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Stability of a Time-Delayed
System With Parametric
Excitation
This paper investigates two different temporal finite element techniques, a multiple ele-
ment (h-version) and single element (p-version) method, to analyze the stability of a
system with a time-periodic coefficient and a time delay. The representative problem,
known as the delayed damped Mathieu equation, is chosen to illustrate the combined
effect of a time delay and parametric excitation on stability. A discrete linear map is
obtained by approximating the exact solution with a series expansion of orthogonal
polynomials constrained at intermittent nodes. Characteristic multipliers of the map are
used to determine the unstable parameter domains. Additionally, the described analysis
provides a new approach to extract the Floquet transition matrix of time periodic systems
without a delay. �DOI: 10.1115/1.2432357�
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Introduction
The stability of systems governed by time-periodic differential

quations is important to various fields of science and engineer-
ng. For instance, recent literature has described applications in
igh-speed milling �1–5�, quantum mechanics, structures under
scillating loads, and rotating helicopter blades �6�.

Some of the methods available for stability analysis are Hill’s
ethod �7–9�, Floquet theory �10–16�, and perturbation �7,17,18�.
inha and Wu �19�, Sinha �20�, Sinha et al. �21–23�, Butcher et al.
24�, Ma et al. �25,26�, Bueler et al. �27�, and Szabo and Butcher
28� have used Chebyshev polynomials to analyze the stability
nd control of time-periodic systems. The effect of time delay on
ontrol stability has been examined by Yang and Wu �6�, Horng
nd Chou �29�, and Chung and Sun �30�, who studied the effect of
time delay on structural dynamics.
The delayed damped Mathieu equation �DDME� provides a

epresentative system with both a time delay and parametric ex-
itation. Mathieu �31� used this equation, without the time-delay
nd damping terms, to study the oscillations of an elliptic mem-
rane. Bellman and Cooke �32� and Bhatt and Hsu �33� both made
ttempts to lay out the criteria for stability using the D-subdivision
34� method combined with the theorem of Pontryagin �35�. In-
perger and Stépán have used an analytical and semi-
iscretization approach, which is applicable to a combination of
roblems with finite and functional time delays, to examine the
tability of the DDME �36–38�.

The use of orthogonal polynomials to solve systems with para-
etric excitation and no time delay has been adopted by many

uthors. For instance, Chang et al. �39� studied the response of
inear dynamic systems. Sinha and Chou �40� and Sinha et al. �13�
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used orthogonal polynomials to investigate the behavior of time-
periodic differential equations. Orthogonal polynomials are used
because they decouple the successive solutions, as presented in
Ref. �41�, which will increase the rate of convergence, thereby
making the process less computationally expensive. In this paper,
interpolated orthogonal polynomials are used to determine the sta-
bility of a system with both parametric excitation and time de-
layed feedback.

The present work describes two different temporal finite ele-
ment analysis approaches that can be used to ascertain the stability
behavior of both linear autonomous and nonautonomous systems
with a single time delay �see previous work in Refs. �4� and
�42–46��. In particular, this paper examines the stability of the
DDME using temporal finite element analysis. A set of orthogonal
polynomials, constrained for C1 continuity, are used to obtain a
discrete linear map that closely approximates the exact solution.
Characteristic multipliers of the map, which are obtained from the
finite-dimensional monodromy operator that closely approximates
the actual infinite-dimensional system, are then used to determine
the stable and unstable parameter domains.

Two different approaches are used to formulate dynamic maps
that describe the system evolution: �i� a multiple element method
is described that divides the minimum time period of the system
into a finite number of temporal elements. An approximate solu-
tion is then obtained for a single period as a linear combination of
interpolated polynomials. This technique employs cubic polyno-
mials as trial functions to approximate the exact solution.
Asymptotic convergence of the approximated solution to the exact
solution is obtained by increasing the number of elements that
discretize the time domain. This approach is called h-convergence
as in spatial finite element analysis. �ii� A single-element method
that utilizes a linear combination of higher-order orthogonal poly-
nomials, coupled with C1 continuity, is applied in the second ap-
proach. These polynomials approximate the exact solution by uti-
lizing a single temporal element. Asymptotic convergence of the

approximated solution to the exact solution is obtained by increas-
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ng the polynomial order. This methodology, where solution con-
ergence is obtained by increasing the polynomial order while
eeping the number of elements fixed, is known as p-convergence.

