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Abstract

In this paper, the spectral element (SE) method is applied in time to find the entire time-periodic or transient solution of
time-dependent differential equations. The time-periodic solution is computed by enforcing periodicity of the element set.
Of particular interest are periodic forcing functions possessing high frequency content. To maintain the spectral accuracy
for such forcing functions, an h-refinement scheme is employed near the semi-discontinuity without increasing the number
of degrees of freedom.

Time discretization by spectral elements is applied initially to a standard form of a set of linear, first-order differential
equations subject to harmonic excitation and an excitation admitting rapid variation. Other case studies include the appli-
cation of the SE approach to parabolic and hyperbolic partial differential equations. The first-order form of these equa-
tions is obtained through semi-discretization using conventional finite-element, spectral element and finite-difference
schemes. Element clustering (h-refinement) is applied to maintain the high accuracy and efficiency in the region of the forc-
ing function admitting rapid variation. The convergence in time of the method is demonstrated. In some cases, machine
precision is obtained with 25 degrees of freedom per cycle. Finally the method is applied to a weakly nonlinear problem
with time-periodic solution to demonstrate its future applicability to the analysis of limit-cycle oscillations in aeroelastic
systems.
Published by Elsevier Inc.
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1. Introduction

The analysis of transient and time-periodic response of systems to excitations has a wide variety of engi-
neering applications. Typical examples include analysis of flutter and self-excited oscillations (limit-cycles)
in many applications including aerospace [1,2], milling [3,4] and the convection–diffusion reaction in reactors
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[5,6], to name but a few. The efficient and accurate time-dependent solution of these problems is of high
interest.

Time calculations of differential equations are typically computed through time-marching schemes that
employ finite-difference or finite-element approximations in time. These schemes offer a memory efficient com-
putation of the time response by retaining only the current time calculation. The memory efficiency gained,
however, introduces a weak connection between the unsteady (transient) solution and the system parameters,
in which, sensitivity information can only be computed at local-time. Furthermore, time-marching schemes
are inherently ill-suited for computing time-periodic solutions of periodically excited differential equations.
This deficiency materializes when the solution is time-marched for a number of cycles until the time-periodic
solution is obtained.

An alternative to time-marching schemes is the use of space–time finite-elements to discretize the entire time
domain. This was first proposed by Oden [7], Desai et al. [8], Fried [9], Argyris and Scharpf [10]. The under-
lying discretization was based on the use of Hamilton principle for dynamics. In this paper we use spectral
elements (SEs) to approximate the time derivative operator where the entire time-dependent solution is com-
puted using a single monolithic-time calculation. The monolithic-time interval would encompass the entire
transient and time-periodic responses.

Although the monolithic-time approach may have some limitations especially for hyperbolic problems, it
does offer some advantages warranting the investigation. Particularly, the global-time projection of the
response, transforms the time dependent differential equation into an algebraic form, which in contrast to
time-marching, presents a strong connection between the unsteady (transient) solution and the system param-
eters. One example application where this is beneficial is in the optimal control of limit-cycle oscillations
(LCOs) in aircrafts [11,12] where the sensitivity of the LCO amplitude can be computed for global-time. Addi-
tionally, a more efficient solution is found when the SE in monolithic-time is applied to differential equations
with periodic excitations, for which only the time-periodic response is of interest. In this case, the monolithic-
time interval is equal to the whole cycle. The method proves to be more efficient as the solution does not need
to march in time through the transients to reach the time-periodic solution.

The SE method was introduced by Patera [13] to approximate the spatial derivative operator for solution of
incompressible flow problems. The method blends the generality of the finite-element method with the use of
high order polynomial expansions on a nodal grid defined by zeros of certain class of orthogonal polynomials
(e.g., Lobatto and Chebyshev polynomials). The discretization is achieved through Galerkin weighted residual
projection and integrated using Gaussian quadrature.

There are several applications of time-marching finite-element methods. Initially, time approximation was
formulated using Hamilton law of varying action [14]. Later developments showed that weighted residual
methods give identical formulations [15]. Bar-Yoseph [16] compared different discretization schemes of the
time-marching finite-element method for initial value problems. The author reported the super convergence
properties of the discontinuous Galerkin and least square methods over the continuous Galerkin method espe-
cially for the element end points [17]. This may yield optimal convergence of the monolithic-time approach;
however in this paper we use the last method because of its wide application in the literature. The extension
to least squares and discontinuous Galerkin is reserved for later investigations.

Within the context of space–time finite-elements, there have been many time-marching formulations based
on least squares [18–21], discontinuous Galerkin method [22–28]. (This is not meant to be an exhaustive list;
the interested reader may refer to the reference lists of the above papers for a thorough review of these meth-
ods). In the least squares method the authors [18–21] applied a coupled space–time discretization to the solu-
tion of incompressible Navier–Stokes equations. The first reference used a variational space–time formulation
which enables computation of the deformation of the spatial domain with respect to time. In all the references
the time interval was divided into small time strips. In each time strip, an initial boundary value problem was
solved and the solution is time-marched to steady-state. A time-marching scheme similar to one used by Tez-
duyar et al. [18] but with a discontinuous Galerkin discretization have also been applied for a space–time for-
mulation [22–24]. The method was applied to the solution of compressible Navier–Stokes equations [22] and
Euler equations of gas dynamics [24]. The space–time elements are constructed by connecting spatial elements
between two closely spaced time levels using linear interpolation in time [22]. However, in contrast to the
monolithic-time approach, the long-time solution is computed in numerous time steps.
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On the other hand examples of finite-difference time-marching schemes constitute the overwhelming major-
ity of numerical integration algorithms. Some examples include explicit Runge–Kutta [29] methods and the
widely adopted implicit Newmark scheme [30,31]. Development of these schemes to compute the time-depen-
dent solution of Euler and Navier–Stokes equations [32–35] is still attracting considerable attention.

A computational efficiency can be achieved when the finite-difference or finite-element methods in time are
formulated to take advantage of systems with periodic responses. Here the time dimension is reduced into a
single period and minimal number of degrees-of-freedom (DOFs) are needed to approximate the solution. The
analysis of periodic solutions using finite-difference methods was implemented by Doedel [36], Holodniok and
Kubicek [37] using continuation methods. These algorithms still attract attention in different applications
[38,39]. Other methods use inherently periodic functions such as Fourier methods [40], dubbed in the literature
as the Harmonic Balance method (HB) [41–43]. In this method, the inherent periodicity of the Fourier expan-
sion proved efficient in handling periodic responses inherent to turbomachinery and aeroelastic applications.
In contrast to SE, the Fourier coefficients are applied globally over the entire time domain. This global prop-
erty of the Fourier coefficients introduces a weakness in handling excitations with many frequencies. To pro-
vide a more local control, Gopinath et al. [44] applied the SE method to periodic solutions using the cyclic
method with equal-element spacing. The method compared favorably with the time-spectral (HB) method
and finite-difference scheme for the computation of limit-cycle oscillations. In a recent application Schilder
et al. [45] developed a new Fourier method that combines HB and averaging method to handle quasi-periodic
oscillations.

