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Abstract In this study, we examine a new approach for actuation of dynamical systems with min-

imum work and maximum amplitude while maintaining constraints on the actuation force. Two

methodology issues are addressed in the paper: sensitivity analysis about the nonlinear transient

response and exploration of the strongly nonlinear relationship between the two objectives and the

actuation design variables. The optimization analysis is carried out on a lightly damped Duffing

system of spring hardening and softening nonlinearities. The formulation of the optimization prob-

This research was performed while the first author held a National Research Council Research Associateship Award at the Air

Force Research Laboratory.

This paper will be presented at the 12th AIAA/ISSMO Multidisciplinary Analysis & Optimization Conference, Sep. 10–12,

2008, Victoria, British Columbia, Canada.

Air Force Research Laboratory, Air Vehicles Directorate, Building 146, 2210 Eighth Street, Wright-Patterson Air Force Base,

Ohio 45433, USA.

Tel.: +937-25-57386, Fax: +937-65-64945,

E-mail: Mohammad.Kurdi@wpafb.af.mil; mhkurdi@gmail.com,

E-mail: Philip.Beran@wpafb.af.mil,

E-mail: Richard.Snyder@wpafb.af.mil.



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --

2

lem is found ideally suited to resolve the difficulty of dependence of response on initial conditions.

The tradeoff curve of work and amplitude is computed. In comparison to harmonic actuation, the

optimal actuation is found to yield the target amplitude with 2.2% savings in expended work and

17% reduction in the force amplitude. The optimal actuation strove to compensate for the limited

force amplitude by an abrupt change in the force in time.

Keywords Dynamic response optimization · spectral element · transient · time periodic · path

optimization · adjoint sensitivity · trajectory optimization

1 Introduction

The design of an actuation force providing minimum-work performance is motivated by increasing

interest in micro air vehicles (MAVs), where it is desired to operate the vehicle with the least

amount of actuation work or actuation force for a desired displacement amplitude [1–4]. The MAVs

are designed to favor resonant response characteristics in an effort to minimize their power ex-

penditure [5]. Driving these systems to their optimal performance may trigger nonlinear response

of the system. This work develops an effective optimization methodology to compute the optimal

actuation of nonlinear resonant systems for minimum work and maximum amplitude considering

limited force amplitude.

In a previous study, the work and amplitude optimal actuation force was computed for a linear

dynamic system using a gradient-based optimization approach [6, 7]. For a limited force amplitude

the optimal design provided a 25% increase in the displacement amplitude over that possible using

a harmonic excitation. The optimal actuation force was found to favor a snap-type variation (sim-
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ilar to that exhibited in biomechanical actuated systems [8]). Additionally, the optimal actuation

frequency approached -but never equal to- the natural frequency of the system as the demand for

larger displacement amplitude increased, but favored lower frequencies at lower amplitudes.

A challenging aspect in the design of dynamic systems is the need to evaluate the system response

over an entire time interval in order to satisfy the constraints and evaluate the objective function.

Different methods exist to enforce the constraints over the time interval. The constraints may be

enforced at the global extremum [9], at closely spaced points [10], or more efficiently at only the

local extrema of the response [11–13]. In this study, since we are interested in maximizing the

amplitude of the response, the amplitude constraint is enforced at only the global maximum, where

a one-dimensional optimization search is used to locate the maximum.

Only the time-periodic characteristics of the work-and-amplitude performance measures are

considered, since transient behavior of the system is soon damped out. The time-periodic response

of the nonlinear system is computed using the spectral element method in time over one cycle.

The spectral element method [14] combines the local flexibility of the finite element method with

high-order Lagrange polynomials interpolated at time grid points corresponding to Gauss-Lobatto-

Legendre polynomials. A monolithic-time approach is favored here so as to transform the nonlinear

time-dependent differential equation into an explicit algebraic form. This allows a more direct

computation of the response sensitivity.

The actuation force is parameterized using many design variables and represented using cubic

splines. A gradient-based optimization approach is used to find the optimal actuation force, where

an adjoint sensitivity analysis is developed to compute sensitivities of the performance measures

with respect to the design variables. The computational cost of computing the sensitivity using
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the adjoint method is independent of the number of design variables. This enables an efficient

optimization search due to the large number of design variables required to simulate the actuation.

In this paper, we consider the optimal actuation force of nonlinear dynamic systems that exhibit

resonant behaviors. The formulation is applied to a forced Duffing oscillator [15, 16] with softening

and hardening spring nonlinearities. The two-objective problem of minimum work and maximum

amplitude is formulated using the constraint method, where the minimum-work force is computed

for a set of target displacement amplitudes. A tradeoff curve of the two objectives is computed,

where an improvement in one objective results in a deterioration in the second objective [17]. The

inherent dependence of nonlinear response on initial conditions is resolved by the optimization

formulation. Results of the optimization search are compared to trivial designs, where the optimal

actuation force is found to favor snap-type variation over a harmonic force with large amplitude.