Delayed Mathieu Equation
The delayed damped Mathieu equation can be written as

ẍ�t� + �ẋ�t� + �� + � cos��t��x�t� = bx�t − �� �1�

here Eq. �1� has a period of T=2� /�, a damping coefficient of
, a time delay of �=2�, a constant and time periodic coefficient
+� cos��t�, and a gain term, b, which scales the influence of the
elayed feedback state.

Before looking at the stability of delayed damped Mathieu
quation �DDME�, it is imperative to consider the various types of
ifurcations that may occur in parameter space. Section 3 provides
n overview of several types of bifurcations that are of potential
nterest for the system under study.

Bifurcations
This section provides an overview of Floquet theory for time

eriodic systems prior to discussing the additional considerations
or time periodic systems with a time delay. In general, a linear
eriodic ordinary differential equation can be written as

X�̇ �t� = A�t�X� �t� �2�

here X� �t� is an n-dimensional state vector, and the matrix A�t� is
time-periodic coefficient with a period T. Equation �2� has a

undamental set of n-linearly independent solutions, xi, where i
1,2 , . . . ,n. This implies that the states one period into the future,

i�t+T�, must be a linear combination of states at the current time

i�t�. This relationship can be written as

X� �t + T� = ��T�X� �t� �3�

here ��T� is a n�n Floquet transition matrix �47�. Eigenvalues
f the Floquet transition matrix �	m ,m=1,2 , . . . ,n�, also known
s characteristic multipliers, are unique for a given system and can
e calculated from

det�	I − ��T�� = 0 �4�

he form of the mth characteristic multiplier is 	m=e
mT, which
elates the asymptotic stability behavior in the discrete time do-
ain to the asymptotic stability behavior in the continuous time

omain with the characteristic exponent 
m. The system is asymp-
otically stable if all characteristic multipliers �	m� are in a modu-
us of less than unity. Depending on the manner in which the
haracteristic multiplier 	 leaves the unit circle, one can charac-
erize the loss of stability from three distinct routes:

1. A characteristic multiplier penetrates the unit circle through
+1 �real axis�, resulting in one of the following three bifur-
cations: transcritical, symmetry-breaking, and cyclic fold bi-
furcations.

2. A characteristic multiplier leaves the unit circle through −1
�real axis�, resulting in a period-doubling bifurcation.

3. A pair of complex conjugate characteristic multipliers exits
the unit circle away from real axis, resulting in a secondary
Hopf or Neimark-Sacker bifurcation.

The stability analysis of a time-periodic system is closely re-
ated to the same system with an introduction of a time delay. For
nstance, consider the following delay oscillator:

X�̇ �t� = A�t�X� �t − �� �5�

here � is the delay. As in the time-periodic case, the form of the

olution can be written as X� = p��t�e
t. However, a primary differ-

nce exists between the monodromy operator of Eq. �5� and the
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Floquet transition matrix of Eq. �2�. For instance, Ref. �48� notes
that the time periodic system will have a finite-dimensional Flo-
quet transition matrix, but the delay oscillator system will have an
infinite-dimensional monodromy operator. Also, in contrast to the
classical time-periodic case, the time-delayed system will have an
infinite number of characteristic multipliers. The resulting criteria
for asymptotic stability now requires the infinite number of char-
acteristic multipliers to have a modulus of �1; this criteria is
analogous to requiring the infinite number of characteristic expo-
nents to be negative and real.

The infinite-dimensional monodromy operator is problematic
from the analyst point of view since it prohibits a closed-formed
solution. In spite of this problem, one can approach this problem
from a practical standpoint, by constructing a finite-dimensional
monodromy operator that closely approximates the stability char-
acteristics of the infinite-dimensional monodromy operator. This
is the underlying approach followed throughout this paper. Al-
though the presented approach can still be used to produce a
monodromy operator matrix of higher and higher dimensions, it is
surmised that this is an unnecessary task since the asymptotic
stability behavior is observed to be accurately captured by rela-
tively smaller-dimensional matrix representations of the infinite-
dimensional monodromy operator.