In this paper, we consider both periodic and transient solutions of differential equations that are rapidly
excited. For periodic problems, periodicity of the array of spectral elements is physically enforced over a single
cycle. In contrast, the transient solution is computed from the initial conditions up to a monolithic-time inter-
val that include the converged dynamics. In both cases, the solution is obtained in one non-iterative calcula-
tion for linear problems. Additionally, we use element clustering near the rapid time transients to maintain the
efficiency and accuracy of the method without increase in DOFs.

Section 2 continues with description of a standard form of differential equations, followed by the mono-
lithic-time discretization using spectral elements. Section 3 provides results of case studies derived from several
applications, Section 4 reports on numerical issues and Section 5 summarizes the main conclusions of the
paper.
2. Analysis

In this section, we introduce, and restrict attention to, a standard form of a set of first-order linear differ-
ential equations. Next, the spectral element method is used to discretize the time-derivative operator for tran-
sient and steady-state/periodic solutions.
2.1. Standard form

The spectral element method is applied to a particular set of linear first-order differential equations that we
call here as standard form: The coupled set of differential equations has one in front of the unsteady term,
dx
dt
þ Asx ¼ f ðtÞ; ð2:1Þ
where x represents the collocated dependent variables x 2 RNv , Nv is the number of dependent variables, time t

is the independent variable, and f(t) is assumed to be a known function of time. The equations are coupled
through the matrix As, which is assumed to be time invariant. Eq. (2.1) can be contrasted with a more general
form that admits higher order unsteady terms, although we attempt to tackle higher order unsteady terms by
transforming to the first-order form.

Ordinarily, initial conditions need to be specified in simulating (2.1). However, this is generally not the
case when cyclic solutions of (2.1) are sought, i.e., those that are time-periodic in response to a time-periodic
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forcing function, f(t), with a circular frequency, x. For example, consider (2.1) to be a scalar equation of the
form (a > 0),
Fig. 2.
of each
dx
dt
þ ax ¼ f ðtÞ ¼ b sin xt; ð2:2Þ
along with the initial condition x(0) = x0. Using an integrating factor, the general solution is expressed as
xðtÞ ¼ expð�atÞ x0 þ
Z t

0

b exp as sin xsds
� �

; ð2:3aÞ

xðtÞ ¼ expð�atÞ x0 þ
b expðatÞða sin xt � x cos xtÞ

a2 þ x2
þ bx

a2 þ x2

� �
; ð2:3bÞ

xðtÞ � b
a2 þ x2

½a sin xt � x cos xt�; ðas t!1Þ: ð2:3cÞ
Note that the long-time solution given in (2.3c) requires no initial condition; specification of f(t) is sufficient to
obtain the relative amplitude and phase of the resulting solution. The details ensuing shortly after the initial
condition do not impact long-term behavior. An exception occurs at a = 0 when exp(at) no longer is large and
x0 cannot be neglected. Furthermore, when a < 0, the homogeneous solution is divergent; we shall not con-
sider this case.

2.2. Spectral element time discretization

In this section we describe the time discretization of transient and periodic responses for one dependent var-
iable using a spectral element (SE) formulation, and then describe the global assembly for many dependent
variables.

2.2.1. Transient analysis

Each dependent variable can be discretized in time using spectral elements [46], where the approximate mth
order solution in each element is:
x̂ðjÞðfÞ ¼
Xm

k¼0

xðjÞðfkÞwðjÞk ðfÞ: ð2:4Þ
Here x̂ðjÞðfÞ is the approximate solution, wðjÞk represents the Lagrange polynomial of order k in element j,
x(j)(fk) are the unknown nodal values placed at fk for element j and fk are the Legendre–Lobatto points placed
at zeros of the completed Lobatto polynomials defined on the interval f 2 [�1,1] according to [47, p. 143]
Lc
omþ1
ðfÞ ¼ ð1� f2ÞLom�1

ðfÞ: ð2:5Þ
The domain is depicted in Fig. 2.1, where the physical time domain t 2 [tj, tj+1] is transformed to the f domain
for each element. The Lobatto polynomials Loi are a set of orthogonal polynomials that can be defined as the
derivatives of the Legendre polynomials [47], Li:
LoiðfÞ � L0iþ1ðfÞ; ð2:6Þ
where the Legendre polynomials are defined explicitly as
x(1)( 0)      x(1)( 1)            x(1)( 2)               x(1)( m)                        x(Nel)( 0)             x(Nel)( 1)         x(Nel)( 2)           x(Nel)( m)  

1st element        last element, Nel

x0 x1 x2 xm . . . xm Nel+1

ζ ζ ζ ζ ζ ζ ζ ζ

1. Discretization of the time domain into Nel elements represented by an m order Lagrange polynomial within each element. Nodes
element are placed at zeros of completed Lobatto polynomials.
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LiðfÞ ¼
1

2ii!

diðf2 � 1Þi

dfi : ð2:7Þ
We review the development of SE here for completeness. Substituting the trial solution (2.4) into the differen-
tial equation (2.1) and minimizing the residual using the Bubnov–Galerkin method [48] we have (assume As is
scalar for now):
XN el

j¼1

Z 1

�1

vðfÞ dx̂ðjÞ

df
þ hðjÞ

2
Asx̂ðjÞ � f ðjÞðfÞ
� �" #

df ¼ 0; ð2:8Þ
where h(j) is the width of element j and v(f) is a weighting function taken as the pth order Lagrange polynomial,
wðjÞp . Integrating by parts we find for p = 0, . . . ,m:
XN el

j¼1

x̂ðjÞwðjÞp

h
j1�1 �

Z 1

�1

x̂ðjÞ
dwðjÞp

df
� hðjÞ

2
fAsx̂ðjÞw

ðjÞ
p � f ðjÞðfÞwðjÞp g

 !
df

#
¼ 0: ð2:9Þ
Exploiting the property of Lagrange polynomials, (2.9) is efficiently integrated using Gauss–Lobatto Legendre
quadrature rule which includes the end points
Z 1

�1

Qdf ¼
Xm

q¼0

QðfqÞxq; ð2:10Þ
where Q is a generic function of f and xq is the Gaussian quadrature weight at node q. This gives the following
compact matrix formulation for each element:
W

xðf0Þ
..
.

xðfmÞ

8>><
>>:

9>>=
>>;
ðjÞ

¼ AsI
ðjÞ
x

xðf0Þ
..
.

xðfmÞ

8>><
>>:

9>>=
>>;
ðjÞ

� IðjÞx

f ðf0Þ
..
.

f ðfmÞ

8>><
>>:

9>>=
>>;
ðjÞ

; ð2:11Þ
where
W ¼

dw0

df

�
jf0

x0 þ 1
�

dw0

df jf1
x1 . . . dw0

df jfm
xm

dw1

df jf0
x0

dw1

df jf1
x1 . . . ..

.

..