The paper proceeds with the formulation of the dynamic optimization problem in Section 2.

The computation of the time-periodic response using the spectral element method is described in

Section 3. The adjoint sensitivity of the nonlinear response is presented in Section 4. Finally the

optimization methodology is applied to the Duffing system in Section 5.
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2 Formulation of Work-Optimal Optimization Problem

The optimization problem is to find the periodic actuation force which minimizes the amount of

actuation work over a cycle W for a specified target of displacement amplitude ΓTi
[6]:

min
b

W (1a)

subject to

max(|xca|) ≥ ΓTi
i = 1, ..., N, (1b)

where b is the vector of design variables, which consist of the magnitudes of the actuation force f

at equally spaced locations in one cycle (see Figure 1), and the circular forcing frequency, ω. The

time-periodic response in the direction of actuation force f is denoted by xca. The subscripts c

and a refer to the cyclic response and degree-of-freedom in direction of actuation, respectively. The

index N refer to the total number of times the optimization problem is solved. The force design

variables (6 variables in Figure 1) are allowed to change in the interval [−fmax, fmax] during the

optimization search. The period T of the response cycle is equal to the forcing period T = 2π/ω.

The time interval t is scaled by T leading to a scaled cycle s of length 1. The work expended during

one scaled cycle (referred to as work henceforth), W , is

W =
∫ 1

0
f(s)ẋcads. (2)

The dot in ẋca refer to derivative with respect to s. To evaluate the work and enforce the amplitude

constraint (1b), the time-periodic response is computed using the spectral element (SE) method in

a monolithic-time approach. In contrast to time-stepping methods, where the solution is unavailable

between two time steps, the SE method computes the time-dependent solution over the whole cycle.
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Once a SE solution of sufficient accuracy is constructed, the extrema are located by implement-

ing a one dimensional optimization search. The target constraint is then enforced on the global

extremum [12, 13]. Note that the location of the critical time points may drift as b is iterated.

Therefore, the extrema locations are recomputed during the design process.

The integral in (2) is computed using Gauss-Lobatto-Legendre quadrature [18, page 56], where

cubic splines are used to interpolate the actuation force to the Gauss-Lobatto-Legendre grid point.

During design iterations the force design variables may change abruptly. In order to maintain an

accurate interpolation using the cubic splines, the number of design points must be chosen less than

the number of degrees of freedom in the SE method [7].

The optimization problem is then solved one time for each target displacement for a total number

of N times to construct the tradeoff curve of minimum work per cycle and maximum displacement

amplitude. For each design on the tradeoff curve, the optimal actuation force (Figure 1) and fre-

quency are computed. The tradeoff curve, although expensive to compute, provides the designer

with all possible optimal designs of the two objectives, thereby allowing selection of the best design

fitting user criteria.

Alternatively, the optimization problem of minimum work and maximum amplitude under lim-

ited force may be formulated by maximizing the response amplitude for a set of constraints on the

work objective. Although this should lead to similar results to that of (1) the latter formulation

is more effective for the design of nonlinear systems due to dependence on initial conditions (more

on this in Section 5.2.1).
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Fig. 1 Schematic of the actuation force modeled using 6 force design variables in a cycle. The force value between two design

variables is computed using cubic splines.

3 Temporal Spectral Element Method

The spectral element (SE) method in time is applied to a set of first-order differential equations.

Higher order unsteady terms can easily be tackled by transforming to first-order form. The coupled

set of differential equations is,

dx
dt

+ Asx = f(x, t), (3)

where x represents the collocated dependent variables x ∈ RNv , Nv is the number of dependent

variables, time t is the independent variable, and f(x, t) is a nonlinear function of x and t. The

equations are coupled through the matrix As, which is assumed to be time invariant.
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For transient analysis of (3) initial conditions need to be enforced. However, this is generally not

the case when cyclic solutions of (3) are sought, i.e., those that are time-periodic in response to a

linear time-periodic forcing function, f(x, t) = f(x, t+ T ) of period T . For nonlinear time-periodic

f the initial conditions are still not enforced. However, dependence of nonlinear response on initial

conditions is achieved by specifying different initial guess of solution.

In this paper, our focus is on time-periodic responses. However, we present the SE method for

both transient and cyclic analysis for completeness.

3.1 Transient Analysis

The transient behavior (history) of each dependent variable can be discretized using spectral ele-

ments [18], where the approximate pth-order solution in each element is:

x̂(j)(ζ) =
p∑

k=0

x(j)(ζk)ψ
(j)
k (ζ). (4)

Here ψ(j)
k represents the Lagrange polynomial of order k in element j, ζk are the zeros of the

Lobatto-Legendre polynomials defined on the interval ζ ∈ [−1, 1] and x(j)(ζk) are the unknown

nodal values placed at ζk for element j. See Fig. (2), where the physical time domain t ∈ [tj , tj+1] is

transformed to the ζ domain for each element. The Lobatto polynomials Loi
are a set of orthogonal

polynomials that can be defined as the derivatives of order i+ 1 Legendre polynomials [19], Li:

Loi
(ζ) ≡ L

′
i+1(ζ), (5)

where the Legendre polynomials are defined explicitly as
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x(1)(ξ0)      x(1)(ξ1)            x(1)(ξ2)               x(1)(ξp)                        x(Nel)(ξ0)             x(Nel)(ξ1)         x(Nel)(ξ2)           x(Nel)(ξp)  

1st element                     last element, Nel

x0 x1 x2 xm . . .                                       xpxNel+1

Fig. 2 Discretization of the time domain into Nel elements represented by an p order Lagrange polynomial within each element.