4 Multiple Element Dynamic Map (h-Version)
Systems governed by time-delay differential equations do not

have a closed-form solution �49,50�. In order to predict their be-
havior, an approximation to exact solution is required. Temporal
finite element analysis �TFEA� is a technique to examine the dy-
namic behavior of a system with a single time delay, such as the
delayed damped Mathieu equation. After formulating a finite-
dimensional dynamic map, which is an approximation to the
infinite-dimensional monodromy matrix, the characteristic multi-
pliers of the map are used to determine the system stability.

The stability behavior of Eq. �1� is investigated by dividing a
period of the system T=2� /� into a finite number of elements.
The approximate solution, within the jth element, can then be
written as

xj�t� � �
i=1

4

aji
n �i�
 j�t�� �6�

where �i�
 j�t�� are the cubic Hermite polynomials, or trial func-
tions defined in Eq. �7� and 
 j�t� is the local time within the jth
element of the nth period. A specific benefit of the chosen trial
functions is their end conditions; this allows one to match the
velocity and displacement at interelement nodes and reduce the
number of coefficients required in the multiple element mono-
dromy operator of Sec. 4.1. The trial function expressions are

�1�
 j� = 1 − 3�
 j

tj
�2

+ 2�
 j

tj
�3

�7a�

�2�
 j� = tj	�
 j

tj
� − 2�
 j

tj
�2

+ �
 j

tj
�3
 �7b�

�3�
 j� = 3�
 j

tj
�2

− 2�
 j

tj
�3

�7c�

�4�
 j� = tj	− �
 j

tj
�2

+ �
 j

tj
�3
 �7d�

The time for each element is tj =T /E, and E is the number of
elements into which the period T is divided. Substitution of the

approximate solution into Eq. �1� gives an error err�t�
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�
i=1

4

aji
n �̈i�
 j�t�� + ��

i=1

4

aji
n �̇i�
 j�t�� + �� + � cos��t���

i=1

4

aji
n �i�
 j�t��

− b�
i=1

4

aji
n−1�i�
 j�t�� = err�t� �8�

here aji
n−1 represents the coefficients of the assumed solution

rom the previous period.
The next step requires weighting the approximation error and

etting the result of the residual error to zero. This gives two
quations per element to solve for the coefficients �aji�. The pur-
ose of weighting the residual error �err� is to select from an
nfinite number of possible solutions �−� �aij � + � �, a best so-
ution as close as possible to the exact solution. The resulting
esidual error is

�
0

tj��
i=1

4

aji
n �̈i�
 j�t���p�
 j�t�� + ��

i=1

4

aji
n �̇i�
 j�t���p�
 j�t��

+ �� + � cos��t���
i=1

4

aji
n �i�
 j�t���p�
 j�t��

− b�
i=1

4

aji
n−1�i�
 j�t���p�
 j�t��
d
 j�t� = 0 p = 1,2 �9�

here the following weighting functions were applied:

�1�
 j�t�� = 1 �10a�

�2�
 j�t�� =

 j

tj
−

1

2
�10b�

oefficients from the first two trial functions represent the veloc-
ty and displacement at the beginning of each element. These co-
fficients can be used to relate the states at the beginning of the
urrent period to the states at the end of previous period by

�a11

a12
�n

= �aE3

aE4
�n−1

�11�

he continuity condition of Eq. �11� holds true for coefficients at
he beginning and end of each element.