.
. . . . . . dwm�1

df jfm
xm

dwm
df jf0

x0 . . . dwm
df jfm�1

xm�1
dwm
df

�
jfm

xm � 1
�

2
666666664

3
777777775
; ð2:12Þ
and
Ix ¼
hðjÞ

2

x0 0 . . . 0

0 x1 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . xm

2
66664

3
77775: ð2:13Þ
In (2.12), the first and last diagonal elements of differentiation matrix W have an additional term (=1) due to
the first term in (2.9). The essential inter-element continuity between subsequent elements
xðjÞðfmÞ ¼ xðjþ1Þðf0Þ; ð2:14Þ

is used to reduce the number of DOFs prior to the assembly of a global system of equations from (2.11) for Nel

spectral elements. This yields a compact Galerkin projection governing the approximate solution in time (one
dependent variable):
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LcX c ¼ AsLxX c � LxF : ð2:15Þ

where Lc and Lx are the global differentiation and weight matrices, F is the global weighted form of the exci-
tation and
X c ¼ xjt0
xjt1

. . . xjtm�Nelþ1

h iT

; ð2:16Þ
is the SE solution of the dependent variable x collocated at all nodal times (redundant nodes are removed
using (2.14)). It should be noted that the initial condition is applied by replacing the first row and column
of Lc with zeros except for the first element, which is replaced with one. Also, the first element in LxXc is re-
placed with zero and the first element in �LxF is replaced with the value of x at t = 0. The SE solution Xc in
(2.15) can then be computed using direct or iterative methods.

2.2.2. Periodic cyclic analysis

In some problems, the interest lies in the steady-state time solution, where the response is time-periodic with
a period, T = 2p/x, equal to the period of the forcing function. This occurs in damped systems with periodic
forcing functions and in self-excited nonlinear systems exhibiting limit-cycle oscillations (LCOs).

In these problems we are interested in the steady-state periodic solution only, where the time cycle is dis-
cretized spectrally in the same way as in the transient solution, however, assembly of global matrices Lc and Lx

is different. Here the initial conditions do not affect the long-term periodic solution (see Section 2.1). Addition-
ally, periodicity of the array of elements is enforced by requiring that the end node in the last element to be the
initial node of the first element:
xð1Þðf0Þ ¼ xðN elÞðfmÞ: ð2:17Þ

Contributions to the end node in the last element are added to contributions from first element. Consequently
the last row and column of Lc are added to their counterpart in the first row and column. Therefore, the solu-
tion vector, Xc, becomes
X c ¼ xjt0
xjt1

. . . xjtm�Nel

h iT

: ð2:18Þ
2.3. Global assembly

A number of dependent variables, Nv, can be handled through spatial connectivity matrix As of size
Nv · Nv. Here, the tensor product gives the global form of (2.15):
ðI� LcÞX cg ¼ ðAs � LxÞX cg � ðI� LxÞF cg; ð2:19Þ

where I is the identity matrix of size Nv · Nv and Xcg is a collocation of all dependent variables at nodal times
grouped by their corresponding independent variables, Nv. For transient solution Xcg takes the form:
X c ¼

x1jt0

x1jt1

..

.

x1jtm�Nelþ1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

T

. . .

xNv jt0
xNv jt1

..

.

xNv jtm�Nelþ1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

T2
666664

3
777775

T

: ð2:20Þ
A compact form of (2.19) becomes
LcgX cg ¼ AcgX cg � LxgF cg: ð2:21Þ

For this linear problem, solution Xcg of (2.21) can be computed directly (as opposed to an iterative approach,
which would be typically applied for larger systems of practical significance). However, we use Newton’s
method in anticipation of nonlinear excitations. By identifying a residual R we can write (2.21) as
R ¼ LcgX cg � AcgX cg þ LxgF cg: ð2:22Þ
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Taylor series expansion of the linear formula (2.22) gives
Fig. 3.
versus
Rmþ1 ¼ Rm þ JDX cg; ð2:23Þ

where
J ¼ Lcg � Acg: ð2:24Þ

For this linear formulation, the updated residual becomes zero in one iteration. When the formulation is non-
linear (see Section 3.7) additional iterations are required, since (2.23) is an approximation.

3. Case studies

In this section, we apply the spectral element method to three classes of problems. First, we apply the
method to a set of linear first-order differential equations that are already in the standard form. Excitations
of harmonic and impulsive form are presented. For the latter case we use non-uniform element sizes to handle
the impulse excitation. This will demonstrate the method’s accuracy and efficiency. Then, we give examples of
higher order differential equations that are transformed to the standard form and solved using the SE method
in time. The example applications come from heat conduction in one dimension, cantilever beam vibration
and the wave equation. Finally, we give an example application of the method to a weak nonlinearity attached
to the standard form.

3.1. Standard form: harmonic excitation

3.1.1. Transient analysis

Let us first consider an example according to the standard form in (2.1) with harmonic excitation force, f(t):
dx
dt
þ ax ¼ sin

2pt
T
; 0 6 t 6 10T ; ð3:1aÞ

xð0Þ ¼ 0; ð3:1bÞ
where a = 1 and T = 0.2 s. Eq. (2.3b) gives the analytical solution, Xa for the transient analysis in the interval
t 2 [0,10T]. The SE solution is reported in the following using equal-sized elements. Here we will compare Xa

to the SE solution Xc using the infinity error norm E and energy error norm E2. The error norms are evaluated
for different combinations of number of elements, Nel, and Lagrange polynomial order, m. In Fig. 3.1a, E is
log10 m

m

lo
g 10

E

log
e E

2

2 4 6 8 10 12 14

2 4 6 8 10 12 14

10-13

10-11

10-9

10-7

10-5

10-3

10-1

10-35

10-30

10-25

10-20

10-15

10-10

10-5

100

105

Nel = 10
Nel = 20
Nel = 30
Nel = 10
Nel = 20
Nel = 30

2.6

1.0

3.0

1.9

1.0

1.0

log
10 Nel

lo
g 10

E

100 101 102

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

m = 6
m = 8
m = 12

1.0

6.3

1.0

12.3

1.0

8.4

1. Transient analysis of linear system with harmonic excitation (a) E versus log10 (m) – solid lines and filled symbols and loge(E2)
m – dashed lines and hollow symbols and (b) error norm as a function of number of elements, Nel.
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reported as a function of m for three different values of Nel, where the filled symbols denote the relationship.
As indicated in the figure, E reaches an accuracy of 10�11 with {Nel,m} = {20,12} (240 DOFs). Extensions in
element size and polynomial order give an exponential rate of reduction in the energy norm of the error
according to [49, p. 66]
E2 6
k

expðbDOFcÞ ; ð3:2Þ
where k, b and c are positive constants. Under certain conditions Szabo and Babuska [49] report c = 1/2. For
a constant number of elements (3.2) can be written as
E2 6
km

expðbmmcÞ ; ð3:3Þ
For a c = 1, Fig. 3.4a reports the E2 error norm as a function of m. The figure indicates the rates of conver-
gence for the constant �bm. This validates the exponential convergence rate of SE method for all nodal times.
Fig. 3.4b, reports similar data, but as a function of Nel for different values of m. Here a constant polynomial
convergence is observed. For example, m = 6 gives approximately N�6 convergence rate. In both figures, we
note that the convergence rate deteriorates when E reaches machine accuracy, this is due to the limitation in
number of significant figures used in the calculations. Using {Nel,m} = {30,11} we report the SE solution Xc

for t 2 [0,10T] in Fig. 3.2, where we note the solution includes both transient and steady-state responses.