Nodes of each element are placed at zeros of Lobatto polynomials.

Li(ζ) =
1

2ii!
di(ζ2 − 1)i

dζi
. (6)

The SE solution is obtained by: 1) substituting the trial solution x̂(j) into the differential equa-

tion (3); 2) minimizing the residual in each element using the Bubnov-Galerkin method [20]; and

3) assembling the Nel time elements after enforcing inter-element continuity (more details can be

found in [21]). For one dependent variable matrix As becomes a scalar As and the discretized form

of the differential equation reduces to

LcXc = AsLωXc − LωF (Xc), (7)

where Lc and Lω are the global differentiation and weight matrices, F is the global weighted form

of the excitation and

Xc =
[
x
∣∣
t0
x
∣∣
t1
. . . x

∣∣
tp×Nel+1

]T

(8)

is the SE solution of the dependent variable x collocated at all nodal times (redundant shared

elements nodes are removed using inter-element continuity). The initial condition is applied by

replacing the first row and column of Lc with zeros except for the first element, which is replaced

with one. Also, the first element in Lω is replaced with zero and the first element in −LωF is
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replaced with the value of x at t = 0. The SE solution Xc in (7) can then be computed using

iterative methods. However, for a strictly time-dependent forcing function (not function of Xc)

both direct and iterative methods can be used. See Section 3.3.

3.2 Cyclic Analysis

In some problems, such as damped systems with periodic forcing functions or self-excited nonlinear

systems exhibiting limit cycle oscillations (LCO), the interest lies in the time-periodic response of

the system, where T = 2π/ω is the period of the dynamic response. In this case, it is computationally

advantageous to compute the steady-state cycle without simulating the transients.

For time-periodic or cyclic responses, the time cycle is discretized spectrally in the same way as

in the transient solution. However, assembly of global matrices Lc and Lω is different. Here, the

initial conditions are not imposed. Periodicity of the array of elements is enforced by requiring that

the end node in the last element to be the initial node of the first element:

x(1)(ζ0) = x(Nel)(ζp). (9)

Contributions to the end node in the last element are added to contributions from first element.

Consequently, the last row and column of Lc are added to their counterpart in the first row and

column. Therefore, the solution vector, Xc, becomes

Xc =
[
x
∣∣
t0
x
∣∣
t1
. . . x

∣∣
tp×Nel

]T

. (10)
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3.3 Global Assembly and Solution

A number of dependent variables, Nv, can be handled through spatial connectivity matrix As of

size Nv × Nv (boldface capital symbols are used to denote matrices). Here, the tensor product is

introduced in (7) to give the global form of the system for Nv dependent variables:

LcgXcg = AcgXcg − LωgFcg(Xcg), (11)

where Lcg is the tensor product of the identity matrix (of size Nv×Nv) and Lc. In a similar fashion,

the Acg and Lωg matrices are constructed. The vector Xcg is a collocation of all dependent variables

at nodal times grouped by their corresponding dependent variables, Nv. For a transient solution,

Xcg takes the form:

Xcg =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

∣∣
t0

x1

∣∣
t1

...

x1

∣∣
tp×Nel+1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

T

. . .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xNv

∣∣
t0

xNv

∣∣
t1

...

xNv

∣∣
tp×Nel+1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

T ⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (12)

A compact form of (11) becomes

QXcg = −LωgFcg(Xcg), (13)

where

Q ≡ Lcg − Acg. (14)
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Equation (13) can be solved using Newton’s method. By identifying a residual R we can evaluate

the degree to which (13) is satisfied:

R(Xcg) ≡ QXcg + LωgFcg(Xcg). (15)

A first-order Taylor series expansion of the nonlinear formula (15) gives

Rν+1 = Rν + JΔXcg, (16)

where

J = Q + Lωg
∂Fcg

∂Xcg
. (17)

The correction to a current approximation Xcg is computed by setting the residual, Rν+1 in (16)

to zero. To facilitate convergence, we apply a relaxation parameter λ to the correction:

Xν+1
cg = Xν

cg + λΔXcg. (18)

Note that when the forcing function is linear (independent of Xcg), the last term in (17) and

updated residual in (16) are zero. Then for λ = 1, the solution Xcg can be evaluated from (18) in

one iteration.

