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Abstract The design of systems for dynamic response may involve constraints that

need to be satisfied over an entire time interval or objective functions evaluated over

the interval. Efficiently performing the constrained optimization is challenging, since

the typical response is implicitly linked to the design variables through a numerical

integration of the governing differential equations. Evaluating constraints is costly, as

is the determination of sensitivities to variations in the design variables.

In this paper, we investigate the application of a temporal spectral element method

to the optimization of transient and time-periodic responses of fundamental engineer-

ing systems. Through the spectral discretization, the response is computed globally,

thereby enabling a more explicit connection between the response and design variables

and facilitating the efficient computation of response sensitivities. Furthermore, the

response is captured in a higher order manner to increase analysis accuracy.

Two applications of the coupling of dynamic response optimization with the tem-

poral spectral element method are demonstrated. The first application, a one-degree-

of-freedom, linear, impact absorber, is selected from the auto industry, and tests the

ability of the method to treat transient constraints over a large-time interval. The

second application, a related mass-spring-damper system, shows how the method can

be used to obtain work and amplitude optimal time-periodic control force subject to

constraints over a periodic time interval.
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1 Introduction

Many engineering structures are subject to transient loading conditions. These struc-

tures must handle load variations for an entire time interval. To enforce the time-

dependent constraints, the response needs to be evaluated accurately for an entire

interval without missing any of the response extrema. Additionally, this evaluation

needs to be efficient when an optimum design of the structure is sought because the

objective, constraints and their sensitivities will need to be recomputed for each con-

figuration visited by the optimizer.

The overwhelming majority of numerical techniques used to compute time-dependent

responses are based on finite-difference schemes. In these methods, the solution of the

governing second order differential equation is time-marched from the initial condition

using small time steps until the dynamics reach a converged state. Here the time step

size is crucial to the stability and accuracy of the computation and may limit its effi-

ciency. Furthermore, the computational efficiency of these methods is more apparent

when only the periodic response is of interest, where we need to integrate through

many transient cycles to arrive at the steady-state cyclic response. This is particularly

the case for systems with low damping. For these systems, frequency response anal-

ysis provides better alternative to computing the response [1, page 75] especially for

harmonic actuation. However, for sharp excitations frequency-based methods are less

accurate in resolving rapid variations in the response.

The use of time-marching methods in an optimization scheme is even more com-

putationally intensive, where the time-dependent response is evaluated in small time-

steps to eliminate constraint violation between any two time points. Additionally, in a

gradient-based optimization search, the sensitivity of the response to design variables

is required. The sensitivity can be computed using direct differentiation or adjoint

method by defining a Lagrange multiplier [2, 3]. This computation is convoluted be-

cause the response is not explicit in the design variables. In both methods, the response

sensitivity computation is hindered by another integration of the governing differential

equations.

In the review by Kang et al. [4], the authors noted the advantage of using a finite

element discretization of the time parameter. The attractive feature of the time finite

element method [5, 6] is that it transforms the governing differential equation into an

algebraic equation. This has the advantage of obtaining a more explicit connection of

the response to the design variables, which in turn enables more efficient computation

of the response sensitivity. In this paper, we use temporal spectral element method to

discretize the time-dependent differential equation. The spectral element method, first

introduced by Patera [7], combines the local flexibility of the finite element method

with the accuracy of spectral methods. Within each element, a high order Lagrange

polynomial is interpolated at time grid points corresponding to zeros of Gauss-Lobatto-

Legendre (GLL) polynomials. The solution of the differential equation is computed

for a monolithic-time interval which includes transient and steady-state response [8].

Similar discretization of the whole time interval using Hamilton’s principle is found

in [9, 10]. This is in contrast to a time-marching finite element approach [11, 12],

where the response is computed in small time steps to steady-state. The discretization

of the monolithic-time interval using the spectral elements provides local flexibility

in resolving sharp transients in the response by increasing the polynomial order (p

refinement) or decreasing element size (h refinement) near the sharp variation [8].
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Early studies on the optimization of structures subject to transient loads goes back

to the 1970s [13, 14]. This branch of optimization is referred to in the literature as

dynamic response optimization [4]. Here, the time-dependent responses need to be

evaluated for each iteration of the design variables and the constraints enforced for an

entire time interval. There are several methods to apply time-dependent constraints.

In an early work, Venkayya [15] applied the constraint only at the global minimum

of the response. A more robust approach enforces the constraints at closely spaced

points such that violation at intermediate points is unlikely [16]. This methodology

is applied in a quasi-static manner in [17], where multiple equivalent static loads are

enforced instead of the dynamic ones. In these approaches the number of constraints

increase substantially. The optimization cost also increases because of the need to com-

pute sensitivities of these constraints during the optimizer iterations. A more efficient

procedure is to enforce the constraints only at the local extrema of the response criti-

cal to the design. This reduces the number of constraints and the resulting reduction

in number of sensitivities calculations of the constraints with respect to the design

variables [3, 18, 19].

The computation of the gradient in design optimization is essential in carrying out

the search for an optimal design in an efficient manner [20]. The sensitivities can be

computed using finite-difference, direct or adjoint methods [2, 21]. Efficiency of the last

two methods depend on the number of constraints and design variables in the problem.

The direct method is computationally more efficient when the number of constraints

are larger than the number of design variables, whereas the adjoint method is more

efficient when the converse is true. Problems where large number of design variables

exist are in shape optimization [22–24], where the shape is parameterized using many

design variables. It is in these applications, where the adjoint method is particularly

attractive. In the second application of this paper we use this method to enable an

efficient optimization search.

In this paper, we efficiently optimize the actuation of a dynamic system by com-

puting monolithic-time responses and constraints with the temporal spectral element

method. The discretization transforms the time dependence of the response into an ex-

plicit algebraic form, thereby allowing a more direct computation of the performance

sensitivity. The sensitivities are computed using finite-difference, direct, and adjoint

methods. We compare the optimization cost of enforcing the constraints at GLL points,

where the solution is explicitly available, to the cost of enforcing the constraints at lo-

cal extrema of the responses, which are identified using a one-dimensional, line-search

method.

In this initial work, the new methodology is demonstrated by application to small-

scale systems (low numbers of degrees-of-freedom). The extension to large-scale systems

is important and will be addressed in future work. We note that dynamic responses

have been efficiently computed with the temporal spectral element method for applica-

tions involving more than 60,000 variables [8]; problems of much larger size will require

modifications to the basic analysis procedure to enable it to scale better with the num-

bers of degrees-of-freedom. However, these modifications ought not change the basic

manner in which response sensitivities are computed or used in design optimization.