3.1.2. Cyclic analysis

In many cases, we are interested in the steady-state solution left after the transient solution dies out. Peri-
odic excitations can give rise to periodic and non-periodic steady-state responses. This is the case for nonlinear
systems and even in undamped linear systems. However, here we focus on systems exhibiting periodic steady-
state response, in particular (2.1). In this case, (2.1) can be cast in a cyclic form:
dx
ds
þ aTx ¼ T sin 2ps; 0 6 s 6 1; ð3:4Þ
where the time is normalized by the period T to give a scaled time over the cycle, s = t/T. Cyclic analysis of
(3.4) is compared to the long-time solution provided in (2.3c).

The cyclic SE solution is calculated over one cycle without the need to time-march through the transients.
This results in a smaller number of DOFs needed to attain high accuracy. For example, for a period of T = 0.2
and a = 1 as before, the computed cyclic solution is shown in Fig. 3.3, where the gap in the orbit is a result of
enforcing the time-periodic boundary condition. However, the SE solution is valid for an arbitrary t 2 [0, T]
through the chosen high order polynomial basis.

The error norm, E, is calculated in Fig. 3.4a for fixed Nel and increasing m. In the figure we observe the
previously noted exponential convergence. In Fig. 3.4b E is computed for constant m and increasing order
t

X
c

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
-0.04

-0.02

0

0.02

0.04

0.06

0.08
Nel =3 0
m =1 1

Fig. 3.2. SE transient solution for harmonic forcing function of (3.2).
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Fig. 3.3. Periodic orbit of harmonic forcing function and cyclic response for one dependent variable, Xc.
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Fig. 3.4. Cyclic analysis of linear system with harmonic excitation: (a) error norm as a function of polynomial order, m; (b) error norm as
a function of number of elements, Nel.
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Nel. Because the solution is computed over one cycle, only 24 DOFs (m = 12,Nel = 2) are needed here to
achieve 10�11 accuracy.

3.2. Standard form: impulsive excitation – transient analysis

In an abrupt variation of the excitation, the high convergence rate of the SE method can not be maintained
using fixed-size elements. An impulsive excitation is an example of such variation: see Fig. 3.5a. After includ-
ing a mathematical representation of such impulsive excitation, the standard form becomes
dx
dt
þ 0:6x ¼ 10 exp

�ðt � 0:5Þ2

�
; 0 6 t 6 1; ð3:5aÞ

xð0Þ ¼ 0:5; ð3:5bÞ
where the sharpness of the impulse located at t = 0.5, see Fig. 3.5a, can be controlled by adjusting the value of
�. Although we considered different values of � we report results for � = 1.125 · 10�4. The analytical solution
for this differential equation is found using the integrating factor approach and integrated with Mathematica�:
x ¼ expð�0:6tÞ½A1erfðA2 � A3tÞ þ A4�; ð3:6Þ
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where
Fig. 3
elemen
A1 ¼ �0:12688606923349941;

A2 ¼ 47:1436340596185;

A3 ¼ 94:28090415820633;

A4 ¼ 0:62688606923349941;

erf z ¼ 2ffiffiffi
p
p

Z z

0

expð�w2Þdw:
The solution Xc is first computed using equal-sized elements. Fig. 3.5a shows the numerical ‘‘noise’’ (due to
under-resolution) resulting from the rapid variation in the actuation. To circumvent this difficulty, the ele-
ments are clustered near this rapid variation without increasing the total number of elements or interpolation
nodes. The degree of clustering is shown in Fig. 3.6a. To refine the elements, the element sizes are increased or
decreased in a geometric fashion. This variation is controlled using specific ratio, r, for which the ratio of the
first element and the element near the rapid variation, N*: have a specific value:
r ¼ hðN
�Þ

hð1Þ
: ð3:7Þ
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In Fig. 3.6b, the elements are clustered near the abrupt variation at t = 0.5 using r = 0.01, where the value of r

is selected to resolve the rapid excitation instituted by the value of �. Although the same number of DOFs were
used (Nel = 30 and m = 5) in the equal-sized and clustered elements cases, we observe in the figure that, ele-
ment clustering has eliminated the numerical inaccuracies in the solution.

The superiority of element clustering is even more apparent in Fig. 3.7a. The figure shows that using the
element clustering approach gives better accuracy than equal-sized elements, even with smaller number of
DOFs. The former gives a combination of {E,DOFs} of {10�13,400} opposed to {10�11,720} for equal-sized
elements. In Fig. 3.7b the error is computed for equal-sized elements with increasing order m and compared to
element clustering with low order m. The figure emphasizes that equal-sized elements with any m can not out
perform the element clustering case.

3.3. Mass–spring–damper system: harmonic excitation

A typical example of a second-order differential equation is the mass–spring–damper system:
Fig. 3
compa
m€xþ c _xþ kx ¼ b sin xt; 0 6 t 6 te; ð3:8Þ

with initial conditions,
xð0Þ ¼ x0;

_xð0Þ ¼ v0:
The analytical solution of (3.8) for an underdamped c2 < 4mk system can be found in many textbooks (see, for
example, Steidel [50]):
x ¼ exp � c
2m

t
� �

ðx0 � CÞ cos xd t þ
v0 � Dxþ cðx0�CÞ

2m

xd
sin xd t

" #
þ C cos xt þ D sin xt; ð3:9Þ
where
C ¼ � bcx

m2 ðx2
n � x2Þ2 þ cx

m

	 
2
h i ;

D ¼ bðx2
n � x2Þ

m½ðx2
n � x2Þ2 þ cx

m

	 
2�
;
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Table 1
Parameters used in mass–spring–damper problem

m c k b x0 v0 T te

1 0.3 20 2000 10 20 0.2 200T
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where xd is the damped natural frequency. The first two terms in (3.9) contains the initial conditions. This is
the transient solution, whereas the last two terms constitute the time-periodic solution. In the following, we
solve the equation using transient and cyclic analysis for the parameters listed in Table (1).

3.3.1. Transient analysis

In order to solve (3.8) using the SE method, the equation is transformed to the standard form by introduc-
ing two variables x1 ¼ _x and x2 = x:
Fig. 3.
norm.
_x1

_x2

� �
þ

m 0

0 1

� ��1 c k

�1 0

� �
x1

x2

� �
¼

m 0

0 1

� ��1 b sin xt

0

� �
: ð3:10Þ
The matrix product in front of the vector [x1,x2]T represents a coupled form of the matrix As. In Fig. 3.8a, the
SE solution of (3.10) is computed and compared to the analytical solution. We note that the periodic solution
of this lightly damped system needed to evolve through 150T periods to mature to near steady-state. This re-
quired the large value of Nel used here, where an approximately one element is used per oscillation. This large
number of elements explains the degradation in the displacement error norm, E reported in Fig. 3.8b, where
the error continues to decrease exponentially up to a refinement stage beyond which an increase in the poly-
nomial order or number of elements becomes unfavorable. This is mainly due to machine precision limita-
tions, in which the round-off error starts to dominate the total error.