4 Adjoint Sensitivity

In the optimization problem (1), the control force is represented using a large number of design

variables. To carry out a gradient-based optimization search, the sensitivities of the objective and

constraints need to be evaluated. The adjoint method [7] is used here to compute the gradients.

The method is attractive due to the independence of the computational cost from the number of
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design variables. The gradient of the objective function W (2) is

∂W

∂b
=

∫ 1

0

[
∂fg

∂b

T

Xcg + fT
g

∂Xcg

∂b

]
ds, (19)

where fg is the cubic-spline interpolated value of the actuation force at a Gauss-Lobatto-Legendre

grid point. With the finite-difference approach, the computational cost of computing this gradient

is proportional to the product of the cost of computing the responseXcg, with the number of design

variables. To eliminate the cost of recomputing Xcg when calculating the sensitivity to a design

variable change, we compute ∂Xcg

∂b by defining the performance function h:

h(b) = Xcg. (20)

The adjoint matrix is derived by adding the sensitivity of h to a change in b to the product of the

adjoint matrix and the sensitivity of the response in (13):

dh
db

=
dXcg

db
+ ΛQ

dXcg

db
+ Λ

(
Lωg

∂Fcg

∂b
+

dQ
db

Xcg

)
. (21)

The adjoint matrix becomes the solution to

I = −ΛQ, (22)

where I is the identity matrix. After evaluating the adjoint matrix, Λ (21) is reduced to

dh
db

= Λ

(
Lωg

∂Fcg

∂b
+

dQ
db

Xcg

)
. (23)

The sensitivity of Xcg is now computed by evaluating Λ from (22) and substituting into (23) without

the need to recompute the response Xcg. Additionally, the gradient of the objective W can then

evaluated by inserting (23) into (19).
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5 Forced Duffing Oscillator

The forced Duffing oscillator models the dynamic response of damped elastic structures with large

nonlinear displacements. Typically, the Duffing system consists of a cubic restoring force [22, page

158]. In this work, a pentic restoring force is additionally considered:

ẍ+ 2ζωnẋ+ ω2
n(x+ βx3 + γx5) =

a

m
f(t), (24)

where ζ is the damping factor, ωn is the linear natural circular frequency, β is the coefficient of

cubic nonlinearity, γ is the coefficient of pentic nonlinearity, m is the mass of the system, and

f(t) = f(t + T ) is the periodic actuation with an amplitude of a. Depending on the sign of the

coefficients β and γ, the stiffness of the system may increase or decrease nonlinearly. A positive or

negative sign results in a hardening or softening nonlinearity, respectively.

Below we consider the dependence of cyclic solutions on initial conditions, and asses the con-

vergence properties of the solution method (see Appendix A). We also apply the optimization

to a hardening and to a hardening-and-softening springs to establish the benefits of the optimal

actuation.

5.1 Analysis

The SE method in time is applied to compute the time-periodic response of the Duffing system.

Equation (24) is cast in cyclic form

1
T 2
ẍca +

2
T
ζωnẋca + ω2

n(x+ βx3
ca + γx5

ca) =
a

m
f(s) (25)

by normalizing the time t with the forcing period T and introducing a scaled time: s = t/T . The

single and double dots in (25) now mean d
ds and d2

ds2 , respectively. The solution is computed after
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Table 1 Duffing equation parameters analyzed in Section 5.1.

ωn ζ m a f(t) β γ

1 0.05 1 0.4 sinωt 0.1 0

transforming the second-order differential equation into first-order by introducing the variables

x1 = xca and x2 = ẋca. The solution of (25) is computed for the parameters listed in Table 1, which

correspond to a strictly cubic hardening case analyzed by Lee et al. [23].

The response is computed using the cyclic SE method. The accuracy of the SE solution depends

on the number of elements and Lagrange polynomial order. For a smoothly varying function the

SE solution of 25 DOF (Nel = 5 and p = 5) gives high accuracy [21]. Here we use a conservative

number of DOFs (Nel = 10 and p = 5) in anticipation of sharp variation in the response. The

displacement amplitude is reported in Figure 3a as a function of the circular actuation frequency

ω: ωT = 2π. To the right of natural frequency ωn = 1, the frequency response indicates two

solutions in the region of ω = [1.2 − 1.3]. In “this” fine region, the equilibrium solution of the cyclic

analysis depends on the initial guess in the Newton method. The cyclic SE solution converges

to one closer to the initial guess. For example, the upper branch cyclic solution results from an

initial guess amplitude of x1 = 4, whereas the lower branch solution results from an initial guess

closer to the lower one. The cyclic solutions corresponding to these initial guesses are reported in

Figures 3b and 3c, respectively. The initial guess is additionally noted in the figures. Note that in

transient analysis, the initial guess corresponds to the set of initial conditions. An initial condition

close to the upper branch (for example x(0) = 4 and ẋ(0) = 0) converges to a steady state solution
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at that branch [23]. This behavior can be used to our advantage in implementing the optimization

search by capitalizing on dependence of the response on the initial guess.