Coefficients of the assumed solution can be related to those of
he previous period by arranging Eqs. �9� and �11� into a mono-
romy operator matrix of size �2E+2�� �2E+2�. The expression
or two elements can be written as

�
1 0 0 0 0 0

0 1 0 0 0 0

N11
1 N12

1 N13
1 N14

1 0 0

N21
1 N22

1 N23
1 N24

1 0 0

0 0 N11
2 N12

2 N13
2 N14

2

0 0 N21
2 N22

2 N23
2 N24

2

��
a11

a12

a21

a22

a23

a24

�
n

= �
0 0 0 0 1 0

0 0 0 0 0 1

P11
1 P12

1 P13
1 P14

1 0 0

P21
1 P22

1 P23
1 P24

1 0 0

0 0 P11
2 P12

2 P13
2 P14

2

0 0 P21
2 P22

2 P23
2 P24

2

��
a11

a12

a21

a22

a23

a24

�
n−1

�12�
here
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Npi
j =�

0

tj

��̈i�
 j� + ��̇i�
 j�

+ �� + � cos��t���i�
 j�t����p�
 j�t��d
 j�t� �13�

Ppi
j = b�

0

tj

�i�
 j�t���p�
 j�t��d
 j�t� �14�

Equation �12� takes the form of a discrete linear map that can
be written as

Aa�n = Ba�n−1 or a�n = Qa�n−1 �15�

where Q=A−1B is the monodromy operator. The coefficients of
the assumed solution, which have been written in vector form a�n,
represent the velocity and displacement at discrete points in time.
This provides a dynamic map over a single time delay.

4.1 Map Stability From Characteristic Multipliers. Char-
acteristic multipliers of the transition matrix Q determine the sta-
bility of the governing equation based on whether they reside
within the unit circle �see Sec. 3�. The system is stable for a given
set of parameters �� ,� ,� ,b� if all the characteristic multipliers
have modulus �1. In Fig. 1�a�, a solid line represents the stability
boundary ��	 � =1� for a given parameter combination of � and �.
The period of Eq. �1� is 2�, �=0.1, and b=0.01. The stable region
has eigenvalues with a magnitude of �1, and the region marked
unstable has eigenvalues with a magnitude �1. Varying � from
0−1 while keeping � at a constant value of 1.04 provides a tran-
scritical bifurcation �see Fig. 1�b��. A flip bifurcation is observed
when � is held at a constant of 1 and while � is varied from 0.4–
0.7 �see Fig. 1�c��.

5 Single-Element Dynamic Map (p-Version)
Although the h-version approach can obtain convergence by

simply increasing the number of elements, a dramatic increase in
computational time often experienced for a larger number of ele-
ments �i.e., additional computations are required for the increased
matrix size�. Therefore, the approach described in Sec. 4 was aug-
mented by increasing the order of approximating polynomials
while using a single element. The revised approximate solution
becomes

x�t� � �
i=1

s

ai
n�i�
�t�� �16�

where s is the total number of higher-order interpolated polyno-
mials �i�
�t��. The interpolating polynomials, described in Sec.
5.2, are of order p, where

p = s − 1 �17�
Substitution of the approximate solution �Eq. �16��, into Eq. �1�
leads to a nonzero error err�t�

�
i=1

s

ai
n�̈i�
�t�� + ��

i=1

s

ai
n�̇i�
�t�� + �� + � cos��t���

i=1

s

ai
n�i�
�t��

− b�
i=1

s

ai
n−1�i�
�t�� = err�t� �18�

As in the h-version, the integral of weighted error is set to zero;
however, this now provides s equations linear in the coefficients
of the assumed solution since the weighting functions ��i�
�t���
were chosen to be the same as interpolated polynomials

�i�
�t�� = �i�
�t�� �19�

i=1,2 , . . . ,s. This type of integral formulation is known as a
weighted Galerkin method �51�. The resultant equation can be

written as
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0

tj��
i=1

s

ai
n�̈i�
�t���i�
�t�� + ��

i=1

s

ai
n�̇i�
�t���i�
�t��

+ �� + � cos��t���
i=1

s

ai
n�i�
�t���i�
�t��

− b�
i=1

s

ai
n−1�i�
�t���i�
�t��
d�
 j�t�� = 0 �20�

here tj, the integration time for the single element, is equal to the
inimal time period T.
The coefficients from the first two trial functions on the first

lement represent the velocity and displacement at the start of
ach period. They can be related to the states at the end of the
revious period by

�a1

a2
�n

= �as−1

as
�n−1

�21�

Since initial and final states of the system can be specified in
erms of a single polynomial coefficient, a simplistic mapping to
he next period can be written with the unity matrix and the iden-
ity matrix.