3.3.2. Cyclic analysis

Following Section 3.1.2, the time-periodic solution of (3.8) can be computed by transforming the second-
order differential equation into cyclic form, where the physical time t is scaled by the period T, to get a scaled
time s. The equation can then be cast in standard form:
1

T 2

_x1

_x2

� �
þ

m 0

0 1

� ��1 c
T k

� 1
T 2 0

" #
x1

x2

� �
¼

m 0

0 1

� ��1 b sin 2ps

0

� �
ð3:11Þ
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Additionally, the cyclic analytical solution can be reduced from (3.9) by retaining the long-time solution
(t!1) and then transforming t to scaled time s:
Fig. 3.
error n
x ¼ C cos 2psþ D sin 2ps ð3:12Þ

The cyclic/SE solution of (3.11) is computed in Fig. 3.9a and compared to the analytical solution in (3.12).
From the figure, we observe the close agreement between both and for a relatively small number DOFs com-
pared to the transient analysis. When only the steady-state solution is of interest, the cyclic analysis provides
the means for an efficient and accurate integration.

The advantage of using cyclic analysis is more apparent in Fig. 3.9b, where in contrast to transient analysis,
only small number of DOFs are needed to achieve high accuracy. Consequently, the error norm continued to
decrease exponentially with minimal degradation in accuracy due to the extra refinement.

3.4. Cantilever beam vibration: harmonic excitation

The vibration of a cantilever beam serves as a model to many engineering applications. See for example a
recent application in micro-air vehicles [51], where periodic resonant vibrations of the wing are used to power
the vehicle into flight. The wing in this case can be modeled as a nonlinear beam with the desire to compute
time-accurate response of the beam flapping motion. The partial differential equation governing the flexure
vibration of a cantilever beam (e.g., [52]) is of fourth-order in the spatial dimension. The differential equation
can be discretized spatially using the conventional finite-element method (3D beam elements) to lead to a set of
second-order differential equations with t as the independent time variable [53,54]:
Mf€wg þ Kfwg ¼ f ðtÞ; ð3:13Þ

where
_wð0Þ ¼ 0 wð0Þ ¼ 0;
where {w} is a collocation of the nodal deflections. Each node consists of 6 deflections with 3 displacements
{x,y,z} and 3 rotations {hx, hy, hz}. Note that we leave out the structural damping here. This will allow us to
study effectiveness of the cyclic SE method in handling quasi-periodic responses.

We consider a beam of the geometry described in Table (2), where EYoung is Young modulus of elasticity, G

is shear modulus of elasticity, Iy is the cross-sectional area moment of inertia about the axis normal to x and z,
see Fig. 3.10, similarly Iz but about the axis normal to x and y, q is the beam density, L is the beam length, A is
the beam area and b is the harmonic force amplitude.

The beam is discretized spatially using general Euler beam elements, with 6 DOFs per node. MSC.Nastran
[55] is used in generating M and K square matrices. We use 10 elements to discretize the beam into 11 nodes
(66 DOFs total).
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Fig. 3.10. Cantilever beam schematic

Table 2
Cantilever beam problem characteristics and loading amplitude

Iz, in.4 Iy, in.4 EYoung, psi G, psi

1450 1296 10 · 106 3.9 · 106

A, in.2 L, in q, lbf s2/in.4 b, lbf
19.5 100 2.588 · 10�4 30 · 103
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In the following, we use the SE method to compute the transient and cyclic response for (3.13) with a peri-
odic force f(t) = b sinxt acting at the beam tip in the y direction.

3.4.1. Transient analysis
To solve (3.13) using the SE method, we write the second-order equation in first-order form, where x1 ¼ _w

and x2 = w are collocation of nodal velocities and displacements, respectively, along the beam:
Fig. 3.
of bea
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_x2

� �
þ

M 0

0 I

� ��1
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�I 0

� �
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� �
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M 0

0 I

� ��1

f ðtÞf g;

fx1ð0Þg ¼ f0g fx2ð0Þg ¼ f0g;
ð3:14Þ
where
ff ðtÞg ¼ ½0 . . . 0 b sin xt 0 0 0 0�½0 . . . 0�½ �T:

The solution of (3.14) is computed first for a forcing frequency of 5 Hz (x = 10p), which is far from the fun-
damental frequency, fn, of the beam (95 Hz). Fig. 3.11a gives the SE solution Xc compared to solutions com-
puted using MSC.Nastran. The latter uses a coupled mass matrix and a central-difference integration scheme
similar to Newmark-Beta direct integration scheme. The solution is computed for a time interval up to t = 5T

with Nel = 100 and m = 10. In the figure, we see excellent agreement between the two methods.
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Exciting the beam near its fundamental frequency gives a different response. Here the vibration amplitude
of the beam at its fundamental frequency is comparable to the primary forced vibrations. The SE solution is
computed up to t = 1 s. Again we see in Fig. 3.11b good agreement with the MSC. Nastran solution.

3.4.2. Cyclic analysis

The cyclic form of (3.14) is
1

T 2

_x1

_x2

� �
þ

M 0

0 I

� ��1 0 K

� 1
T 2 I 0

" #
x1

x2

� �
¼

M 0

0 I

� ��1

f ðsÞf g; ð3:15Þ
where
ff ðsÞg ¼ ½0 . . . 0 b sin 2ps 0 0 0 0� ½0 . . . 0�½ �T:
Although the response of the undamped cantilever beam is periodic, its frequency content consists of the beam
fundamental frequency and the forcing frequency. When the forcing frequency (5 Hz) is far from the natural
frequency, the resonance of the beam is minimal and the response is approximately periodic at the forcing fre-
quency. For this case, the periodic solution of (3.15) can be computed using the cyclic/SE method. In Fig. 3.12,
the cyclic response is computed using Nel = 2 and m = 12. This is compared to the transient response for one
cycle of 0 6 t 6 0.2, where Nel = 10 and m = 10 were used to capture the multi-frequency content of the tran-
sients. The figure shows that the cyclic solution approximates the amplitude and phase of the transient re-
sponse reasonably well.

Note that when damping is present, the transient vibrations at the natural frequency will eventually cease
and the cyclic solution will give exactly the steady-state periodic response. This was shown in Section 3.3.2.

3.5. One-dimensional diffusion equation

The one-dimensional diffusion equation is a parabolic partial differential equation; it can describe many dif-
fusion processes. We consider here heat conduction in a rod subject to time-periodic variation of the temperature
at the left side, constant temperature at the right side and zero initial temperature everywhere along the rod:
ou
ot
¼ a2 o2u

oz2
; ð3:16Þ

uð0; tÞ ¼ f ðtÞ ¼
Q if 0 6 t 6 T=2;

�Q if T=2 < t < T :
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uðL; tÞ ¼ 0;

uðz; 0�Þ ¼ 0;
where the rod longitudinal axis is in the z direction, a2 is the thermal conductivity and the time-periodic exci-
tation is a square wave with an amplitude of Q and period T.

Eq. (3.16) can be placed in standard form (2.1). To facilitate this transformation, the rod is divided into n

nodes (n � 1 spatial intervals), with a uniform interval size of h = 1/(n � 1). The spatial derivatives are
approximated using second-order-accurate central finite-difference for the interior nodes and forward and
backward finite-differences for the side nodes. The finite-difference approximation of the spatial derivatives
become
A� ¼ a2 d2

dz2
ð	Þ ¼ a2

h2

1 �2 1 0 0 . . . 0

1 �2 1 0 0 . . . 0

0 1 �2 1 0 . . . 0

..