The optimization search (discussed next) is implemented using a gradient-based optimization

method in which the provided gradients guide the search. The adjoint method allows an efficient

and accurate computation of the gradients. Consider, for example, the two cyclic solutions around

ω = 1.2. The adjoint sensitivity is computed with respect to ω using (23) for the two cycles

and compared to the finite-difference sensitivity (see Figure 3d). The adjoint sensitivities of both

branches are in excellent agreement (difference < 1 × 10−6) with finite-difference analysis.

5.2 Optimization Results

Two forms of the forced Duffing oscillator are studied to test the optimization methodology. The first

one corresponds to a strictly cubic hardening spring. The difficulties encountered in the optimization

search are described and the tradeoff curve is computed for the two-objective problem. In the

second application, a spring with combined softening and hardening is analyzed to demonstrate the

robustness of the optimization search to softening nonlinearities (while retaining bounded solutions).

5.2.1 Cubic Hardening Nonlinearity

The optimization problem (1) is solved for the Duffing oscillator using parameters (Table 2) analyzed

previously by the authors: a linear dynamic system [7] with an additional cubic nonlinear term (with

β = 0.3). The cyclic form of the Duffing equation (25) is implemented in the study with a = 1. The

design variables correspond to the actuation frequency, ω, and the instantaneous force at equally

spaced locations over the cycle, fi. The design variables are free to change within an upper and
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Fig. 3 Solution of the hardening Duffing equation: a) response amplitude versus frequency, the x1 amplitude of two different

initial guesses are denoted by the two squares; b) response orbit at ω = 1.2 and initial guess close to upper branch (max|x1| ≥ 4);

c) response orbit at ω = 1.2 and initial guess close to lower branch (max|x1| ≤ 0.2); d) comparison of response sensitivities at

ω = 1.2 computed using adjoint and finite-difference methods for both lower and upper branches.

lower bounds corresponding to:

ωl ≤ ω ≤ ωu, (26a)

−fmax ≤ fi ≤ fmax, (26b)
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Table 2 Fixed parameters of optimization problem for the cubic hardening Duffing equation.

ωn ωl ωu ζ m nd p Nel β Objective tolerance Constraint Tolerance

31.57 2
3
ωn 4ωn 0.019 0.01 31 5 30 0.3 1 × 10−6 1 × 10−6

where the upper, ωu, and lower, ωl, values of ω are set proportional to the system natural frequency,

ωn, and fmax is set based on the maximum permissible force available to the system.

The gradient-based optimization search is implemented using fmincon in Matlab, which is based

on the sequential quadratic programming algorithm (SQP). The sensitivities of the objective and

constraints are computed using the adjoint method. The optimization problem is solved for the

actuation force history and period yielding the minimum work per cycle for a target displacement

amplitude (1b). The tradeoff curve is constructed by solving the optimization problem for a series

of target amplitudes.

Convergence of the optimization search hinges on the feasibility of enforcing the constraint on

the target amplitude. In the previous section, we noted existence of multiple solutions (Figure 3)

in the response near the resonant frequency of the linear system, and the subsequent dependence

of the response on the initial guess in Newton’s method. The optimization search tends to favor

this complicated region in the design space. Therefore, to enable a successful optimization search,

the later initial guess needs to be in coherence with the desired response. The formulation of the

optimization problem as minimization of the work, while enforcing an upper constraint on the

displacement amplitude, makes this choice rather simple by selecting the displacement initial guess

close to the target displacement. This enables rapid convergence to the optimal design. A poor initial
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guess may lead the optimization search to a solution branch far from the desired one, resulting in

an infeasible search.

The tradeoff curve of optimal work-and-amplitude is computed assuming different levels of

permissible control force, |fmax|. For example, the tradeoff curve for |fmax| = 1 is constructed

by solving the optimization problem five times, for each a different value of the target amplitude

ΓT : {0.5, 1.0, 1.5, 2.0, 2.5}. The lower and upper bounds of ΓT may be selected based on the user

preferences and system limitations. For each optimization search, the initial estimate of the control

force is set to |fmax| sin(0.9ωnt). The above procedure is repeated to generate a different tradeoff

curve for a specific permissible control force |fmax|.

The search for an optimal actuation is guided by the sensitivities of the objectives and constraints

to the design variables. The sensitivities of the objective and amplitude with respect to the optimal

control force are reported in Figure 4 for ΓT = 1 and |fmax| = 1. The figure indicates that the

sensitivity of the objective (work per cycle) to a change in the instantaneous control force is larger

than the sensitivity of the amplitude. However, the sensitivity of the objective and amplitude to

change in ω is even larger: ∂W/∂ω = −20.3 and ∂(max |xca|)/∂ω = 6.6. The large difference in the

sensitivity magnitude between the design variables ω and fi results in faster convergence of the

former to the optimal design.