Two applications are described herein. The first application, derived from the auto

industry, demonstrates method efficiency and accuracy for the transient response of

linear systems. The second application, motivated by design of micro air vehicles,

demonstrates the method for systems with periodic steady-state response and large

numbers of design variables. The design variables are used to parameterize the actua-
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tion force, where the optimization search is carried out by computing the gradients of

the performance functions with the adjoint method.

2 Formulation of Dynamic Response Optimization Problem

The dynamic response optimization problem is to find the design variable vector b

which

minimize c(b, z(t), ż(t), z̈(t), t),

subject to (1)

gi(b, z(t), ż(t), z̈(t), t) ≤ 0, i = 1, ..., n ∀t ∈ [0, T ],

where gi is constraint number i and t is the time parameter and z is displacement

vector which is the solution to

Mz̈ + Cż + Kz = f , (2)

z(0) = z0 ż(0) = ż0,

where M, C, K are the mass, damping and stiffness matrices. Note that the function g

is an aggregate of the time-dependent response and the set-point of design constraint,

consequently we refer to g as being time-dependent due to the time dependency of the

response and not the design constraint point. Typically the solution of (2) is computed

using time stepping schemes, where the spectral element expansion is applied on a small

time step. In our approach we compute the response using a monolithic-time approach,

where the entire time interval is discretized using the spectral element method. This

transforms the time-dependent differential equation to an algebraic form and eliminates

direct dependence on time. In the following we describe the temporal spectral element

method which is used to apply the transformation.

3 Temporal Spectral Element Method

To apply the spectral element method (SE) [8] to the dynamic system described by (2);

the set of second-order differential equations is transformed to first-order by introducing

artificial variables. The coupled set of differential equations is,

dx

dt
+ Asx = f(x, t), (3)

where x represents the collocated dependent variables x ∈ RNv , Nv is the number

of dependent variables, time t is the independent variable, and f(x, t) is a nonlinear

function of x which can be time-dependent. The equations are coupled through the

matrix As, which is assumed to be time invariant.

In the following, the SE discretization of transient and time-periodic responses

of (3) is described. The description is provided to review development of the SE method

and emphasize the monolithic-time aspect in handling the dynamic constraints. This

would enable application of the monolithic-time formulation in a gradient-based opti-

mization of the dynamic response.
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x(1)(ζ0)      x(1)(ζ1)            x(1)(ζ2)               x(1)(ζm)                        x(Nel)(ζ0)             x(Nel)(ζ1)         x(Nel)(ζ2)           x(Nel)(ζm)  

1st element                     last element, Nel

x0                        x1                             x2                                  xm                . . .                                       xmxNel+1

Fig. 1 Discretization of the time domain into Nel elements represented by an m order La-
grange polynomial within each element. Nodes of each element are placed at zeros of Lobatto
polynomials.

3.1 Transient Analysis

Each dependent variable can be discretized in time using spectral elements [25], where

the mth order trial solution in each element is:

x̂(j)(ζ) =

m∑
k=0

x(j)(ζk)ψ
(j)
k (ζ). (4)

Here ψ
(j)
k represents the Lagrange polynomial of order k in element j, ζk are the

zeros of the completed Lobatto-Legendre polynomials [26, page 143] defined on the

interval ζ ∈ [−1, 1] with the first and last nodes corresponding to the element end

points, and x(j)(ζk) are the unknown nodal values placed at ζk for element j. The

nodes locations allow for an expansion free of oscillations (in contrast to equi-spaced

nodes) and efficient numerical implementation of Gauss-Legenre-Lobatto integration

rule [25, page 50]. The physical time domain t ∈ [tj , tj+1], see Fig. (1), is transformed

to the ζ domain for each element. The Lobatto polynomials Loi are a set of orthogonal

polynomials that can be defined as the derivatives of degree i+1 Legendre polynomials

[26], Li+1:

Loi(ζ) ≡ L
′
i+1(ζ), (5)

where the Legendre polynomials are defined explicitly as

Li(ζ) =
1

2ii!

di(ζ2 − 1)i

dζi
. (6)

We review the development of SE here for completeness. Substituting the trial

solution x̂(j) into the differential equation (3) and minimizing the residual in each

element using the Bubnov-Galerkin method [27] we have (assume As is scalar for

now):

Nel∑
j=1

∫ 1

−1
v(ζ)

[dx̂(j)

dζ
+
h(j)

2

{
Asx̂

(j) − f(j)(x̂(j), ζ)
} ]

dζ = 0, (7)

where h(j) is the width of element j and v(ζ) is a weighting function taken as the pth

Lagrange polynomial, ψ
(j)
p . Integrating by parts we find for p = 0, . . . ,m:



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --

6

Nel∑
j=1

[
x̂(j)ψ

(j)
p

∣∣∣1−1
−
∫ 1

−1

(
x̂(j) dψ

(j)
p

dζ
− h(j)

2

{
Asx̂

(j)ψ
(j)
p − f(j)(x̂(j), ζ)ψ

(j)
p

} )
dζ
]

= 0.

(8)

Exploiting the property of Lagrange polynomials, (8) is efficiently integrated using

Gauss-Lobatto-Legendre quadrature rule according to:

∫ 1

−1
Idζ =

m∑
q=0

I(ζq)ωq, (9)

where I is a generic function of ζ and ωq is the Gaussian quadrature weight at node q.

This gives the following compact matrix formulation for each element:

Ψ

⎧⎪⎨
⎪⎩
x(ζ0)

...

x(ζm)

⎫⎪⎬
⎪⎭

(j)

= AsI
(j)
ω

⎧⎪⎨
⎪⎩
x(ζ0)

...

x(ζm)

⎫⎪⎬
⎪⎭

(j)

− I
(j)
ω f(j), (10)

where

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎣

dψ0
dζ

∣∣
ζ0
ω0 + 1 dψ0

dζ

∣∣
ζ1
ω1 . . . dψ0

dζ

∣∣
ζm
ωm

dψ1
dζ

∣∣
ζ0
ω0

dψ1
dζ

∣∣
ζ1
ω1 . . .

...

