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Abstract

It is often necessary to establish the sensitivity of an engineering system’s response

to variations in the process/control parameters. Applications of the calculated sen-
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sitivity include gradient-based optimization and uncertainty quantification, which

generally require an efficient and robust sensitivity calculation method. In this pa-

per, the sensitivity of the milling process, which can be modeled by a set of time

delay differential equations, to variations in the input parameters is calculated. The

semi-analytical derivative of the maximum eigenvalue provides the necessary infor-

mation for determining the sensitivity of the process stability to input variables.

Comparison with the central finite difference derivative of the stability boundary

shows that the semi-analytical approach is more efficient and robust with respect

to step size and numerical accuracy of the response. An investigation of the source

of inaccuracy of the finite difference approximation found that it is caused by dis-

continuities associated with the iterative process of root finding using the bisection

method.
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Nomenclature

ε error tolerance

εa approximate relative error

λk kth eigenvalue of the dynamic map

λmax complex maximum eigenvalue

Ω spindle speed, rev/min

τ tooth passing period, seconds

A state transition matrix

a radial depth of cut

b axial depth of cut

bi axial depth at iteration i

bl initial lower limit of axial depth inteval

bu initial upper limit of axial depth inteval

blim axial depth limit

C 2x2 modal damping matrix

D vector which depends on the process parameters

E number of finite elements

Ea absolute error

eC condition error

eT truncation error

Ea,d desired absolute error

~f0 (t) 2x1 vector that represents the component of the cutting forces that are independent

of the position vector

h finite step size in variable of interest

Kc 2x2 matrix representing the component of cutting forces which depend on the position

vector
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K 2x2 modal stiffness matrix

Kn normal cutting force coefficient

Kt tangential cutting force coefficient

M 2x2 modal mass matrix

m number of tooth passage

N number of teeth on the cutting tool

n number of iterations

q̇ collocation of x and y velocities for all nodal times in one tooth passage

q collocation of x and y positions for all nodal times in one tooth passage

sb bound on the third derivative in the interval Ω ± h

u right eigenvector

v left eigenvector

~X (t) two-element position vector for x and y-directions

z generic variable

1 Introduction

Sensitivity plays an important role in the design of systems. For example, market economy

demands an optimal design, which both favors the customer preferences and remains robust

to variations in the system or its inputs. The process of searching for an optimal design or

quantifying the variations in the system response cannot be effectively carried out without

computing the sensitivity. Providing accurate and efficient tools for calculating the sensitivity

is therefore an important activity. In this brief, we develop a semi-analytical method for

calculating the sensitivity of the response to variations in the input parameters, when the

system response is determined using an eigenvalue analysis.

Our application example is milling, which can be modeled as a system of delay differential
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equations and can exhibit unstable behavior (known as chatter). The region separating the

unstable cutting domain from the stable one is characterized by the stability boundary,

which can be computed using time domain [11] or frequency domain [1] analyses, or an

eigenvalue analysis using the time finite element analysis (TFEA) [2, 9, 10]. The latter

method transforms the system of delay differential equations into finite form. A dynamic

map is generated using a nonsymmetrical state transition matrix, which relates the vibration

of the tool tooth while in the cut, to free vibration while the tooth is out of the cut. Stability

of the process is identified from the maximum eigenvalue of the state transition matrix.

In this brief, the semi-analytical sensitivity of the stability boundary is established by com-

puting the sensitivity of the maximum eigenvalue, using the adjoint method [8] in com-

bination with difference methods. Although we demonstrate the method using time finite

element analysis, it is applicable to any technique that solves delay differential equations

using an eigenvalue analysis of a dynamic map. The efficiency and robustness of the method

is compared to a central finite difference derivative of the stability boundary. The brief be-

gins with a description of the milling model in section 2. The analysis method is outlined

in section 3. Section 4 gives the stability boundary description. Section 5 details the semi-

analytical derivative used in calculating the stability sensitivity to spindle speed and section 6

summarizes the paper conclusions.