The optimization results are reported in Table 3 and Figures 5a,b. Each curve in Figure 5a refers

to a tradeoff curve of maximum amplitude and minimum work for a permissible |fmax|. Data for

the tradeoff curves are arranged column wise in Table 3. The tradeoff curve is indicated to have a

quadratic relationship between Wmin and ΓT , which is similar to the analytical relationship between

work and amplitude for linear systems with harmonic actuation [24, page 120]. This relationship
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Fig. 4 Cubic hardening Duffing equation: Gradients of the objective and maximum amplitude with respect to actuation design

variables at a target amplitude of ΓT = 1 and |fmax| = 1 of the optimal design: a) objective; b) maximum amplitude.

is maintained as |fmax| is increased, where a more relaxed constraint on the control force enabled

a decrease in the work necessary to achieve the same target amplitude. As the control force is set

to its lower limit, |fmax| = 1, the optimization search is unable to enforce the constraint ΓT = 2.5.

To analyze the source of infeasibility, the frequency response of the optimal actuation at ΓT = 2.0

and |fmax| = 1 is reported in Figure 6 for both the linear and nonlinear systems. The peak of the

frequency response diagram, max (max |xca|) of the nonlinear system is slightly higher than 2.0 but

less than 2.5 (=3.3 for the linear system). Consequently, the optimization search is unable provide

a design due to the infeasibility of enforcing the amplitude constraint ΓT = 2.5.

Optimal values of the forcing frequency corresponding to the tradeoff curves are shown in Fig-

ure 5b as a function of target amplitude. The optimal frequency, ωo, is indicated to increase as the

demand for larger amplitude is increased. This is similar to what is shown in Figure 3a, where the



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --

21

response amplitude increases for an increasing ω. However, at |fmax| = 6, the optimal frequencies

remained constant for ΓT = {0.5, 1.0}. This occurs because at this large force, the initial response

is significantly larger than the target one. Consequently, it is not required to increase ω to enforce

the amplitude constraint. On the contrary, the frequency is allowed the opportunity to decrease in

value to decrease the work objective until the lower limit of ω is reached (a more relaxed lower limit

on ω may decrease ωo even further for ΓT = 0.5 and ΓT = 1.0). Subsequent optimization iterations

only refined the shape of the control force to further decrease the value of work while enforcing the

amplitude constraint.

The shape of the optimal actuation at |fmax| = 6 (see Figure 7a) strove to vary in an abrupt

manner, with an extra cycle in the actuation trying to emerge. Orbits of the displacement and

velocity responses for the optimal actuation are reported in Figure 7b,c, where the amplitude of

the displacement is observed to satisfy the constraint, ΓT = 1.0. When the constraint on the force is

reduced (|fmax| = 1), the abrupt behavior of the actuation becomes more apparent, see Figure 8a.

Here, the optimization search compensates for the lack of available force |fmax| by a sudden change

of the actuation.

In the absence of optimization, a designer may choose to actuate the system using a trivial har-

monic force and vary the amplitude or frequency of actuation to find the best performance. Consider

first varying the amplitude of |fmax| sinωnt (Table 4 and Figure 5c). The sinusoidal actuation is

chosen at ω = ωn due to the anticipated large response at this frequency. A direct comparison

to the results in Table 3 can be accomplished by solving for an |fmax|, using a one-dimensional

optimization search, that yields an amplitude, max(|xca|) equal to the target one, ΓT . The value

of expended work (not necessarily the minimum work) corresponding to the max(|xca|) is reported
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on the left ordinate axis. For small amplitude (ΓT = 0.5), the benefits of optimization may not

be clear, since the computed |fmax| = 0.34 is much less than any of the enforced limits on the

instantaneous force. For larger target amplitudes (ΓT ≥ 1.0) the amplitude of harmonic actuation

necessary to achieve ΓT increases substantially (see right ordinate axis in Figure 5c). In contrast,

the optimal actuation does not need actuation forces nearly as large as the harmonic |fmax| . Con-

sider for example the second column in Table 4. To achieve the same target (=1.0), the amplitude

of the harmonic actuation is two times the optimal one (first column in Table 3 with |fmax| = 1).

The optimal actuation for this case is reported in Figure 8a, and is seen to vary in a snap-type

manner. This indicates that the optimal actuation trades force amplitude for a smaller and sharper

variation in the control force to achieve the design requirements.

However, this exchange of smoothness and force does not occur at the expense of the work

objective. The improvement in the work objective may be observed by comparing force amplitudes

of harmonic actuation |fmax| = 7.25 (third column in Table 4) with the optimal one |fmax| = 6.0.

Here we observe for the same maximum amplitude (ΓT = 1.5) a 2.2% decrease in the work from

the harmonic actuation, even with a 17% decrease in the optimal force amplitude. The comparison

to other columns in Table 3 is not trivial, since the constraint on the force is much less than

|fmax| = 7.25.