... . . . . . .
dψm−1

dζ

∣∣
ζm
ωm

dψm

dζ

∣∣
ζ0
ω0 . . . dψm

dζ

∣∣
ζm−1

ωm−1
dψm

dζ

∣∣
ζm
ωm − 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (11)

and

I
(j)
ωij =

h(j)

2
δijωi, where δij = 0 if i �= j,

δij = 1 if i = j. (12)

Note that ωp =
∫ 1
−1 ψp(ζ)dζ. In (11), the first and last diagonal elements of differ-

entiation matrix Ψ have an additional term (=1) due to the first term in (8). After

enforcing the essential inter-element continuity

x(j)(ζm) = x(j+1)(ζ0), (13)

the assembly of a global matrix from (10) for Nel spectral elements yields a com-

pact, Galerkin projection governing the approximate solution in time (one dependent

variable):

LcXc = AsLωXc − LωF (Xc), (14)

where Lc and Lω are the global differentiation and weight matrices, F is the global

weighted form of the excitation and

Xc =
[
x
∣∣
t0
x
∣∣
t1
. . . x

∣∣
tm×Nel+1

]T
, (15)

is the SE solution of the dependent variable x collocated at all nodal times (redundant

shared elements nodes are removed using (13)). It should be noted that the initial
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condition is applied by replacing the first row and column of Lc with zeros except for

the first element, which is replaced with one. Also, the first element in Lω is replaced

with zero and the first element in −LωF is replaced with the value of x at t = 0. The

SE solution Xc in (14) can then be computed using iterative methods. However, for a

strictly time-dependent forcing function (not function of Xc) both direct and iterative

methods can be used, see Section 3.3.

3.2 Periodic Cyclic Analysis

In some problems, the interest lies in the steady-state time solution, where the response

is time-periodic with a period, T = 2π/ω, equal to the period of the forcing function.

This occurs in damped systems with periodic forcing functions and in self-excited

nonlinear systems exhibiting limit cycle oscillations (LCOs).

In these problems we are interested in the steady-state periodic solution only, where

the time cycle is discretized spectrally in the same way as in the transient solution,

however, assembly of global matrices Lc and Lω is different. Here the initial conditions

do not affect the long term periodic solution. Additionally, periodicity of the array of

elements is enforced by requiring that the end node in the last element to be the initial

node of the first element:

x(1)(ζ0) = x(Nel)(ζm). (16)

Contributions to the end node in the last element are added to contributions from

first element. Consequently the last row and column of Lc are added to their counter-

part in the first row and column. Therefore, the solution vector, Xc, becomes

Xc =
[
x
∣∣
t0
x
∣∣
t1
. . . x

∣∣
tm×Nel

]T
. (17)

3.3 Global Assembly and Solution

A number of dependent variables, Nv, can be handled through spatial connectivity

matrix As of size Nv ×Nv . Here, the tensor product gives the global form of (14):

(I⊗ Lc)Xcg = (As ⊗ Lω)Xcg − (I⊗ Lω)Fcg(Xcg), (18)

where I is the identity matrix of size Nv×Nv and Xcg is a collocation of all dependent

variables at nodal times grouped by their corresponding independent variables, Nv .

For transient solution Xcg takes the form:

Xcg =

⎡
⎢⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1

∣∣
t0

x1

∣∣
t1

...

x1

∣∣
tm×Nel+1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

T

. . .

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xNv

∣∣
t0

xNv

∣∣
t1

...

xNv

∣∣
tm×Nel+1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

T
⎤
⎥⎥⎥⎥⎥⎦

T

. (19)

A compact form of (18) becomes

JXcg = −LωgFcg(Xcg), (20)
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where

J = Lcg − Acg. (21)

The solution Xcg of (20) can be computed using Newton’s method. By identifying a

residual R we can write (20) as

R = JXcg + LωgFcg(Xcg). (22)

A first order Taylor series expansion of the nonlinear formula (22) gives

Rν+1 = Rν + JΔXcg + Lωg
[
F ν+1
cg − F νcg

]
. (23)

The solution Xcg is computed by iterating the residual, Rν+1 in (23) to zero. To

facilitate convergence we use a relaxation parameter λ according to

Xν+1
cg = Xν

cg + λΔXcg. (24)

Note that when the forcing function is linear (independent of Xcg), the last term

and updated residual in (23) are zero and for λ = 1, the solution Xcg can be evaluated

from (24) in one iteration.

4 Treatment of Time-Dependent Constraints

The time-dependent constraints can be enforced in two ways. The first one enforces

the constraints at the GLL grid points since the the spectral element solution, Xcg at

these points is readily available. The constraint in (2) becomes

gi(b, z(tj), ż(tj), z̈(tj), tj) ≤ 0, i = 1, ..., n, j = 1, ..., ng , (25)

where ng is the total number of grid points. In this approach, the grid points need

to be closely spaced to reduce potential of constraint violation between adjacent grid

points. However, this causes the number of points or constraints to be excessively large

and leads to an expensive design process. The second one enforces the time constraints

at its most critical time points (extrema) [18, 19]. The constraint in (2) becomes

gi(b, z(tj), ż(tj), z̈(tj), tj) ≤ 0, i = 1, ..., n, j = 1, ..., nc, (26)

where nc is the number of local extrema or critical points. Once an accurate low degree

of freedom spectral element solution is constructed, the local extrema of the Lagrange

polynomial within each element is found using a one dimensional optimization method.

Note that the location of the critical time points may drift as b is iterated. Therefore

the extrema locations are recomputed during the design process.
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5 Sensitivity Analysis

The temporal spectral element method reduces the differential equation of motion to

an algebraic form resembling static equations Ku = f . Assuming we are applying the

constraints at one GLL point according to (25), we can write the constraint as

h = g(Xcg, b) ≤ 0, (27)

where for simplicity of discussion we assume h depends on one design variable b. The

sensitivity of h to a change in b is

dh

db
=
∂g

∂b
+ yT

dXcg
db

, (28)

where y is a vector with components

yi =
∂g

∂Xcgi

. (29)

The first term in (28) is usually zero or simple to evaluate. The second part can be

computed directly by differentiating (20) with respect to b and collecting multipliers

to the response sensitivity
dXcg

db

(J + LωgQ)
dXcg
db

= −Lωg
∂Fcg
∂b

− dJ

db
Xcg, (30)

where the matrix Q is

Qij =
∂Fcgi

∂Xcgj

. (31)

Note that for a linear forcing function Q = 0. The sensitivity is computed by solv-

ing (30) for
dXcg

db and substituting into (28). Alternatively, the sensitivity can be com-

puted using the adjoint method [2, p. 265] without the need to compute the sensitivity

of the response. By premultiplying (30) with a Lagrange multiplier λ, adding it to (28)

and collecting multipliers to the response sensitivity
dXcg

db we have

dh

db
=
∂g

∂b
+
[
yT + λT (J + LωgQ)

] dXcg
db

+ λT
(
Lωg

∂Fcg
∂b

+
dJ

db
Xcg

)
, (32)

where to eliminate the need to compute
dXcg

db , the adjoint vector λ becomes the solution

to

yT = −λT (J + LωgQ). (33)

The sensitivity is then computed by dropping out the term containing
dXcg

db in (32)

dh

db
=
∂g

∂b
+ λT

(
Lωg

∂Fcg
∂b

+
dJ

db
Xcg

)
. (34)

The choice of the constraint(s) sensitivity computation method depends on the number

of constraints and design variables [2, p. 267]. When the number of constraints is

larger than the number of design variables it is more efficient to use the direct method

by solving (30) for
dXcg

db once for each design variable and substituting into (28).

