 
optimization problem was redefined in order to avoid 
convergence to these points. Two approaches were applied: 1) 

an additional constraint was added to the SLEf  slope; and 2) 

the SLEf  objective was redefined as the average of three 
perturbed spindle speeds. The latter proved to be more robust 
than the former. Therefore, Eq.(6) was redefined as: 
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where δ is the spindle speed perturbation selected by the 
designer (a typical value for our analyses was 50 rpm).  

The optimization problem can be expressed in a reverse 
manner as well. That is, the objective function can be defined 
as _ MRRf−  and the optimization problem can be solved for a 

different set of constraints on average SLEf  as: 
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In comparison, when using the PSO method the 
objective function - MRRf  was minimized for a set of different 

constraints on SLEf  , rather than its perturbed average as 

shown in Eq. (6), where the swarm population was 60. In the 
PSO method, the optimum points did not converge to the 
highly SLEf  sensitive points.   

 

5 10 15 20 25 30
0

2

4

6

8

10

12

Ω (x 103 rpm)

b 
(m

m
)

5

10

15

20
25

30
40

50 µm
70

600 mm 3
/s550

500
450
400
350

300
250

200
150
100

50

Stability  Lobe
Optimum points
 

 

 
A comparison of the three optimization schemes is shown 

in Figure 5 and 6. Figure 5 shows the optima for each 
approach superimposed on the corresponding stability lobe 
diagram. In Figure 6, the Pareto fronts for the three methods 
are shown. The optimum points found using the two SQP 
formulations closely agree.  

 

 

 

 

 

Figure 5. Stability, fSLE, and fMRR contours with optimum Pareto 
front points found using PSO and SQP with average perturbed 
fSLE. The figure shows that optimum points are not in regions 
sensitive to spindle speed. 

Figure 4. Stability, |fSLE|  and fMRR contours with optimum 
points found using optimization statement in Eqs. 6-8. The 
figure shows that optimum points occur in regions 
sensitive to spindle speed variation. 
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Although the PSO points show the same trend, some 

improvement in the fitness is still possible relative to the SQP 
results. Because the PSO search avoided optimum points that 
are spindle speed sensitive, there is no need to use average 
perturbed fSLE as SQP, which leads to a decreased number of 
fSLE evaluations. This makes PSO less computationally 
intensive than SQP. However, narrow optimum points may go 
undetected when using PSO. 

Although SQP in both variations of the objective function 
and constraint converged to approximately the same optima, 

the one with the average perturbed SLEf  constraint required 

a larger number of initial guesses in order to converge to the 
same optimum as the SQP with the MRRf  constraint 
approach. This can be attributed to the low damping in the 

dynamic system used in this study which makes the SLEf  

contours (constraint) quite steep. 
  
Table 1: Modal parameters for 19.05 mm diameter tool used 
in optimization simulations. 

M (kg) C (N-s/m) K (N/m) 

0.061 0 3.86 0 1.67x106 0 

0 0.056 0 3.94 0 1.52x106 

4 CONCLUSIONS 
This paper describes initial efforts toward the multi-

objective optimization of high-speed milling. Material 
removal rate and surface location error were considered to 
arrive at a set of optimum operating conditions, referred to as 
the Pareto front. Consideration was given to the practical issue 
of convergence to optima near regions of high sensitivity of 
surface location error to spindle speed variations.  
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Figure 6. Pareto front showing optimum points found 
using three optimization algorithms/formulations. The 
same trends are apparent; however, the SQP methods 
required additional computational time. 