2 Milling model

A schematic of a two degree-of-freedom milling tool is shown in Fig. 1a. Tool dynamics and

cutting forces are used to formulate the governing delay differential equations for the system

(the workpiece is assumed rigid, although this is not a strict requirement). A compact form
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of the equations is:

M ~̈X(t) + C ~̇X(t) + K ~X(t) = Kc(t)b
(

~X(t) − ~X(t − τ)
)

+ ~f0 (t) b, (1)

where ~X (t) =
[

x(t) y(t)
]T

is the two-element position vector; M, C, and K are the 2x2

modal mass, damping, and stiffness matrices, respectively; Kc is a 2x2 matrix representing

the component of cutting forces which depend on the position vector and ~f0 (t) is the 2x1

vector that represents the components of the cutting force that are independent of the posi-

tion vector; b is the axial depth of cut (Fig. 1b); Ω is the spindle speed in rev/min (rpm); N

is the number of teeth on the cutting tool; and τ = 60/(Nπ) is the tooth passing period in

seconds. The difficulty in the solution of Eq. (1) arises from the fact that delay differential

equations comprise an infinite dimensional monodromy operator [5]. This operator is approx-

imated by a finite dimensional operator using TFEA [9]. The accuracy of this approximation

is improved by increasing the number of elements in time. This transforms the original time

periodic delay differential equations into a discrete form and provides a means for predicting

the milling process stability (i.e., the absence of the self-excited vibrations).

3 Analysis method

The initial work of applying the time finite element approach to delay equations can be found

in reference [2]. While this work considered the equations for turning, the methodology was

extended to milling in references [9, 10]. Full details for the milling model are provided in

these references. Here, we focus only on the eigenvalues of the solution method for brevity.

The dynamic behavior of the milling process, Eq. (1), is described by TFEA as a discrete

linear map that relates the vibration while the tool tooth is engaged in the cut, which depends

on previous tooth passages and therefore includes the time delay τ , to free vibration while
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the tooth is not engaged in the cut. The dynamic map is expressed as:
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where q and q̇ are collocation of x and y positions and velocities for all nodal times in one

tooth passage m, respectively; A is the state transition matrix and D is a vector which

depends on the process parameters. Note that the size of A depends on the number of time

finite elements, E, and polynomial order representing one time period. Stability of the milling

process is determined from the eigenvalues of A, while the eigenvectors determine the modes

of instability. The maximum magnitude of the map eigenvalues is described by:

λmax[A] = max
k

|λk|, (3)

where λk denotes the kth eigenvalue of the dynamic map and the state transition matrix

A is a function of the cutting conditions including Ω, N , radial depth of cut, a, tangential

and normal direction cutting force coefficients, Kt and Kn, which relate the corresponding

cutting force components to the uncut chip area, and tool modal parameters contained in

the mass, stiffness, and damping matrices. Unstable conditions exist if λmax > 1.

4 Stability boundary

Stability of the milling process is affected by the cutting conditions, workpiece material

and tool modal parameters. For a specific workpiece/tool combination, the primary cutting

conditions that affect the process stability are Ω, b and a (see Fig. 1b). Usually, a is assigned

by the selected tool path. Therefore, the stability boundary is defined by the stable space of

axial depth and spindle speed. A combination of b and Ω values below the stability boundary,

blim, gives stable cutting conditions, whereas a combination above the stability boundary
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leads to an unstable cut. The stability boundary corresponds to the cutting conditions at

which:

λmax[A(blim, Ω)] = 1. (4)

We use the bisection method to find the limiting stable axial depth, blim corresponding to

Eq. (4). The method does not need an initial guess and is guaranteed to converge provided

the root is within the selected interval. In Section 5.2, the method allows us to illustrate

difficulties associated with finite difference derivatives when the function (e.g., blim) is calcu-

lated by iterative methods. To terminate the bisection method iterations, an absolute value

of relative error is used:

εa =

∣

∣

∣

∣

∣

bi − bi−1

bi

∣

∣

∣

∣

∣

≤ ε, (5)

where εa is the approximate relative error, ε is the error tolerance and bi is the axial depth

at iteration i. The number of iterations, n, needed to find blim can also be used as a stopping

criterion after setting a desired absolute error in blim, Ea,d [3]:

n = log2

(

bu − bl

Ea,d

)

, (6)

where bu and bl are the initial upper and lower limits of the axial depth interval, respectively.