Otherwise, when the number of design variables is larger, the adjoint method is more

efficient to use by computing the adjoint vector in (33) once for each constraint and

substituting into (34).
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6 Results and Discussion

Two example problems are employed to demonstrate dynamic response optimization for

transient and periodic analysis. The transient and periodic time intervals are discretized

using the SE method to transform the set of differential equations to an algebraic form.

The solution of the system of equations (20) gives an accurate representation of the

global time response. This facilitate the application of time dependent constraints in

design optimization, where the constraints may be applied anywhere in time. Addition-

ally, the availability of the global response enables the computation of global sensitivity

using direct or adjoint methods.

As mentioned in Section 4, the time dependent constraints may be applied only

at the local extrema or at many locations in time. In the impact absorber problem

we analyze constraint enforcement strategies on the accuracy of the optimal designs

and the efficiency of the SE method. Finally, the global SE scheme is applied to the

control force design of a dynamic system with many design variables to demonstrate

application of adjoint sensitivity analysis.

6.1 Impact Absorber

We describe an example of the dynamic response for a single-degree-of-freedom linear

impact absorber studied by Etman et al. [28]. The optimization problem is solved

using the analytical solution and a spectral element approximation of the solution in

time. The analytical solution is used to evaluate the accuracy of the temporal spectral

element approach. In this example we compare two approaches for applying the time-

dependent constraints with regard to accuracy and efficiency. In the first one, the

constraints are enforced at the Gauss-Lobatto-Legendre, GLL, grid points. Here large

number of points are needed to reduce greatly opportunity for constraint violation

between any two adjacent points. In the second approach, we enforce the constraints

only at the global minimum of the time response. This comparison is provided to show

the computational cost incurred and design accuracy of both approaches.

The impact absorber is modeled as a single degree of freedom system with a mass

M , linear stiffness K and linear damping coefficient C see Figure 2. The differential

equation describing the motion of the absorber mass for zero initial displacement and

velocity of 1 m/s is

Mz̈ + Cż +Kz = 0, z(0) = 0 m, ż(0) = 1 m/s. (35)

The analytical solution of (35) for different combinations of stiffness and damping is

z(K,C,M, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e−t C
2M√

K
M −( C

2M )2
sin

(
t
√

K
M − ( C

2M )2
)
, if 0 ≤ C/(2M)√

K/M
< 1;

te
−t
√

K
M , if

C/(2M)√
K/M

= 1;

e−t C
2M

2
√

( C
2M )2− K

M

[
e
t
√

( C
2M )2− K

M − e
−t
√

( C
2M )2− K

M

]
, if

C/(2M)√
K/M

> 1;

(36)

For a fixed mass of the impact absorber (M = 1 kg), the optimization problem

of the absorber is to find the stiffness b1 and damping coefficient b2 combination that
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minimizes the maximum acceleration of the mass in the time interval t ∈ [0, T ]

f(b) = max|z̈(b, t)|, (37)

subject to the time displacement constraint

g(b) = |z(b, t)| − 1 ≤ 0 ∀t ∈ [0, T ], (38)

and side constraints of the design variables

0 ≤ b ≤ 1. (39)

We note here that the time constraint has to be satisfied for a time interval. A

time period T = 12 s is used which includes all important response characteristics. A

graphical representation of the optimization problem is depicted in Figure 3. The max-

imum acceleration contours are plotted with the displacement constraint. The hatched

part of the displacement constraint denotes the region where the constraint is vio-

lated. The design which minimizes the maximum acceleration is where the constraint

intersects the minimum value of the objective function. For computational purposes

the optimization problem is reformulated by minimizing an artificial design variable

b3 [29]

f(b) = b3, (40)

subject to acceleration and displacement constraints

g1(b) = z̈(b1, b2, t) − b3 ≤ 0,

g2(b) = −z̈(b1, b2, t) − b3 ≤ 0,

g3(b) = z(b1, b2, t) − 1 ≤ 0, (41)

g4(b) = −z(b1, b2, t) − 1 ≤ 0,

where

0 ≤ b1 ≤ 1, 0 ≤ b2 ≤ 1, b3 ≥ 0, ∀t ∈ [0, 12].

The optimum design is first computed using the analytical solution in (36). The

time constraints in (41) are applied at the most critical point in the displacement

and acceleration responses. The critical point is found by implementing a one dimen-

sional optimization search. The optimization search method is the sequential quadratic

programming (SQP) algorithm which is implemented using the fmincon function in

Matlab R© [30]. The accuracy in the objective, constraints and design variables is set to

1×10−15 in the main optimization and for locating the critical point. Note that the lo-

cation of the critical time point is not constant and will continue to change as the design

variables change. The optimum design, banalytic = {0.3606 N/m, 0.4851 N.s/m, 0.5206 m/s2},
is noted with green circle in Figure 3. This design is used to compare the accuracy of

the design obtained when the temporal spectral element method is used to compute

the acceleration and displacement responses.

The spectral element solution of (35) is computed by transforming the second order

differential equation to first order. To facilitate this we introduce variables z1 = ż and

z2 = z into (35) to get

{
ż1
ż2

}
+

[
M 0

0 1

]−1 [
C K

−1 0

] {
z1
z2

}
=

{
0

0

}
, (42)
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Fig. 2 Impact absorber.
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Fig. 3 Acceleration amplitude contours (dashed lines) and displacement amplitude constraint
(solid line) for impact absorber. The optimum design is noted by green circle.

and after matrix multiplication, the first order form becomes

{
ż1
ż2

}
+

[
C/M K/M

−1 0

] {
z1
z2

}
=

{
0

0

}
. (43)

The acceleration response, ż1, needed for the objective function evaluation can be

computed from (43) after computing the velocity and displacement responses.
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The constraints in (41) can then be written as

g1(b) = ż1(b1, b2, t) − b3 ≤ 0,

g2(b) = −ż1(b1, b2, t) − b3 ≤ 0,

g3(b) = z2(b1, b2, t) − 1 ≤ 0, (44)

g4(b) = −z2(b1, b2, t) − 1 ≤ 0,

where,

0 ≤ b1 ≤ 1, 0 ≤ b2 ≤ 1, b3 ≥ 0, ∀t ∈ [0, 12].

From (42) and using the chain rule the sensitivities of g1 and g3 are

∂g1
∂b1

= − 1

M
(z2 + b1

∂z2
∂b1

+ b2
∂z1
∂b1

),
∂g3
∂b1

=
∂z2
∂b1

,

∂g1
∂b2

= − 1

M
(z1 + b2

∂z1
∂b2

+ b1
∂z2
∂b2

),
∂g3
∂b2

=
∂z2
∂b2

, (45)

∂g1
∂b3

= {−1}, ∂g3
∂b3

= {0}.