. . .
. . .

. . .
. . .

. . .
. ..

.

0 . . . 0 1 �2 1 0

0 0 . . . 0 1 �2 1

0 . . . . . . 0 1 �2 1

2
66666666664

3
77777777775
: ð3:17Þ
Note that singularity of matrix A* is removed after applying the boundary conditions, where the first and last
{row,column} of A* are deleted to get the matrix As. The first-order form of (3.16) becomes
_u2

..

.

_un�1

8><
>:

9>=
>;þ As

u2

..

.

un�1

8><
>:

9>=
>; ¼

�A�ð2;1Þf ðtÞ
0

..

.

0

8>>><
>>>:

9>>>=
>>>;
: ð3:18Þ
Note that the number of elements on the right hand side of (3.18) is n � 2. In the following we compute the SE
transient and cyclic solutions of (3.18), with the boundary temperature fluctuations having a period of
T = 0.05 and for a2 = 0.86 (the thermal conductivity of Aluminum). The rod is divided spatially into
n = 100 nodes.

3.5.1. Transient analysis

The transient solution is computed in Fig. 3.13 for a time interval up to 30T. Fig. 3.13a gives the temper-
ature solution at node n = 2 (node next to the fluctuating boundary). In order to cope with the rapid (in this
case, discontinuous) variation in the forcing function f(t) we use a somewhat high Nel = 1000 and m = 10. The
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Fig. 3.13. Transient solution computed for a forcing period, T = 0.05.
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effect of the periodic rapid excitation should diminish as we move away from the left node. Because n = 2 is
close to the time-periodic boundary condition, strong periodicity of the solution is observed. However, due to
the rapid variation in each time-period numerical errors are observed in the solution. The temperature
response is reported in Fig. 3.13b for node n = 50 corresponding to mid of the rod. The response is observed
to settle into periodic oscillations at long-time (t = 12T). A phase plot of the last cycle in the transient response
(29T), see Fig. 3.14a, for nodes n = 2 and n = 50 illustrate the numerical ‘‘noise’’ observed in Fig. 3.13a for
node n = 2. Element clustering near the sharp excitations can resolve the numerical ‘‘noise’’, where the clus-
tering scheme is repeated for each period of the excitation. However, in cyclic analysis the time-periodic orbit
can be computed without marching through the transient solution and element clustering can easily be
applied.

3.5.2. Cyclic analysis
The cyclic response of (3.18) can be computed by scaling the physical time t to a scaled time s using the

forcing period T
Fig. 3.
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where _u denotes derivative of u with respect to scaled time s and the number of elements of the vector on the
right hand side of (3.19) is n � 2. The cyclic solution is computed for equal- and clustered-element discretiza-
tions at node n = 2. In Fig. 3.15a the equal-element solution of {Nel = 48,m = 5} has numerical ‘‘noise’’ near
the rapid variation of the periodic force. To overcome this difficulty, the elements are clustered near s = {0,0.5
and 1} of the time-cycle. A geometric ratio r = 1 · 105 is used in the clustering scheme. The clustering scheme
is implemented as shown in Fig. 3.15b and Fig. 3.14b. Though we use the same number of DOFs, see
Fig. 3.15b, we note that element clustering has remedied the numerical error due to the rapid variation.
Although the long-time analytical solution to (3.16) is not available (within the authors knowledge), the re-
sponse is expected to resemble the excitation in form as we move towards the left boundary, see Fig. 3.15b.
A solution of high-order accuracy can be expected when combined with high order spatial discretization
and clustering of elements in time. This was observed in Section 3.2, where 400 DOFs and element clustering
provided an accuracy of 10�13, a substantial improvement over the solution obtained with uniform time
elements.

The phase plot of the solution at nodes n = 2 and 50 is shown in Fig. 3.14b. We observe lack of numerical
error when using the element-clustering scheme. We note that in using cyclic analysis we are able to use
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element clustering near the rapid variation only once. In the transient solution, see Fig. 3.14a, element clus-
tering would be needed for every period of the solution to alleviate the numerical error due to the rapid var-
iation encountered in every period of the transient solution.

3.6. Hyperbolic partial differential equation

The numerical solution of hyperbolic partial differential equations using standard techniques gives rise to
dissipation and dispersion errors. These errors can be traced to wave propagation characteristics of numerical
schemes. Dissipation error occurs when the propagated numerical wave amplitude differs from the analytical
one, whereas dispersion error is the incorrect phase lag of the propagated numerical wave, which results in
spurious oscillations in the solution [56]. To mitigate these errors, specialized numerical schemes are used
(see for example [57,58], where a dispersion correction and high-order schemes are used). In this section we
demonstrate the low dissipation and dispersion characteristics of the spectral element method in time when
applied to hyperbolic problems [25]. An interesting hyperbolic problem is the wave equation, which describes
many applications in acoustics, elastodynamics and structural dynamic systems. The equation is composed of
second-order derivatives in time and space over the unit-space interval, representing the respective inertial and
elastic forces:
o2u
ot2 ¼ c2 o2u

oz2 ;

uð0; tÞ ¼ f ðtÞ uð1; tÞ ¼ 0;

uðz; 0�Þ ¼ gðzÞ ou
ot ðz; 0

�Þ ¼ qðzÞ;

9>=
>; ð3:20Þ
where c is the wave propagation speed. An interesting application of the wave equation is in the reduction of
noise in flight cabin through activation of piezoelectric devices at the cabin walls [59]. We demonstrate the
dispersion and dissipation characteristics of the spectral element method in time. This is only applied for
the transient analysis of the wave equation for two sets of initial and boundary conditions, though the results
should be applicable to cyclic analysis.

3.6.1. Spectral discretization in space

In order to conduct a convergence study of hyperbolic problems, the discretizations in both space and time
need to be accurate. Consequently, both the space and time domains are discretized using spectral elements.
This was previously implemented by many authors, see for example Bar-Yoseph et al. [27], Hulbert and
Hughes [28]. First the spatial domain is discretized using spectral elements, then the spectral time discretiza-
tion is applied. A trial solution in space is written as
ûðjÞðg; tÞ ¼
Xm

k¼0

uðjÞðgk; tÞw
ðjÞ
k ðgÞ; ð3:21Þ
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where the spatial weighted residual form of (3.20) becomes
XN el

j¼1

Z 1

�1

vðgÞ c
2

h
o2ûðjÞ

og2
� h

2

o2ûðjÞ

ot2

� �
dg ¼ 0; ð3:22Þ
and v(g) = wi(g). After integrating by parts and applying the boundary conditions, the semi-discrete system of
ordinary differential equations becomes
B
d2�u
dt2
¼ �cD�uþ cðuð1Þðg0; tÞwk;gjg¼�1di0 � uðN elÞðgm; tÞwm;gjg¼1dimÞ; ð3:23Þ
where the �u denotes collocation of spatial grid points and the last term consisting of the first and last nodes are
known and need not be computed, where u(1)(g0, t) = f(t) and uðN elÞðgm; tÞ ¼ 0 and B and D are the respective
mass and diffusion matrices defined according to
B ¼
aN el

k¼1

h
2

Z 1

�1

wiðgÞwkðgÞdg

� �
; ð3:24aÞ

D ¼
aN el

k¼1

2

h

Z 1

�1

dwiðgÞ
dg

dwkðgÞ
dg

dg

� �
: ð3:24bÞ
Here the symbol
‘

refers to the finite-element assembly operator. The inexact integration of (3.24a) using
Gauss–Lobatto quadrature leads to a lumped mass matrix B. The final system of equations for a one-element
spectral discretization can be written as
B

uttðg0; tÞ
..
.