The absolute error Ea can be calculated as:

Ea =
bi − bi−1

2
. (7)

The values of ε or n are set based on the numerical accuracy required in the calculation of

blim. For example the number of iterations required for a tool with a flute length (maximum

b value) equal to 100 mm and Ea,d = 0.1 mm is approximately 10. Additionally, a value of

ε = 0.001 is typically adequate for blim calculation. However, to obtain an accurate derivative

of blim by finite differences it may be necessary to use a smaller value of ε or Ea,d (see

section 5.1).

Using the method, the stability boundary is computed in Fig. 2 for a down milling process
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(see Fig. 1c) using a 25.4 mm diameter endmill with a 12◦ helix angle and 114 mm overhang

length (from the holder face). Table 1 lists the tool mean modal values, representative cutting

force coefficients for 6061-T6 aluminum and machining parameters. The stability boundary

(Fig. 2), is seen to exhibit slope discontinuity at the lobe peaks. Since the stability boundary

is determined using λmax, the discontinuity occurs when two eigenvalues change places in

terms of having the largest magnitude. In section 5.3, the sensitivity of this boundary to

spindle speed is computed.

5 Sensitivity of stability boundary

The sensitivity of blim to input parameters is cumbersome to compute analytically using the

TFEA method; therefore, a numerical derivative is required. One option, which is available

for calculating any derivative, is finite differences. Here, the central difference method is used

to calculate the blim sensitivity to a parameter of interest. Since finite difference calculation

is often a source of numerical inaccuracies, we propose an alternative semi-analytical method

that calculates the stability boundary sensitivity using the derivative of the system maximum

eigenvalue.

5.1 Semi-analytical derivative of the stability boundary

The sensitivity of the stability boundary is calculated using the system maximum eigenvalue.

Equation (4) provides an implicit relationship between the limiting axial depth of cut and

spindle speed. The process of calculating ∂blim/∂Ω is the same as calculating derivatives with

respect to any other parameter, so the discussion below is limited to this derivative.
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The differential form of Eq. (4) is:

∂λmax

∂b
dblim +

∂λmax

∂Ω
dΩ = 0, (8)

which can be viewed as the differential equation of the stability boundary. From Eq. (8), we

get

dblim

dΩ
= −

∂λmax

∂Ω
/
∂λmax

∂b
. (9)

In the milling analysis, the eigenvalue may be complex:

|λmax|
2 = λmaxλ

′

max
, (10)

where λmax denotes the complex maximum eigenvalue and the prime (superscript) denotes

its complex conjugate. Differentiating the maximum eigenvalue with respect to a generic

variable z we get:

∂|λmax|

∂z
=

λmax

∂λ′

max

∂z
+ λ′

max

∂λmax

∂z

2|λmax|
. (11)

In order to determine the derivatives in the numerator of the right hand side of Eq. (11), we

recognize that the derivative of an eigenvalue λ of a general non-symmetric matrix A with

respect to a parameter is (e.g., see ref. [8] and [4]):

∂λ

∂z
=

vT ∂A

∂z
u

vT u
, (12)

where u and v are the right and left eigenvectors associated with the eigenvalue λ, re-

spectively. The derivative of the matrix A in Eq. (12) is obtained by the central difference

method (making our approach semi-analytical). It should be noted that Eq. (12) is valid only

if the eigenvalue is not repeated [6]. However, for a repeated eigenvalue, the derivative of

λmax is not defined anyway, since there is more than one eigenvalue with the same maximum

magnitude. Once the solution to Eq. (12) is obtained, it is substituted into Eq. (11). This

result is then inserted in Eq. (9) to determine the desired sensitivity.