The sensitivity is computed by the adjoint method using (34) by solving for the adjoint

vector once for the two constraints (g1 and g3).

In the initial spectral element implementation, the time constraints are monitored

only at GLL points. In this procedure we may need to use large number of time grid

points (large Nel and m) in order to capture the extremum of the response, although

high accuracy of the SE solution can be achieved using 25 DOFs [8]. In Table 1, the

infinity error norm of the optimum design ||b − banalytic||∞ is reported along with

the corresponding computational time for different number of elements and Lagrange

polynomial order. Note that the accuracy of the SE solution (not reported in the table)

increases with increase in m or Nel. However, the accuracy of the design fluctuates

and largely depends on whether a particular grid point is at the maximum of the

response. For example, Figure 4a shows grid points for one element and degree eleven

Lagrange polynomial, where none of the grid points were located at the maximum of

the response. During design iterations the grid points may come close to the maximum

response, though this situation cannot be predicted in advance of the design process,

an example of this is reported in Figure 4b at the optimum design. The best accuracy

was obtained at Nel = 105 and m = 3. The computational time of the optimization run

for forward finite-difference and adjoint sensitivity computation is additionally noted.

The latter method is slightly more efficient than the finite-difference perturbation of

the responses. Though, for larger number of design variables, the cost savings of the

adjoint approach is still realizable. This is because, the cost of the adjoint sensitivity

is dominated by the computational cost of computing the adjoint vector using (33),

which is independent of the number of design variables. The reported time corresponds

to a computation using Matlab [30]backslash operator, which uses an LU factorization

based on Gaussian elimination.

Alternatively, we can apply the time constraints only at the critical points of the

time response while the response is computed using minimal number of degrees of

freedom corresponding to an acceptable accuracy at each grid point. To find the critical

times, we use a one dimensional optimization search to locate the local extrema of the

corresponding Lagrange polynomial within each element, see the one element solution

in Figure 4. Here the fmincon function is used with the accuracy in the objective
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Fig. 4 Underdamped response of impact absorber. The uneven spacing of GLL grid points
for an eleven degree polynomial element are noted.

Table 1 Infinity error norm of the design when the constraints and objective are evaluated at
the GLL nodal points. The analytic design corresponds to the design computed using critical
time points with analytical objective and constraints. The CPU computation time is noted.

|| b−banalytic
banalytic

||∞ %

Nel

5 30 55 80 105 130 155 180 205 230

m
1 177.320 2.146 2.357 2.701 1.449 0.391 0.399 0.951 1.032 0.432
2 12.177 2.784 0.519 1.545 0.800 0.176 0.188 0.456 0.663 0.101
3 10.453 0.434 1.015 0.377 0.065 0.462 0.323 0.081 0.195 0.463

Adjoint sensitivity - CPU time, s

m
1 0.1 0.5 0.3 0.5 0.7 0.7 0.9 1.4 1.3 1.6
2 0.1 0.3 0.6 1.1 1.3 2.2 2.5 3.2 4.0 5.1
3 0.1 0.5 0.8 2.0 3.0 4.2 6.1 8.2 8.8 10.7

finite-difference sensitivity - CPU time, s

m
1 0.1 0.5 0.4 0.7 0.9 1.0 1.2 1.7 1.7 2.1
2 0.2 0.4 0.7 1.5 1.8 2.7 3.2 3.8 4.9 5.9
3 0.2 0.6 1.1 2.6 3.4 4.8 7.5 9.4 10.6 12.9

and time design variable being set to 1 × 10−15 for the critical point search. The

constraint is then enforced at each local minimum. To locate all the local extrema we

run fmincon with multiple initial guesses corresponding to the grid points close to these

extrema. However, for this problem, there is only one global minimum and we apply

the constraint at this point only whilst the location of this point will be updated as

the design variables change during optimizer iterations. Table 2, reports the infinity

error norm of the computed design and the corresponding computational time for

combinations of Lagrange polynomial order and number of elements. The data indicate

that the accuracy and efficiency improved substantially with small number of elements

and polynomial degree in comparison to the previous approach. Particularly, the design
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Table 2 Infinity error norm of the design when the global minimum approach is used to
enforce the constraints with finite difference sensitivity. The temporal spectral element method
is used to compute the responses. The analytic design corresponds to the design computed with
analytical objective and constraints. The CPU computation time is noted.

|| b−banalytic
banalytic

||∞ % CPU time, s

m m

6 8 10 12 14 6 8 10 12 14

Nel

1 1.8 × 102 3.0 × 10−1 2.2 × 10−2 8.6 × 10−4 9.3 × 10−6 2.1 2.3 2.4 2.9 2.7
2 1.6 × 10−1 3.2 × 10−3 2.5 × 10−5 1.0 × 10−6 1.9 × 10−7 2.4 2.6 2.5 2.9 3.0
3 1.2 × 10−2 8.6 × 10−5 1.6 × 10−6 2.0 × 10−6 8.3 × 10−7 2.5 2.5 2.9 3.0 3.2

was accurate to 1.9 × 10−9 with m = 14 and Nel = 2. This indicates superiority of

applying time-dependent constraints at the critical extrema of the response with regard

to computational cost and accuracy.

6.2 Control Force Design Considering Minimum Work

An interesting application of dynamic response optimization is in the design of micro

air vehicles (MAV) [31–33]. One aspect in the design of MAV is the selection of a

control force that minimizes utilization of actuation work [34, 35]. A simplified model

of the MAV is a mass-spring-damper system. When the system is linear, the long

time response of the underdamped system is independent of the initial conditions. The

response to a periodic actuation force is governed by the differential equation

Mz̈ + Cż +Kz = f(t+ T ), (46)

where T is the period of the actuation force f . Writing Eq. 46 in scaled time s ∈ [0, 1]

1

T 2
Mz̈ +

1

T
Cż +Kz = f(s), (47)

where ż is now the derivative with respect to s. To compute the response z using the

SE method, Equation 47 is written in first-order form similar to (42)

1

T 2

{
ż1
ż2

}
+

[
M 0

0 1

]−1 [ C
T K

− 1
T 2 0

]{
z1
z2

}
=

[
M 0

0 1

]−1 {
f(s)

0

}
. (48)

The minimum work per cycle objective is motivated by the MAV, where an optimal

actuation force is favorable to achieve a prescribed maximum displacement amplitude

with the least amount of work. For the mass-spring-damper system, the optimization

problem is to find the period, T and functional form of the control force that minimizes

the exerted work for a specified set of target steady-state displacement amplitudes, ZTi
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min
T,Fd