Alternatively, the designer may vary the actuation frequency, while holding the force amplitude

constant. The frequency corresponding to the optimal displacement amplitude is computed in a

similar manner to selection of the force amplitude (see Table 5 and Figure 5d). To enable comparison

with the tradeoff set, the force amplitude is fixed at |fmax| = 4. The left and right ordinate axes

of the figure display the respective work and frequency (not necessarily optimal) corresponding to
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max |xca|. Although the same trend of variation in W as a function of max |xca| is observed, there is

an increase in work ranging from 2-135% in comparison to the optimal designs. Furthermore, when

the required power (P = W/T ) is compared, the increase in power is in the range of 3 - 380%.

The variation of ω as a function of max |xca| (solid line) indicate a monotonic increase in ampli-

tude. This is similar to the upper branch in Figure 6. However, for max |xca| = 0.5, there are two

possible frequencies at which max |xca| = 0.5 may be attained. One in the lower branch -near the

multiple solution region- and the other in the upper branch of the frequency response diagram. The

disjoint value indicated in the figure correspond to the former. In contrast the optimal frequency

favored the upper branch at ωo/ωn = 0.67 in order to minimize the work.

Table 3 Pareto fronts optimal sets for a β = 0.3 and initial estimate of the control force corresponding to |fmax| sin(0.9ωnt).

Each Pareto set corresponds to an |fmax| side constraint on the control force design variables.

|fmax| 1 2 4 6

ΓT Wmin ωo/ωn Wmin ωo/ωn Wmin ωo/ωn Wmin ωo/ωn

0.50 0.26 0.89 0.20 0.72 0.17 0.67 0.17 0.67

1.00 1.22 1.05 1.13 0.98 0.92 0.83 0.70 0.67

1.50 3.11 1.19 2.98 1.15 2.72 1.07 2.44 0.98

2.00 6.24 1.36 6.06 1.33 5.75 1.27 5.45 1.22

2.50 NF§ NF§ 10.73 1.51 10.37 1.47 10.04 1.43

§ Not feasible
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Table 4 Displacement amplitude (max(|xca|)) and expended work W for |fmax| sin ωnt. The amplitude of the control force

|fmax| is computed to yield a displacement amplitude equal to the target one in the Pareto front, see Table 3.

max(|xca|) 0.5 1.0 1.5 2.0 2.5

W 0.30 1.17 2.57 4.43 6.71

|fmax| 0.34 2.23 7.25 16.48 30.35

Table 5 Displacement amplitude (max(|xca|)) and expended work W for |fmax| sin ωt with |fmax| = 4. The frequency of the

control force is computed to yield a displacement amplitude equal to the target one in the Pareto front, see Table 3.

max(|xca|) 0.5 1.0 1.5 2.0 2.5

W 0.40 1.04 2.88 5.96 10.54

ω/ωn 1.37 0.91 1.11 1.30 1.49

5.2.2 Softening-and-Hardening Nonlinearity

A softening Duffing system results when the coefficient of nonlinearity is negative, i.e., the spring

stiffness decrease as deflection increases. The softening is relevant to many physical phenomena

such as rolling motion of a ship [25] or longitudinal vibrations of piezoceramic rods [26]. The hard-

ening system is characterized by a jump-down frequency, where the amplitude jumps down for

an increasing frequency sweep. When the nonlinearity is of softening type, a jump-up frequency

occurs. Recently, Berennan et al. [27] and Malatkar and Nayfeh [28] calculated these frequencies

for either a softening or hardening cubic nonlinearities. In this section, the optimal actuation of a

combined softening-and-hardening Duffing system is analyzed. The cubic coefficient is selected to

provide softening, whereas the pentic coefficient provides hardening. In this manner, the system

near resonance softens and encourages response until the restraining nonlinearity dominates. Pa-
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rameters of the system are listed in Table 7. The jump-up and jump-down behavior is observed

by computing the frequency response of the system for a harmonic force of unit amplitude. The

response is reported in Figure 9. The response is indicated to possess a double discontinuity due to

the simultaneous hardening and softening effects.

The optimization problem is applied to this system to test the robustness of the gradient-based

search method. Results of the optimization search are listed in Table 7. The initial estimate of

the design force is sin(ωit). The initial design is denoted with the subscript i. Two optimization

problems are solved for target amplitudes ΓT = 0.5 and ΓT = 1.0. The optimal actuation for each

target are indicated in Figure 10.

For ΓT = 0.5 the response to the initial harmonic design (ωi = 0.91ωn) is larger than the

demanded one (see Figure 9). This allows the optimization search the opportunity to decrease the

work by around 80%, until the amplitude constraint becomes active. The optimal design enabled

this improvement by first adjusting the actuation frequency and then the instantaneous force, see

Figure 10a. However, for ΓT = 1.0, the initial design response is close to the target one. There, the

decrease in work objective competes with the enforcement of the amplitude constraint. The optimal

actuation force compensates for this by varying the force in a snap-type manner. See Figure 10b.

Comparison of the minimum work with the initial work indicates a 13% decrease for almost the

same response amplitude.