A direct calculation of blim sensitivity with respect to spindle speed can also be performed
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using central finite difference:

dblim

dΩ
=

blim(Ω + h) − blim(Ω − h)

2h
+

h2

6

d3blim

dΩ3
(Ω + ζh), −1 ≤ ζ ≤ 1. (13)

where h denotes the step size in Ω and last term is the 2nd order truncation error, eT .

5.2 Error analysis

Factors which affect accurate calculation of sensitivity include: 1) condition error, eC ; and

2) truncation error [4]. Condition error usually occurs in an ill-conditioned numerical com-

putation where the round-off contribution is significant or when the function (e.g., blim) is

calculated using an iterative process such as the bisection method and is terminated early,

see Eq. (5). Assuming an error tolerance ε in the calculation of blim, the condition error for

central finite difference can be approximated from Eq. (13) as [4, p. 256]:

eC =
ε

h
. (14)

The total error becomes,

e = eC + eT =
h2

6
|sb| +

ε

h
, (15)

where sb is the bound on the third derivative in the interval Ω ∈ [Ω±h]. If sb is available, we

can find an h value which gives a tradeoff of truncation and condition errors. In the following

we compare the numerical accuracy of the semi-analytical method with respect to overall

finite difference approach and show that the former is robust to an approximate calculation

of the response.

5.3 Results

In order to demonstrate the robustness of the semi-analytical method, the blim sensitivity is

computed using different step sizes at some nominal spindle speed. All the computations are
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made using a converged solution with 10 elements in time. The logarithmic derivative of blim

is calculated to indicate the sensitivity [4] because it gives the percent change in blim due to

a percent change in Ω:

dln(blim)

dln(Ω)
=

Ω dblim

blim dΩ
. (16)

The central finite difference approach at a nominal Ω = 10, 000 rpm yields only a small

step size range where accurate calculation of blim sensitivity is possible [7] (see Fig. 3). For

example, with an error tolerance ε = 1 × 10−4, the spindle speed step size, h, must be in

the range of 1 × 10−4 to 1 × 10−2. This range can be extended by using a smaller ε value.

However, to apply a smaller ε value, a larger number of iterations, n, is required; see Eq. (6).

For example, the number of iterations for ε = 1 × 10−4 and ε = 1 × 10−7 are in the range

of 20-22 and 30-32, respectively. The semi-analytical method gives a wider range where the

sensitivity is accurate, even for larger ε values. As seen in Fig. 3, the semi-analytical method

is accurate in the range of h = 1 × 10−6 to 1 × 10−1 with ε = 1 × 10−2. Further, because

of this larger tolerance, only 15 iterations were required. It should be noted here that the

central finite difference needs two function evaluations of blim (2n iterations) whereas the

semi-analytical method requires only one function evaluation (n iterations). As seen in the

figure, only for ε = 1 × 10−7 do the central difference results reach the same level of step

size stability as the semi-analytical method. In this case, the central finite difference needed

four time more iterations than the semi-analytical method (2 × 30 versus 15 for the semi-

analytical) to reach the same overall step size stability.

Additionally, near C1 (slope) discontinuities, the accuracy and stable range of the finite

difference method is largely affected. Figure 4 compares the two methods near a C1 disconti-

nuity at 11800 rpm. As can be seen, the stable step size range for the semi-analytical method

was minimally affected by being in the vicinity of the discontinuity, although a smaller value

of ε was needed for a more accurate evaluation of sensitivity. However, for the central finite

difference calculations, the tolerance error of ε = 1 × 10−4 no longer provided stable calcu-
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lation of the derivative compared to the case at 10000 rpm and an ε = 1 × 10−7 value was

needed to provide stable calculation of the derivative in even a smaller step size range of

1× 10−6 to 2× 10−5. The minimal effect of the discontinuity on the semi-analytical method

makes it more robust than central finite difference.