The coefficients of the assumed solution can be related to those
f the previous period by arranging Eqs. �20� and �21� into a
onodromy operator matrix of size s�s. The expression can be

Fig. 1 Multiple element stability predic
plier „�… trajectories in the complex plan
ing parameters were used to generate
=0.04.
ritten as

28 / Vol. 129, MARCH 2007
�
1 0 0 . . . 0 0

0 1 0 . . . 0 0

N11 N12 N13 . . . N1s−1 N1s

N21 N22 N22 . . . N2s−1 N2s

� � � � � �
Ns1 Ns2 Ns3 . . . Nss−1 Nss

��
a1

a2

a3

a4

�
as

�
n

= �
0 0 0 . . . 1 0

0 0 0 . . . 0 1

P11 P12 P13 . . . P1s−1 P1s

P21 P22 P22 . . . P2s−1 P2s

� � � � � �
Ps1 Ps2 Ps3 . . . Pss−1 Pss

��
a1

a2

a3

a4

�
as

�
n−1

�22�

where

Nii =�
0

tj

��̈i�
�t�� + ��̇i�
�t��

+ �� + � cos��t���i�
�t����i�
�t��d
�t� �23�

Pii = b�
0

tj

�i�
�t���i�
�t��d
�t� �24�

A discrete linear map, described by Eq. �22�, can be written as

Aa�n = Ba�n−1 or a�n = Qa�n−1 �25�

where the monodromy operator Q can be found from the pseudo-
T −1 T

ns „graph A… from characteristic multi-
shown by graphs B and C…. The follow-
se graphics �=1, �=2�, �=0.1, and b
tio
e „

the
inverse Q= ��A A� A �B. Alternatively, although this problem
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as not experienced for the system under study, the matrix pseudo
nverse could result in numerical difficulties and other methods of

atrix decomposition may be necessary.

5.1 Stability. As discussed in Sec. 4.1, the condition for
symptotic stability �see Figs. 2 and 3� is that the characteristic
ultipliers �	i� of the transition matrix Q should satisfy the fol-

owing condition:

max�	i� � 1 �26�

here i=1,2 , . . .s. Figure 2 represents the stability boundaries
�	 � =1� of delayed Mathieu equation for different values of �.
he region enclosed by stability boundary for a given � is stable

�	 � �1� and vice versa. In both cases �=0, period equals time
elay � � 2�, and convergence was obtained using seventh order
olynomials. Figure 3 is a three-dimensional graphical represen-
ation of stablility in �b ,� ,�� parameter space. The region en-
losed within the surface is stable, and the surface ��	 � =1� rep-
esents the transition from stable to unstable region. Here �=0.2,
ime delay �=2�, and �=1.

5.2 Interpolated Polynomials. For convergence of a second-
rder differential system, the trial functions or interpolated poly-
omials, must satisfy at least two conditions: C0 continuity and a
omplete polynomial of the first degree �53�. Completeness is
nsured by increasing the degree of the polynomials while pre-
erving C0 continuity. The single-element approach requires an
lement that exceeds a minimal C0 continuity condition �i.e., an
lement with C1 continuity to obtain better convergence�. To de-
ive the polynomials with C1 continuity, each polynomial and its
erivatives were interpolated at interelement nodes. This requires
wo boundary conditions at each interelement node.

The interpolated polynomials obey the following relationships
n the local time interval of 0�
 / tj �1:

�
s

�i�
�t�� = 1 �27a�

Fig. 2 Delayed Mathieu equation stabi
ues: solid line indicates �=0.1; dotted l
used to generate this graph are �=1, �
i=1

ournal of Dynamic Systems, Measurement, and Control
�
i=1

s

�̇i�
�t�� = 1 �27b�

where � is an interpolated polynomial. Polynomials are of order
�p�, which is related to the total number of polynomials by p=s
−1. Cubic Hermite polynomials, Eq. �7�, represent a set of the
lowest-degree polynomials with C1 continuity. As an example, the
expressions for a set of fifth order interpolating polynomials are
given in the Appendix.