W d = 1, ..., nd − 1, (49a)

subject to

max(|z|) ≥ ZTi
i = 1, ..., N, (49b)

|Fd| ≤ 1, (49c)

Tn
4
< T ≤ 1.5Tn, (49d)

where the upper bound for the forcing period is restricted to less than an integer

multiple of Tn to eliminate the possibility of repeated designs of the forcing period and

W is the amount of external work per cycle exerted by f(s)

W =

∫ 1

0
f(s)żds, (50)

and Fd is the magnitude of the control force at design node d, nd is the total number

of design variables which include the period T and Tn is the natural period of the

system. The response in (48) is computed according to (20). The integrand in (50) can

be written using a spectral representation

W =

∫ 1

0
{Fg ·Xcg}ds, (51)

where “·” denotes the dot product and the first Nel ×m cells of Fg are the GLL nodal

values of the control force, with the remaining Nel×m cells equal to zero, Fg is related

to Fcg in (20) according to

Fcg =

[
M 0

0 1

]−1 {
1

0

}
⊗ Fg. (52)

The actuation force f(s) is modeled using a cubic spline discretization. This en-

sures first derivative continuity of the force and makes the accurate time integration

less costly. The alternative option of discretizing the force at all the GLL points results

in inaccurate time integration, where perturbations in the actuation force (design vari-

ables) during design iterations would result in sharp variations in the actuation force

at interelement nodes. Sharp change in the actuation force may not be realizable and

may cause inaccuracies in the time integration resulting in an erroneous optimization

search. Note that an increase in the number of elements will only deteriorate time

integration accuracy by allowing extra points of sharp change. The spline simulation

of the actuation force is constructed by enforcing C1 continuity at a number of nodes

on the scaled time interval of [0,1]. Design points are assigned to the magnitude of

the actuation force at each node. Since we are implementing a periodic analysis, the

magnitude of the force at the left boundary node (s = 0) must be equal to the one at

the right boundary node (s = 1). This can be enforced by assigning the same design

variable to both nodes at s = {0, 1}.
The number of nodes is selected to enable an accurate construction of different

variations of the actuation force. This allows for the precise interpolation of the force

magnitude to the GLL grid points. For example, when 10 design points are used to

construct the function arctan(10 sin 2πs)/1.5 (Figure 5a), there exist large differences
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between the original function and the spline fitted one. This error will result in an error

in the value of function at the GLL grid points (Fcg). When the number of design points

is increased, the interpolation error is reduced, see Figure 5b, and the spectral element

solution accuracy is improved.

The GLL values of control force, Fg are computed using a spline interpolation

Fg =

{ {RFd}Nel×m
{0}Nel×m

}
, (53)

where R is the spline transformation matrix. However, the number of GLL points must

be adequate in reconstructing the actual actuation force represented by the spline. This

is particulary important when design perturbations of design points lead to an actuation

force with high frequency content, where we need to ensure the convergence of the SE

discretization in all of the control force design space. Consider for example the spline

representation of the harmonic sin 2πs. The spline is constructed using 51 design points

(nd = 51, with one design variable reserved for the control force period) using the values

sin 2πsd. A spectral discretization using a Lagrange polynomial of order m = 5 and

Nel = 5 (25 grid points) is used to construct the sin 2πs signal. Figure 6a, illustrate

good accuracy of the signal reconstruction using the 25 GLL grid points as seen by

the overlapping of the spline and Lagrange interpolations. In the design optimization

search the design variables are frequently perturbed. This can be simulated by adding

a Gaussian noise of N(μ, σ)δ with δ = 0.2, μ = 0 and σ = 1 to each design point. This

results in a high frequency actuation force. Now, when the 25 GLL grid points are used

to reconstruct the actuation force significant error is introduced, see Figure 6b. The

error is due to insufficient number of GLL grid points for the iterated design. The error

is reduced by ensuring that the number of GLL grid points are at least equal to the

number of control force design points (nd − 1), see Figrue 6c.
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(a) nd − 1 = 10 design points

s

f(
s)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Cubic spline nodes
Spline interpolation
Exact Fcg

(b) nd − 1 = 20 design points

Fig. 5 Effect of the number of cubic spline design nodes (nd−1) on the accurate simulation of
f(s) = arctan(10 sin 2πs)/1.5. The interpolation error of the force values at GLL points (Fcg)
is reduced by increasing nd.

The optimization problem is solved using a gradient-based optimization method

provided by the fmincon function in Matlab [30], where the gradient of the objective
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(c) Nel = 10 and m = 5.

Fig. 6 Inaccurate time integration due to under-resolution in the spectral element discretiza-
tion for a design perturbation.

function is used to guide the optimization search. The gradient can be computed using

direct, adjoint or finite-difference methods. The last method is more vulnerable to

round-off error in the cost function and is computationally expensive. For example, the

gradient is computed using central finite-difference with respect to each design variable,

b according to

Gd =
W (Fd + δb) −W (Fd − δb)

2δb
, (54)

where Gd is the gradient of W at design node d. Because W is not available ana-

lytically, its value can be estimated using numerical integration. The integral of (51)

is computed using Gauss quadrature formula according to (9). A numerical error εw
may result in the calculation of W . When the number of control force design vari-

ables increases, the round-off error start to dominate the computed value of W and

εw becomes significant [2, page 257]. This causes the gradient to exhibit a numerical

noise. Alternatively, the gradient can be computed using the direct method or adjoint
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methods. Using direct method the gradient of W

∂W

∂b
=

∫ 1

0

[
∂Fg
∂b

·Xcg + Fg · ∂Xcg
∂b

]
ds. (55)

The direct method is computationally more expensive than the adjoint method for a

large number of design variables. To derive the adjoint equation, we write the equation

of motion (20) in the form

Xcg = CFcg. (56)

The adjoint sensitivity is then derived by adding the dot product of an adjoint vector

λ with the gradient of (56) to (55)

∂W

∂b
=

∫ 1

0

[
∂Fg
∂b

·Xcg + Fg · ∂Xcg
∂b

]
ds+

∫ 1

0
λ·
[
∂Xcg
∂b

− C
∂Fcg
∂b

− ∂C

∂b
Fcg

]
ds, (57)

where to eliminate the need to compute
∂Xcg

∂b , the adjoint vector becomes

λ = −Fg. (58)

The adjoint sensitivity is then

∂W

∂b
=

∫ 1

0

[
∂Fg
∂b

·Xcg
]
ds−

∫ 1

0
λ ·
[
C
∂Fcg
∂b

+
∂C

∂b
Fcg

]
ds. (59)

Although the computation of ∂C
∂b is expensive to evaluate, it is only evaluated once

for the control force period design variable and is zero for the control force design

variables, Fd. The sensitivity of the constraint (49b) is computed using the adjoint

method according to (34), where the adjoint vector is computed according to (33) and

y is the identity matrix. Once the sensitivity of the GLL response points to each design

variable is evaluated, the sensitivity of the critical point constraint is calculated by

inserting the critical time (evaluated separately using a one dimensional optimization

search similar to the absorber problem) into a SE trial solution (4).