uttðgm; tÞ

8>><
>>:

9>>=
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0
BBBB@
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CCCCA
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8>><
>>:

9>>=
>>;; ð3:25Þ
where the boundary conditions are applied to the first and last nodes to yield
B

uttðg1; tÞ
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.
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>>:

9>>=
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Dðm�1;2Þ . . . Dðm�1;m�1Þ

0
BB@

1
CCA

uðg1; tÞ
..
.

uðgm�1; tÞ

8>><
>>:

9>>=
>>;� cf ðtÞ

Dð2; 1Þ
..
.
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>>:

9>>=
>>;: ð3:26Þ
The system of second-order differential equations are then transformed to first-order form to facilitate com-
putation of the transient response using the monolithic-time spectral element method.

3.6.2. Transient analysis

We first compute the solution of (3.20) with fixed boundary conditions f(t) = 0, zero initial velocity and an
initial displacement according to g(z) = sin(pz). The analytical solution for this set of conditions is
u(z, t) = cos(pt)sin(pz). A high-order discretization in space is used to ensure proper convergence in space with
10 elements and 12th order polynomial. The energy norm of the error is reported in Fig. 3.16a for a fixed num-
ber of elements in time, Nel = 10, and increasing values of m, and for a fixed polynomial order, m = 5, and
increasing values of Nel. The solution is computed for a time interval of one unit. In the figure, the left and
bottom axes refer to the fixed elements case on a semi-log scale. The exponential convergence rate assuming
c = 1 in (3.3) is noted with the rate equal to �bm = 4.7. Furthermore, for m = 5, polynomial convergence rate
is observed on the double log scale of the right and top axes. Fig. 3.16b reports the transient response for dif-
ferent time snapshots, where the solution exhibits standing waves behavior as described in [52, p. 239].

Next we study the effect of imposing an impulsive boundary condition. The impulse force f(t) is according
to (3.5a) with � = 0.005. The analytical solution is f(t) traveling at speed of c in space. To better capture the
impulse in space, 20 elements are used (two times larger than previous problem) and 12th order polynomial. A
convergence study of the problem is reported in Fig. 3.17 for a time interval of one unit. Fig. 3.17a indicates
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the large accuracy achieved when the polynomial order within each time element is increased. The convergence
rate is exponential with �bm = 2.19 and c = 1. Though the accuracy is limited by round-off error, where
increasing the refinement becomes unproductive.

Fig. 3.17b demonstrates the convergence rate for linear and high-order elements when the number of ele-
ments is increased. It is seen that for linear elements (m = 1), the error continues to decrease; however, unlike
the high-order elements, the error remains high even for a large number of DOFs (Nel = 2000). To illustrate
ingredients of the errors noted above, especially for linear elements, the transient response is computed in
Fig. 3.18. The time interval of one unit length is discretized into 101 grid points in time with linear and
high-order polynomials. In Fig. 3.18a, the numerical dissipation and dispersion of the linear elements is iden-
tified. However, when high-order Lagrange polynomials are used, the dissipation and dispersion errors are
greatly reduced; see Fig. 3.18b.

3.7. Standard form with extra weak nonlinearity: cyclic analysis

The applications of the SE method we have discussed so far were all linear. These served to provide a foun-
dational study of the monolithic-time approach for rapid excitations. Though, the method can be applied to
nonlinear problems. Examples of previous applications of time-marching spectral element method to nonlin-
ear problems such as the Duffing equation and nonlinear Euler–Bernoulli beam are provided in [17,60]. In this
section, we consider the characteristics of the monolithic-time SE solution, when a weak nonlinearity is
included in the differential equation without resorting to iterative nonlinear solution methods. In future work
we may try build on the analysis provided in references [17,60] to use more effective solvers that exploit the
sparseness of the projection matrix.

It is worth to note that for a relatively small disturbances existing nonlinearities in physical systems can be
neglected and the linear solution can suffice. However in many cases the nonlinearity can have a stabilizing
effect on the system response. Accounting for the nonlinearity would give more accurate prediction of the
response. For example ignoring a cubic nonlinearity in flutter of aircraft [61] can give false prediction of flutter
wherein limit-cycle oscillations are the correct physical response. To illustrate this we use the following stan-
dard form with an additional nonlinear term according to
Fig. 3.
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where
Gðx; sÞ ¼ b sin 2ps� �ðx2 þ bx3Þ;

note that we use a weighted form of the forcing function G(x, s) where in (2.15) G(x, s) replaces F.

The linear Jacobian J can be used to compute the solution to (3.27). We write the residual in (2.22) accord-
ing to
R ¼ LcgX cg � AcgX cg þ LxgGcg: ð3:28Þ

Due to the nonlinearity the solution of (3.28) is iterated according to
Rmþ1 ¼ Rm þ JDX cg þ Lxg Gmþ1
cg � Gm

cg

h i
: ð3:29Þ
Eq. (3.29) is iterated to zero residual Rm+1 without calculation of the last term. To facilitate convergence using
the linear jacobian J we use a relaxation parameter k according to
X mþ1
cg ¼ X m

cg þ kDX cg: ð3:30Þ
The SE solution of (3.27) is computed for the following parameters a = b = 1, T = 0.2 and b = 50. In the ab-
sence of nonlinearity, see Fig. 3.4, the number of DOFs sufficient to achieve E = 10�11 are {Nel = 2,m = 12}.
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Using this number of DOFs we study effectiveness of the linear Jacobian, see Fig. 3.19, in computing the
solution as the nonlinearity parameter � increases. As noted in Fig. 3.19a, the convergence depends heavily
on the relaxation parameter k, decreasing rapidly as � is increased. The number of iterations N also increases
as shown in Fig. 3.19b. In the figure we note that for the linear case (� = 0) only one iteration is needed for
convergence with k = 1.

For a nonlinearity of � = 10, the SE solution of (3.27) is computed in Fig. 3.20a and b. In Fig. 3.20a the
orbit of solution Xc is shown as a function of the harmonic forcing function. The solution is also shown in
Fig. 3.20b as a function of scaled time s. Furthermore, in the absence of nonlinearity (� = b = 0) the linear
solution, computed in Section 3.1.2 is shown in the figure.

4. Numerical implementation

In this section we discuss issues concerned with conditioning and numerical efficiency of SE method in time.

4.1. Conditioning

The numerical solution of a system of equations involves numerical inversion of a matrix. Inexact represen-
tation of the matrix leads to an error when the matrix is inverted. This error is amplified when the matrix is
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ill-conditioned. The condition number of a matrix characterizes this amplification and the associated linear
independence of the matrix bases. The condition number is defined as, e.g., see [46]
j2 ¼ k/k2 	 k/
�1k2 ð4:1Þ
where i/i2 is the matrix L2 norm of /. Furthermore, when using iterative techniques to invert the system the
number of iterations required to perform the inversion depends on the condition number.