It is instructive to investigate the source of numerical error encountered in the central finite

difference computation. To facilitate this, we report on the computed blim and λmax as a

function of Ω near Ω = 11800, where the response is calculated by incrementing Ω in small

steps equal to h = 1 × 10−4 (or 1.18 rpm). In Fig. 6a we note that λmax varies smoothly

as Ω is changed, this allows the semi-analytical method to be more accurate. However, in

Fig. 6b, constant then staircase variation of blim is observed. We note here that blim was

computed using an ε = 1 × 10−2 and fixed number of iterations n = 15. The staircase

variation in blim is due to the binary nature of the bisection algorithm. At each iteration the

algorithm makes a choice between a left and a right interval. As the frequency changes, the

choice in the last iteration can switch from choosing one to the other causing a discontinuity

in the calculated blim. It should be noted that similar difficulties may be expected with

finite difference derivatives of quantities calculated by other iterative processes which are

terminated early to reduce computational cost. Consequently, for the semi-analytical method,

in contrast to central finite difference, see Eq. (15), high accuracy in the stability boundary

is not a strict requirement. This is illustrated in Fig. 5, where the sensitivity is compared for

h = 1×10−3 and different values of tolerance error ε. As can be seen, the sensitivity calculated

using the semi-analytical method is accurate even for a coarse calculation of the stability

boundary. This illustrates the efficiency and robustness of the semi-analytical method. An

example of the sensitivity calculation ∂blim/∂Ω using both methods is shown in Fig. 7. It

is required that the step size be carefully selected (see Table 2) if agreement between the

central finite difference and semi-analytical methods is to be achieved. Note that a three

order of magnitude smaller tolerance error and one order of magnitude smaller step size was
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required for the central finite difference calculations to provide stable derivative calculation

in the vicinity of the C1 discontinuity. Considering the tolerance error used in both methods,

the number of iterations for central finite difference and semi-analytical methods was about

(2×32) and 22, respectively. The semi-analytical solution provided an efficiency improvement

of 290% and increased flexibility in the step size and tolerance error selection.

6 Conclusions

In this paper, a new semi-analytical method for calculating the sensitivity of the stability

boundary for a system of delay differential equations was presented. The approach was

demonstrated for a milling application where the stability limit is defined by the maximum

eigenvalue and is expressed as a curve in a plane defined by axial depth and spindle speed.

The method was compared to the central finite difference approach and was shown to be

more efficient and robust in calculating the stability sensitivity with minimal dependence

on the stability accuracy. The loss of accuracy of the finite difference method was traced

to be the result of the iterative bisection solution for the stability boundary. It should be

noted that similar difficulties may be expected with finite difference derivatives of quantities

calculated by other iterative processes which are terminated early to reduce computational

cost.
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Table 1

Cutting force coefficients, modal parameters and cutting conditions.

M (kg) C (kg/s) K (×106 N/m)

0.44 0 83 0 4.45 0

0 0.44 0 91 0 3.55

d (mm) c (mm) a (mm) N

25.4 0.1 0.5 1

Kt(N/m2) Kn (N/m2)

600×106 180×106
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Table 2

Parameters used in sensitivity calculation in Fig. 7.

Method h% E ε

Central finite difference 0.001 10 1 × 10−7

Semi-analytical 0.01 10 1 × 10−4
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ε = 1 × 10−4; × central finite difference, ε = 1 × 10−7. The semi-analytical results are minimally

affected by the slope discontinuity. For the central finite difference, however, only a tolerance error

of 1 × 10−7 gives a stable derivative calculation. Further, a smaller step size range than Fig. 3

(1 × 10−6 to 2 × 10−5) is obtained.
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Fig. 5. Comparison between the calculated sensitivity using overall finite difference and semi-analyt-

ical methods for the same step size h = 1×10−3 at a spindle speed of 10000 rpm. — Semi-analytical;

◦ central finite difference. The semi-analytical method gives accurate calculation of blim sensitivity

even for large ε.
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Fig. 6. Source of numerical error in sensitivity computation. a) Smooth variation of λmax. b) Stair-

case variation in blim: — number of iterations, n = 15; · ε = 1 × 10−2.
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Fig. 7. Comparison between the calculated sensitivity using central finite difference and semi-ana-

lytical methods. — Semi-analytical; · central finite difference. Good agreement is observed provided

the conditions are carefully selected (see Table 2).
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