To mitigate the effect of the numerical noise in the computed gradient for the

control force design nodes, a smoothing method can be used [36], where a smoothed

gradient Ḡ is computed from the calculated gradient G according to

Ḡ− ε
∂2Ḡ

∂s2
= G. (60)

The smoothing parameter ε is selected to average out the numerical noise without losing

significant information in G. In implementing the finite-difference smoothing in Eq. 60,

we note because of the periodic boundary condition, the gradient at (s = 0) is equal

to the gradient at s = 1. The gradients of the objective and constraint functions are

computed in Figures 7, respectively. The constraint function correspond to the critical

points (maximum and minimum) in the response. The control force is a cosine function

with a period, T = 1.3Tn. Due to the large number of design nodes, nd = 121 some

numerical error is apparent in the computed gradients. To filter out the noise in the

gradient, a smoothing is applied with ε = 0.005 and is shown effective in removing the

numerical noise. When the number of design nodes is not high, nd = 31, the numerical

noise in the gradients is nonexistent as demonstrated in Figures 8. The variation noted

near the boundary is probably not due to round-off errors, though the smoothing is
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(b) Minimum critical point.
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(c) Work objective.

Fig. 7 Gradients of the objective and constraints for the maximum and minimum critical
points. The smoothed gradient is computed using ε = 0.005 and is found effective in reducing
numerical noise.

effective in filtering out this oscillation out. Note that the finite-difference and adjoint

sensitivities of the objective function coincide for both nd = 31 and nd = 121.

The standard procedure of scaling the objective function, displacement constraints

and range of design variables is implemented to enable an efficient optimization search,

where convergence of the gradient-based method may be adversely affected when using

different length scales of the design variables [37]. Here we normalize the objective

function and displacement by the difference of their corresponding values at the natural

period and Tn/4 of the system, for the initial control force. Parameters which remain

fixed in all the following calculations are listed in Table 3 unless specified otherwise.

Now, we report results of the optimization search for a different initial designs, where

the gradients are computed using the adjoint method.

Initially we analyze the optimization search regarding the effect of using different

initial designs of the control force for a constant initial period Ti = 1.5Tn. Table 4

reports on the optimization search with respect to the target displacement ampli-

tude, ZT , initial work Wi, optimum work, Wo, initial displacement amplitude, Zi,
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(b) Minimum critical point.
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(c) Work objective.

Fig. 8 Gradients of the objective and constraints for the maximum and minimum critical
points. Significant variation occur near the boundary, but is not due to round-off error. Gradient
smoothing with ε = 0.005 is effective in dampening this variation.

Table 3 Fixed parameters of the control force problem.

M (kg) K (N/m) C (N.s/m) Tn (s) nd m Nel

0.010 10 0.012 0.199 31 5 30

Objective tolerance Constraint tolerance Design tolerance
1 × 10−6 1 × 10−6 1 × 10−6

optimum control force period, To and optimization cost (number of function evalu-

ations and iterations of the fmincon function). Three functional forms of the initial

control force are considered namely: sin 2πs, cos 2πs and arctan(10 sin 2πs)/1.5. The

final designs of the control force shapes are reported in Figure 9. It is observed that

the arctan(10 sin 2πs)/1.5 initial design converges to the optimum solution in the least

numbers of iterations and function evaluations. Although all solutions have an approx-

imately equal optimal work objectives and forcing periods, the optimal control force
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of the cos 2πs function differs in phase from the sin 2πs and arctan(10 sin 2πs)/1.5

functions.

The effect of the initial guess of the forcing period on the optimization search is

considered in Table 5, for a control force initial design corresponding to cos 2πs. The

final designs of the control force are reported in Figure 10. In the first three cases, the

target amplitude is held constant ZT = 1, while the initial guess of the forcing period,

Ti is varied. The results indicate that the optimal work and period of the control force

is almost unchanged, but the control force exhibits different amounts of overshoot

between the control force nodes. This overshoot is further analyzed in Figure 11 for

case 2 in the table. The overshoot seem to diminish when a higher number of design

variables are used nd = 61. No gradient smoothing was needed here for convergence.

Additionally, when the number of design variables is further increased nd = 121, the

overshoot is eliminated, though a gradient smoothing of ε = 0.005 (for objective and

constraints) was essential for convergence. In both cases the optimal work and period

were Wo = 1.109 N.m and To/Tn = 1.0673, which are close to the one reported for

case 2 in the table. For cases 4 and 5, the target amplitude is held at ZT = 0.5, while

using different initial guesses of the forcing period. It is observed that for Ti/Tn = 1.5

the optimal control force did not favor a regular design (square wave). Using a higher

number of design variables nd = 61, not reported here, converged to a saw tooth

type of control force, but with Wo = 0.297 N.m and To/Tn = 0.9839. This indicate

the existence of multiple solutions in the control force path and the sensitivity of the

optimization search to initial guess of the control force period. Consequently, when the

initial guess of the forcing period was closest to the optimal forcing period Ti = Tn,

the optimization search had the least number of iterations to converge.

Finally we run the optimization search for a set of target displacement amplitudes.

This allows us to compute the trade-off curve of the exerted work per cycle normal-

ized by the optimal period (power) and maximum displacement amplitude ZT . The

calculation of the trade-off curve is computationally more expensive than a weighted

sum approach, however, it allows the designer to select an optimum design based on

his/her preferences, where a small increase in the amount of required power may yield

larger increase in the target displacement.

An initial control force according to cos 2πs is used to compute the trade-off curve

(Pareto front), see Figure 14. Different values of the control force period are used in

the optimization searches. For ZT = {0.5, 0.565} a Ti = 1.1Tn was used to enable

convergence of the control force to a regular shape of the control force (similar to

case 4 in Table 5). For the remaining amplitudes, the initial period is held constant at

Ti = 1.5Tn, except for ZT = 3.3, where an initial guess Ti = 1.5Tn led the optimization

search to an infeasible design, with the control force period being larger than its upper

bound. However, when Ti = 1.2Tn is used, convergence is possible to a regular control

force (square wave). The optimum actuation period, see Table 6, is found larger than

the natural period of the system, with the difference decreasing in magnitude (reported

results are rounded to five significant figures) with increase in the maximum target

amplitude. The final designs of the optimum control forces for each design on the

Pareto front are shown in Figures 12 and 13. For the current system, there is an

inherent dependence between the work per period and the displacement amplitude [38],

consequently an initial control force design may already be close to the Pareto front.