Furthermore, the optimal design at ΓT = 0.5 can not be easily compared to the harmonic one,

since the frequency response is discontinuous near max |xca| = 0.5; see Figure 9. In this case, the

optimization search penetrates a region in the design space inaccessible by the trivial design by

varying the instantaneous actuation force. Without the optimization search and the ability to tailor
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the actuation force, this response may only be possible by using larger force amplitude than the

resources permit.

Table 6 Fixed parameters of optimization problem for the softening-and-hardening Duffing system.

|fmax| ωn ωl ωu ζ m nd p Nel β γ Objective tolerance Constraint Tolerance

1 31.57 2
3
ωn 4ωn 0.019 0.01 31 5 30 -1 1 1 × 10−6 1 × 10−6

Table 7 Optimization results of softening-and-hardening Duffing system for |fmax| = 1.

ΓT Wmin ωo/ωn Wi ωi/ωn max |xca|,i

0.5 0.23 0.79 1.14 0.91 1.04

1.0 0.99 0.86 1.14 0.91 1.04

6 Conclusions

In this paper, a formulation is developed to compute the optimal actuation of nonlinear, resonant

dynamic systems for the dual objectives of minimized actuation work and maximized amplitude of

the time-periodic response. The constraint method is used to compute the tradeoff curve of both

objectives by minimizing the actuation work for a set of constraints on the response amplitude.

The nonlinear dynamic response of the periodic actuation is computed over one cycle using the

monolithic-time spectral element method. The actuation force is constructed using the values of

numerous design variables at equally spaced nodes in a cycle. Cubic splines are used to interpolate

the force between any two variables. The adjoint sensitivity method is developed for the monolithic-
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time method to enable efficient gradient-based optimization search considering the large number of

design variables.

The optimization methodology is applied to Duffing systems with cubic nonlinear hardening

and cubic/pentic nonlinear hardening and softening. In the softening case, an additional pentic

hardening spring is considered. The strict hardening application demonstrates the superiority of

the optimization formulation in resolving dependence of nonlinear response on initial conditions,

where the initial conditions are selected close to the specified constraint on the response amplitude.

The tradeoff curves of minimum work and maximum amplitude are computed for different levels

of maximum available force. The optimal designs are compared to harmonic actuation yielding the

same maximum amplitude. For equal force amplitudes, the work of harmonic actuation is found

to be 2-135% larger than the optimal one. However, when the demand on the response is large,

the harmonic actuation can only enforce the constraint using a large-force amplitude. The optimal

actuation compensates for the limited available force by varying the force abruptly in time. In

some cases, to attain the same response, a 20% increase in the harmonic force is needed over the

optimal one, although the latter resulted in a 2.2% work savings. The application of optimization

formulation to Duffing system with a softening and hardening verified robustness of the search

method and showed similar improvements in the performance measures. Additionally, the optimal

design is found to yield designs in regions deemed discontinuous using harmonic actuation.
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A Convergence of Newton Method: Duffing

The convergence properties of the nonlinear solution is reported in Figure 11 for the Duffing problem with strict cubic hardening.

The nonlinear solution is computed using (18). Iterations are started using a harmonic initial guess with an amplitude ε =

1 × 10−6. The residual (15) is reported as a function of iteration number, where the jacobian is evaluated for the first 20

iterations and frozen for larger iterations. Solution of the Duffing system is computed for a sinusoidal actuation force using a
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forcing frequency equal to the natural frequency of the linear system (ωn = 31.57) and far from the natural frequency (=0.7ωn).

The standard quadratic convergence rate of the Newton method is attained for 0.7ωn, however the convergence rate deteriorates

for ω = ωn.
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Fig. 5 Optimization results of cubic hardening Duffing problem. The Pareto front is computed for different side constraints

|fmax| on the force design variables: a) Pareto front, see Table 3; b) optimal periods of actuation corresponding to the Pareto

front; c) work and maximum force amplitude values corresponding to a maximum displacement amplitude equal to the target

one. The force variation conforms to a sinusoidal actuation at ω = ωn (see Table 4); d) work and period values corresponding to

a maximum displacement amplitude equal to the target one. The force variation conforms to a sinusoidal actuation at fmax = 6

(see Table 5).
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Fig. 7 Response of the cubic hardening Duffing equation for ΓT = 1 and fmax = 6.0 a) optimal actuation; b) orbit of optimal

actuation and displacement response; and c) orbit of optimal actuation and velocity response.
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Fig. 8 Response of the Duffing equation for ΓT = 1 and fmax = 1.0 a) optimal actuation; b) orbit of optimal actuation and

displacement response; and c) orbit of optimal actuation and velocity response.
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Fig. 9 Frequency response diagram of softening-and-hardening Duffing system using harmonic actuation, sin ωt.
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Fig. 11 Convergence of the nonlinear solution for the hardening Duffing system β = 0.3 using a harmonic actuation sin ωt.

Convergence rate deteriorates near the natural frequency.
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