The Jacobian matrix J, see (2.24), represents the SE bases in time, we focus here on first-order problem with
harmonic excitation, see Section 3.1. Fig. 4.1 reports the condition number j2 of J as a function of total num-
ber of DOFs for transient and cyclic analyses. Additionally, we report the condition number for a Jacobian
constructed using an implicit first-order finite-difference approximation in time. This allows comparison of the
finite-difference to the spectral element approach with regard to the monolithic-time scheme and helps estab-
lish the qualitative difference between cyclic and transient analysis. In Fig. 4.1a we consider transient analysis
with a forcing frequency of 5 Hz and t 2 [0,2]. Two SE cases are considered, where the number of DOFs is
increased first by fixing m = 10 and increasing Nel = {1–20} second by fixing Nel = 10 and increasing
m = {1–20}. We note here that 10�11 accuracy can be achieved using number of DOF = 240 (see Fig. 3.1).
The condition number continues to increase when increasing number of DOFs for all cases, however, the rate
of increase and value of j2 in SE is less than the finite-difference approximation. This makes SE projection in
time, for transient analysis, more favorable to conventional finite-difference approach.

In cyclic analysis, see Fig. 4.1b, j2 is reported for same forcing frequency and same three cases but with
Nel = 4 and m = 4. Here we note that in contrast to transient analysis, the cyclic/SE condition number is larger
than the finite-difference approach. This indicates that the linear independence of the SE bases was more
affected (than finite-difference) by applying the cyclic boundary conditions. However, for SE method and con-
sidering the number of DOFs necessary to attain 10�11 accuracy, we note that j2 is equal to 400 and 200 for
cyclic and transient analyses, respectively.

4.2. Numerical efficiency

The numerical solution of (2.21) can be handled by direct or indirect methods (iterative). Depending on the
structure of the Jacobian matrix (2.24), an efficient method can be selected for solving the system.

As noted earlier in Section 2.2, the global assembly of the differentiation W and weight Ix matrices give the
global differentiation Lc and weight Lx matrices. For transient analysis Lc and Lx have block-diagonal and
diagonal forms, respectively. The final structure of these matrices after global assembly for all dependent vari-
ables depends on whether the spatial connectivity matrix As, is either coupled, see e.g., (3.17) or uncoupled.
Consider the case of uncoupled As for Nv = 2. The matrix structure of Lcg, Acg and J are reported in
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Fig. 4.2 for {Nel = 5,m = 5}. Direct methods can be used to solve banded matrices, see below for a report of
the solution method used. However, for a coupled space–time spectral element method, the resulting global
matrices are not banded [27,62]. In these studies splitting methods are used to take advantage of the diagonal
nature of the off-diagonal submatrices. The authors indicate the robustness and efficiency of splitting methods
with subcycling technique for nonlinear advection–diffusion problems.

For the cyclic analysis, the time-periodic boundary conditions add nonzero elements outside the block form
of Lc. This in turn degenerates the banded matrix structure of J reported in transient analysis. The structure of
previous matrices is reported again in Fig. 4.3 for the same parameters but for cyclic boundary conditions.

In the following we report on the computational cost associated with solving (2.23) in the paper. In a next
stage of the study, we will consider more efficient solution methods. The matrix inversion in (2.23) is carried
using the backslash operator in Matlab� and the matrices are assembled in sparse form using sparse.m. In gen-
eral the backslash algorithm selects different solution methods depending on the structure of J. We report here
on the computational cost associated with the solution of first-order form with harmonic excitation discussed
in Section (3.1). However, to report on the computational cost as the problem size grows, we use a decoupled
square matrix As of size Nv. The machine used to run the computations has an Intel Xeon processor with a
clock frequency of 3.6 GHz.

The transient analysis gives a block-diagonal J, which is of banded form. In this case the backslash algo-
rithm selects the LAPACK banded routines which performs an LU decomposition using DGBTRF and the
system is solved then with DGBTRS routine. In the following we use m and Nel based on Fig. 3.1.
Fig. 4.4a reports the CPU time as a function of total number of Nv for same monolithic-time (2 s) interval
specified in Section 3.1.1. The figure indicates a linear increase (.1.49) in computational cost as Nv increases.

We compare the computation cost to cyclic analysis. Here, nonzero elements outside the block form dis-
qualifies banded LAPACK routines and the Unsymmetric Multifrontal Package (UMFPACK) [63] is used
for solving the system. In Fig. 4.4b the CPU time is reported as a function of Nv. By using UMFPACK,
approximately the same computational cost (.1.13) is maintained as in transient analysis (although J is
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non-banded) however since the solution is integrated over a single cycle, m and Nel need not be too large, see
Fig. 3.4, and the computational time is six times smaller.

5. Conclusions

In this paper we applied the SE method in time using a monolithic-time interval (time interval that encom-
passes transient or converged dynamic solution) computation. In contrast to time-marching, the monolithic-
time scheme provides a strong connection between the system dynamics and its parameters. The method was
applied to initial value problems and periodically excited differential equations. For periodic excitations, the
solution was computed over a single cycle. Periodicity over the cycle was enforced directly on the array of
spectral elements. The reduction of the monolithic-time interval to a single cycle eliminated the need for a
large number of DOFs to achieve high accuracy.

The method was applied to first-order differential equations with harmonic excitations and excitations
admitting rapid transients. The convergence in time of the method was demonstrated. In the case of single
harmonic excitation, machine precision was obtained with 25 DOFs per cycle. Additionally, applicability
of the method to second-order and fourth-order differential equations was demonstrated. Element clustering
was used to handle rapid transients in time. Results showed the anticipated superiority of element clustering
over equal-element spacing in time to treat accurately rapid transients. Furthermore, we illustrated the meth-
od’s low dissipation and dispersion for a second-order hyperbolic problem.

The analysis we presented in the paper served to demonstrate the monolithic-time approach and document
its convergence characteristics. This was effectively demonstrated for linear systems. Extension to large sys-
tems and/or nonlinear ones needs to be demonstrated and studied with further research. Maintaining the effi-
ciency requires use of more sophisticated solution methods such as multigrid, iterative solvers, and
parallelization. It should be noted that the method was successfully applied to a weakly nonlinear problem,
but that benchmark nonlinear problems have not yet been examined. In short, the authors believe the SE
method in time to have potential for the computation of limit-cycle oscillations in aeroelastic systems, but rec-
ognize the need for steps described herein to be altered for the capture of self-sustained dynamics.

The potential for the application of transient or cyclic SE method will ultimately depend on the problem
characteristics. The implementation used here allowed for either analysis to be carried after setting the prob-
lem in first-order form. The cyclic SE method is well-suited for lightly damped or nonlinear systems exhibiting
slow convergence to periodic oscillations, especially for aeroacoustic applications, where long-time integration
with low dissipation and dispersion would require large computing time. Though in both the transient and
cyclic analyses, the SE method provides a tool that gives sensitivity information directly as a function of
the systems parameters. This facilitates design optimization and uncertainty quantification of systems.
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