For example, the initial design for ZT = 0.5 is close to the Pareto front. To realize

the amount of improvement in this initial design, an optimization search is carried

out where the target amplitude is equal to the initial amplitude, ZT = 0.565 (second
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(c) arctan(10 sin 2πs)/1.5.

Fig. 9 Final designs of the control force for the initial designs given in Table 4.
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(e) Ti/Tn = 1.5, ZT = 0.5.

Fig. 10 Final designs of the control force with a cosine function initial design, see Table 5.
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(b) nd = 121 with smoothing, ε = 0.005.

Fig. 11 Optimum control force for the initial design of case 2 in Table 5, but with higher
design points, Wo = 1.109. The design variables constraint violation in between the design
nodes is eliminated.

column in table). The total reduction in the power consumption from the initial design

is around 7.5%. Here we alert the reader to the early version of the paper [39], where

the minimum work is erroneously scaled by a 100.

Furthermore, the maximum target amplitude in the Pareto front ZT = 3.3 m is

not possible using a harmonic actuation force. The maximum amplitude for a harmonic
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actuation of unit amplitude is [1, p. 52]

Zmax =

∣∣∣∣∣∣
1√

[1 − (Tn/Tmax)2]
2

+ (2ζTn/Tmax)2

∣∣∣∣∣∣ , (61)

where

Tmax =
Tn√

1 − 2ζ2
. (62)

For the current system Tmax/Tn = 1.0004 and Zmax = 2.64 m. This provides an

approximately 25% improvement on the trivial initial design.

7 Conclusions

The optimization of systems for dynamic response is valuable in many applications.

The performance function and/or constraints are governed by a time-dependent differ-

ential equation. In order to apply the time-dependent constraints or find the optimum

cost function, the response is required for the whole time interval. In this paper, the

response is computed in monolithic-time using a spectral element discretization, where

the differential equation is transformed to an algebraic form. The search of the optimum

design using gradient-based methods is simplified by the availability of the sensitivity of

the time-dependent response to a change in the design variables explicitly. Depending

on the problem, the sensitivity is computed using direct or adjoint methods.

Two optimization applications are described, the first one relates to transient anal-

ysis, where an impact absorber is designed to minimize the maximum acceleration. In

this example we compare the accuracy and efficiency of applying the time-dependent

constraints at GLL grid points to applying them at critical points (local extrema). The

latter approach proved more efficient and accurate in computing the optimum solution.

The second application covers the periodic steady-state analysis. Here, the control

force of a mass-spring-damper system is designed for minimum exerted work and max-

imum displacement amplitude. The system is a very simplified model of the control

of micro air vehicles. The control force is simulated using a spline discretization with

first derivative continuity, where the design variables are the control force period and

the force magnitude at the spline nodes. Time-dependent response is computed for

one period of the response using the spectral element method and the constraints are

enforced at the critical points of the response. The study underlined the importance of

effective selection in the number of design nodes in the spline and an adequate spectral

element discretization. Increasing the number of design nodes in the spline, requires

increasing the spectral element discretization to give accurate steady-state response

for design perturbations. A high number of design nodes results in a round-off error in

computing the cost function and contributes to numerical noise in the gradient.

Optimization results of the control force design favors a forcing period near the

natural frequency of the system and a control force shape similar to that of a square

wave. The sensitivity of the search to the initial guess in the control force period

is observed, where an unfavorable initial period may yield to a non square form of

the control force shape or an infeasible solution. The use of small number of design

variables (nd = 31) is found sufficient in approximating the control force variation

over a cycle. However, some optimal designs exhibited an overshoot between the design
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Fig. 12 Optimum control force for a specific target amplitude, ZT .
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Fig. 13 Optimum control force for a specific target amplitude, ZT .
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Fig. 14 Pareto front of applied work and target displacement amplitude.

nodes. Further analysis using higher number of design variables (nd = 61 and nd = 121)

eliminated the overshoot, where a smoothed gradient was required for nd = 121, due

the noisy gradients.

Finally, the trade-off curve of the minimum work per cycle and maximum displace-

ment amplitude is computed. The curve illustrate to the designer the amount of gain

in the maximum displacement amplitude corresponding to an available minimum work

per cycle. The optimum control force periods of the trade-off set is found to approach

the natural period of the system with an increase in the target displacement amplitude.

For initial designs close to the trade-off curve, the improvement in the work per cycle

objective is found to be at around 7.5%.

The distinctive feature of the optimization approach used in the paper is the imple-

mentation of a high order spectral element computation of the dynamic response in a

monolithic-time interval which includes the converged dynamics. The approach trans-

forms the differential equation into an algebraic form, which enables a more explicit

computation of the sensitivities as highlighted in the review by Kang et. al [4].
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Table 4 Effect of initial control force form on the optimization search for an initial period
Ti = 1.5Tn and target displacement amplitude ZT = 1 m.

Case # function Wi Wo Zi Ti/Tn To/Tn # function # iterations
evaluations

1 cos 2πs 0.026 1.009 0.180 1.5 1.0672 49 23
2 sin 2πs 0.026 1.109 0.180 1.5 1.0673 55 26
3 arctan y/1.5§ 0.038 1.110 0.226 1.5 1.0669 17 7

§ y = 10 sin 2πs

Table 5 Effect of initial control force period on the optimization search with a cosine function
initial design.

Case # ZT Wi Wo Zi Ti/Tn To/Tn # function # iterations
evaluations

1 1 0.003 1.109 0.033 0.5 1.0675 87 42
2 1 0.047 1.108 0.177 0.8 1.0677 75 36
3 1 8.279 1.108 2.635 1.0 1.0678 36 16
4 0.5 0.346 0.253 0.565 1.1 1.1552 73 36
5 0.5 0.026 0.253 0.36 1.5 1.1445 227 89

Table 6 Pareto front optimal set.

Target amplitude, m 0.5 0.565 1.0 1.5 2.0 2.5 3.0 3.3
Minimum work, N.m 0.25 0.33 1.01 2.57 4.65 7.34 10.67 12.97
To/Tn 1.1552 1.1323 1.0672 1.0387 1.0268 1.0175 1.0091 1.0031
Minimum power, J/s 1.10 1.47 4.76 12.47 22.78 36.32 53.20 65.07
Initial amplitude, m 0.565 0.565 0.18 0.18 0.18 0.18 0.18 0.326
Initial work, N.m 0.35 0.35 0.03 0.03 0.03 0.03 0.03 0.11
Initial power, J/s 1.58 1.58 0.09 0.09 0.09 0.09 0.09 0.44
Ti/Tn 1.1000 1.1000 1.5000 1.5000 1.5000 1.5000 1.5000 1.2000
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