Figures 4�a� and 4�b� represent the displacement and velocity
constraints in local time, respectively, for fifth-order interpolated
polynomials �p=5,s=6�. The local time is divided into three
nodes, which include two boundary nodes and one intermittent
node. The sum of displacement and velocity at each node is 1.
Constraining interpolated polynomials in this fashion helps main-
tain completeness, C1 continuity, and orthogonality.

6 Monodromy Operator Period
The delayed damped Mathieu equation is a second-order differ-

ential equation with a periodic coefficient and a time-delay term
proportional to b. The coefficient �+� cos��t� is the aforemen-
tioned time-periodic function with a period of Tp=2� /� and �
provides the constant time delay. In the stability investigations of
the previous sections, the time delay has been set equal to the
period of the time-periodic coefficient. When considering the cor-
rect time interval for computing the monodromy operator, this
gives rise to an interesting question. For instance, should the Flo-
quet matrix, or monodromy operator Q, be computed over the
period of the time delay or over a period of the time-periodic
coefficient? Therefore, the following three cases are noteworthy:
�i� the time delay is equal to the periodic coefficient period �
=Tp; �ii� the time delay is less than the periodic coefficient period
��Tp; and �iii� the time delay is greater than the periodic coeffi-
cient period ��Tp.

Since the case of the equivalent periods, �=Tp, has already

chart for two damping coefficient val-
indicates �=0.2. The other parameters
, and �=0.
lity
ine
=2�
been discussed, the remaining question is how to handle the last

MARCH 2007, Vol. 129 / 129
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wo cases. Therefore, the case of ��Tp is examined in Fig. 5 by
omputing the monodromy operator over the delay period �=2�
nd the periodic coefficient period Tp=2. When numerical simu-
ation is used to study points of disagreement, the results show the
tability boundaries computed for a period of T=2 are correct.
owever, based solely on this result, one cannot conclude whether

ig. 3 Three-dimensional plot depicting stability regions for
he DDME with respect to parameters �, b, and �. Shaded re-
ions are stable, and unstable regions are transparent. Predic-

ions are for �=0.2, �=2�, and �=1.

Fig. 4 Fifth-order interpolated polynom

ized local time

30 / Vol. 129, MARCH 2007
using the minimal period or always using the periodic coefficient
period, Tp=2� /�, is correct. The answer to this question is clari-
fied by examining the case of ��Tp �see Fig. 6�. When numerical
simulation is used to study points of disagreement, it is found that
the correct stability boundaries are obtained when the monodromy
operator is computed over a period of T=4�. This reveals that the
Floquet matrix should be computed over the periodic coefficient
period. This conclusion is in direct agreement with the results
presented by Insperger and Stépán �52�.

7 Damped Mathieu Equation (DME)
This section considers a special case of the DDME, the damped

Mathieu equation, which is obtained by setting b=0 in the previ-
ous studies. Here, a single-element monodromy operator is
formed from the application of higher-order polynomials. The
equation of interest is

ẍ�t� + �ẋ�t� + �� + � cos��t��x�t� = 0 �28�

Substitution of the assumed solution, Eq. �16�, into Eq. �28�, leads
to a nonzero error err�t�

�
i=1

s

ai
n�̈i�
�t�� + ��

i=1

s

ai
n�̇i�
�t�� + �� + � cos��t���

i=1

s

ai
n�i�
�t��

= err�t� �29�
Applying the Galerkin residual method �see Sec. 5�, we have

�
0

tj��
i=1

s

ai
n�̈i�
�t���i�
�t�� + ��

i=1

s

ai
n�̇i�
�t���i�
�t��

+ �� + � cos��t���
i=1

s

ai
n�i�
�t���i�
�t��
d�
�t�� = 0

�30�

Once again, the continuity condition, given in Eq. �21�, is implied
to relate the coefficients at the beginning and end of each period.

ls plotted as a function of the normal-
ia
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The monodromy operator for the damped Mathieu equation,
q. �28�, results in a special case of Eq. �22�, where Pii=0. Ap-
lying the discretization approach of Sec. 6, one develops the
ollowing matrix equation:

�
1 0 0 . . . 0 0

0 1 0 . . . 0 0

N11 N12 N13 . . . N1s−1 N1s

N21 N22 N22 . . . N2s−1 N2s

� � � � � �
Ns1 Ns2 Ns3 . . . Nss−1 Nss

��
a1

a2

a3

a4

�
as

�
n

= �
0 0 0 . . . 1 0

0 0 0 . . . 0 1

0 0 0 . . . 0 0

0 0 0 . . . 0 0

� � � � � �
0 0 0 . . . 0 0

��
a1

a2

a3

a4

�
as

�
n−1

�31�

here Nii is given by Eq. �23�.
A discrete linear map, described by Eq. �31�, can be written as

Aa�n = Ba�n−1 �32�

here Q= ��ATA�−1AT�B. For stability, all characteristic multipli-
rs of the transition matrix �Q� should have magnitude of �1 for
given combination of �, �, �. In Fig. 7, a solid line indicates the

tability boundary of damped Mathieu Eq. �28� for �=0.1 and
otted line for �=0.2. The period of Eq. �28� is 2�, and conver-

Fig. 5 Stability boundaries are comp
over a period of 2� „dotted line… and a
results are shown by +, and unstable s
parameters used for the computations
ence was obtained using ninth-order polynomials.
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7.1 Floquet Transition Matrix. As one might expect, the
Floquet transition matrix for the DME should be related to Eq.
�31�. To illustrate this, the pseudo inverse of Eq. �31� is taken to
arrive at the following revised equation form:

�
a1

a2

�
as−1

as

�
n

= �
0 0 . . . 0 c1 c2

0 0 . . . 0 c3 c4

� � � � � �
0 0 . . . 0 �11 �12

0 0 . . . 0 �21 �22

��
a1

a2

�
as−1

as

�
n−1

�33�

where ci �i=1,2 ,3 , . . . � are constant terms in Q,
a1 ,a2 , . . . ,as−1 ,as are the coefficients of the assumed solution,
which happen to represent the velocity and displacement at spe-
cific local times, and n represents the period. The terms �11, �12,
�21, and �22 are the elements of the Floquet transition matrix ���.
Therefore, from Eq. �33�, we have

� = 	�11 �12

�21 �22

 �34�

Once the Floquet transition matrix is found, stability is determined
from the eigenvalues of this matrix �see Sec. 3 for details�.

8 Error Analysis
The error analysis accounts for the discretization error and as-

sumes all other forms of error are absent. Discretization error is
caused by using a finite number of trial functions ��
�t�� and a
discrete set of coefficients ai in the assumed solution to approxi-
mate the exact solution for x�
�t��.

The completeness and continuity are two minimum conditions
required to closely approximate the second-order system with a
linear combination of trial functions. The measured energy error

d when evaluating the Floquet matrix
riod of 2 „solid line…. Stable simulated
ulation results are shown by �. Other
�=0.2, b=0.01, �=2�, and �=�.
ute
pe
im

are
provides a metric for closeness, where
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Energy Error = ��
domain

E�
�t��D�E�
�t���dt�1/2

�35�

nd

E�
�t�� = x�
�t�� − �
i=1

s

ai
n�i�
�t�� �36�

nd D is the differential operator for the governing differential
quation �1�. In physical applications, the expression
�
�t��D�E�
�t���, or similarly x�
�t��D�x�
�t���, generally cor-

espond to energy density. The polynomial solutions will converge
s p approaches infinity �53�.

It can be shown that the eigenvalues converge at the same rate
s the global energy, �i.e., the rate of convergence of global energy
s of the order of O�E2�p−m+1��, where 2m is the order of governing
ifferential equation, p is the polynomial order, and E is the num-
er of time elements�. This is because in physical systems, the
igenvalue is either the global energy or the ratio of global poten-
ial energy to global kinetic energy �53�.

Extrapolation is one of the most common methods to estimate
onvergence �51�. The assumption underlying this method is that
solution is always available at each refinement step.
This paper discusses two different approaches to extrapolate

onvergence.
Two-point extrapolation. As already discussed, eigenvalues

ave the same rate of convergence as global energy �53�. There-
ore convergence of an approximated eigenvalue to exact eigen-
alue is one criterion for minimization of error. The exponential
xtrapolation can be written as

	est = 	ext�1 − eap� �37�

here 	est is an extrapolated eigenvalue, a is an unknown con-
tant, and p is the polynomial order. Initially, to solve for a, 	est is
he eigenvalue corresponding to the maximum eigenvalue gradi-

Fig. 6 Stability boundaries are comp
over T=2� „dotted line… and T=4� „solid
by + and unstable simulation results ar
the computations are �=0.2, b=0.01, �=
nt at a low polynomial order. Figure 8 represents a particular case
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of delayed Mathieu equation �1� where �=0.2, period is 2� and
�=1. Third-order interpolated polynomials are used to predict 	
�15.83 corresponding to the maximum gradient. Therefore, in a
two-point extrapolation, 	est=15.83. The corresponding exact ei-
genvalue 	ext is found using Euler time marching �simulation�.
The system was simulated using the same values of parameters
�� ,� ,b� corresponding to maximum eigenvalue gradient, and the
Floquet transition matrix ��� was computed looking back one
time period. The maximum eigenvalue of � is �	ext�.

	ext = max��	I − �� = 0� �38�

Three-point extrapolation. This approach �51,54� requires a
three-element solution corresponding to polynomial order p , p
−1, and p−2. The exact solution of �x�t��2 can be estimated by
solving

�x�t��2 − �x�t�p�2

�x�t��2 − �x�t�p−1�2 = � �x�t��2 − �x�t�p−1�2

�x�t��2 − �x�t�p−2�2�log�p−1/p�/log�p−2/p−1�

�39�

where �x�t��2 represents the energy form of x�t� and p is the poly-
nomial order. Considering eigenvalues �	� have the same rate of
convergence as global energy, Eq. �39� can be rewritten as

	2 − 	p
2

	2 − 	p−1
2 = �	2 − 	p−1

2

	2 − 	p−2
2 �log�p−1/p�/log�p−2/p−1�

�40�

where 	 is the exact eigenvalue calculated from a time-marching
algorithm. Once 	 is known 	p can be calculated using �40�.

Both two- and three-point extrapolation techniques were found
to have close agreement with the predicted eigenvalues. In Fig. 9,
dots represent the three-point extrapolation technique and the dot-
ted line with circles indicates the two-point extrapolation whereas

d when evaluating the Floquet matrix
e…. Stable simulated results are shown

hown by �. Other parameters used for
, and �=1/2.
ute
lin

e s
2�
the solid line depicts the true eigenvalue as computed from Euler
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imulation. Although complete convergence to the true solution is
ossible only when p approaches infinity, an optimum value of p
s selected based on an error tolerance.

Summary and Conclusions
This paper investigates the effect of a single time delay and a

eriodic coefficient on the stability of the delayed damped
athieu equation. Stability behavior is investigated using two dif-

Fig. 7 Stability boundaries of damped
=0.1 „solid line… and �=0.2 „dotted line…
Fig. 8 Gradient plot of eigenvalues „

ournal of Dynamic Systems, Measurement, and Control
ferent techniques: a single-element �p-version� time finite element
method; and a multiple-element �h-version� temporal finite ele-
ment method. In both cases, the exact solution is approximated
with a set of interpolated polynomials. The stability of the system
is determined by the characteristic multipliers of the discrete lin-
ear map. The latter approach uses only one temporal element, but
obtains convergence with a set of higher-order orthogonal poly-
nomials. On the other hand, the h-version uses cubic polynomials

athieu equation. Predictions are for �
M
�… in � versus � parameter space
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nd an increasing number of elements to ensure convergence. The
ate of convergence of the p-version was found to be very
uick—a more rapid convergence is obtained when p is increased
s compared to increasing the number of elements in h-version.
owever, due to symbolic manipulation, the p-version becomes
ore complicated and computationally expensive as the polyno-
ial order is increased beyond a certain value. Results obtained

rom both approaches were verified using time domain simulation.
he developed temporal finite element approach is shown to be a
owerful and flexible approach to the solution of equations with a
eriodic coefficient and a single time delay.

In planned future work, both p- and h-versions can be com-
ined to form a more versatile hp-version of the temporal finite
lement method for delay equations.
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