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ABSTRACT 
High-speed milling provides an efficient method for 

accurate discrete part fabrication. However, successful 
implementation requires the selection of appropriate operating 
parameters. Balancing the multiple process requirements, 
including high material removal rate, maximum part accuracy, 
sufficient tool life, chatter avoidance, and adequate surface 
finish, to arrive at an optimum solution is difficult without the 
aid of an optimization framework. In this paper, an initial 
effort is made to apply analytical tools to the selection of 
optimum cutting parameters (spindle speed and depth of cut 
are considered at this stage). Two objectives are addressed, 
maximum removal rates and minimum surface location error. 
The Time Finite Element Analysis method is used in the 
optimization algorithm. Sensitivity of the surface location 
error to small changes in spindle speed near tooth passing 
frequencies that are integer fractions of the system’s natural 
frequency corresponding to the most flexible mode is 
calculated. Results of the optimization algorithm are verified 
by experiment. 

1 INTRODUCTION 
Intense competition in manufacturing places a continuous 

demand on developing cost-effective manufacturing processes 
with acceptable dimensional accuracy. High-speed milling 
offers these benefits provided appropriate operating 
parameters are selected. Some typical applications include, but 
are not limited to, end milling (pocketing) of airframe panels 
and ball end milling of stamping dies in automotive 
manufacturing. 

However, the selection of these preferred operating 
conditions is not trivial. Existing barriers to the full realization 
of the potential productivity gains in manufacturing 
environments include: 1) the requirement for multiple tool 
point dynamic measurements; 2) sensitivity of part quality to 

small changes in process variables; and 3) the difficulty in 
concurrently considering stability, accuracy, and surface finish 
in an analytical framework. Therefore, balancing the multiple 
requirements, including high material removal rate, MRRf , 

minimum surface location error SLEf , sufficient tool life, 

chatter avoidance, and adequate surface finish, to arrive at an 
optimum solution is difficult without the aid of optimization 
techniques. 

Previous research in machining process optimization has 
focused on mathematical modeling approaches to determine 
optimal cutting parameters with regard to various objective 
functions. Three main objectives have been recognized: 1) 
maximum production rate or minimum cycle time; 2) minimum 
cost [1-4]; and 3) maximum profit [5, 6], or a combined 
criterion based on a weighted sum of these [7]. 

Several techniques have been used to handle the machining 
optimization problem [8], including classical linear and 
nonlinear programming [9, 10], the probabilistic approach [2, 
11-14], polynomial geometric programming [15-19], geometric 
programming based on quadratic polylog-nomials (QPL) [20], 
goal programming with linear [21-23] and nonlinear [24] goals 
and Fuzzy optimization [25, 26]. A recent study used particle 
swarm optimization for optimization of NC milling [27].  

Jha [28] studied multiple objective function optimization 
based on cost and rate of production where example constraints 
were machine power, cutting speed limitations, depth of cut, 
and table feed. However, the two objectives were combined 
using weights. Koulams [29] studied single-pass machining 
considering the influence of tool chatter failure where a tool 
failure probability function effect was added as a penalty cost 
function to the objective function. Armarego et al. [30] 
considered cost optimization for single-pass rough peripheral 
milling while observing various practical machine tool 
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constraints, such as maximum available power, torque, feed 
force, feed rate, and cutting speed limits. Armarego et al. [31] 
also studied multi-pass peripheral and end milling to 
maximize production rate under a range of constraints relevant 
to rough milling. 

Akturk et al. [32] optimized the production cost for a 
multi-pass turning operation, considering machining 
parameters and tool allocation simultaneously. Sonmez et al. 
[33] developed a strategy to determine the optimum cutting 
parameters for multi-pass milling operations based on a 
‘maximum production rate’ criterion using geometric 
programming. Wang et al. [34] analyzed single-pass face 
milling based on a maximum production rate criterion within 
the machine tool constraints; also, surface roughness for 
finishing operation was considered. Lin [35] proposed an 
optimization technique for face milling stainless steel based 
on the Taguchi method where cutting speed, feed rate, and 
depth of cut were optimized using removed volume, surface 
roughness, and burr height. 

A recent study by Kim et al. [36] focused on optimizing 
cutting speed to improve machining accuracy and tool life in 
high-speed ball end milling. Also Juan et al. [37] applied the 
concept of adaptive learning (polynomial network) to select 
optimum cutting speed parameters such as cutting speed, chip 
load, axial depth of cut, and radial depth of cut to minimize 
production cost for rough high-speed machining operations. In 
a more recent analysis, Lu et al. [38] presented a model for 
contour turning where, in contrast to previous research, 
process stability, force variation, and tool geometry were 
accommodated as constraints, in addition to machining 
parameters such as cutting speed, feed rate, and depth of cut. 

Multi-objective optimization addresses the issue of 
competing objectives using concepts developed by Pareto 
[39], the French-Italian economist who established an 
optimality concept in the field of economics based on multiple 
objectives. A Pareto front [40] is generated that allows 
designers to trade off one objective against others. The 
efficiency of the optimization process is highly affected by the 
objective functions and constraints solution techniques. The 
Temporal Finite Element Analysis (TFEA) [41-45] approach is 
used here to obtain rapid process performance calculations of 
surface location error SLEf  and stability. The computational 
efficiency of TFEA compared to conventional time-domain 
simulation methods, in addition to the clear and distinct 
definition of stability boundaries (i.e., eigenvalues of the 
milling equation with an absolute value greater than one 
identify unstable conditions, see Section 2), makes it the most 
attractive candidate for use in the optimization algorithm. 
In this paper, an initial effort to apply analytical tools that find 
optimum cutting parameters (spindle speed, Ω and axial depth 
of cut, b, for peripheral end milling operations are considered 
at this stage) is attempted. Two objectives are addressed, 

MRRf  and SLEf , where only stability and side constraints of 

the design variables are considered. At this stage, no 

consideration is given to limitations of spindle power, torque or 
tool strength. The tradeoff method [46] is used to generate the 
Pareto front of MRRf  and SLEf . Here, the two-objective 

problem is transformed into a series of single objective 
problems by establishing a set of different limits on the second 
objective. Solution of the optimization problem is performed 
using Matlab’s Sequential Quadratic Programming algorithm 
(SQP) and Particle Swarm Optimization (PSO) [47]. 

The paper is organized as follows: Section 2 gives the 
milling model description and solution technique; Section 3 
defines the optimization problem standard form and 
optimization methods used; Section 4 describes the 
experimental verification; and Section 5 summarizes the main 
conclusions of the paper. 

2 MILLING MODEL 
The schematic for a two-degree of freedom (2-DOF) 

milling process is shown in Figure 1. With the assumption of 
either a compliant tool or structure, a summation of forces 
gives the following equation of motion: 

 

 
Figure 1. Schematic of 2-DOF milling tool. 
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where the terms mx,y, cx,y, and kx,y are the modal mass, viscous 
damping, and stiffness terms and Fx,y are the cutting forces in 
the x and y directions, respectively. A compact form of the 
milling process can be found by considering the chip thickness 
variation and forces on each tooth (a detailed derivation is 
provided in references [41-45]): 
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where ( ) ( ) ( ) T
X t x t y t= ⎡ ⎤⎣ ⎦
r

is the two-element position vector 

and M, C, and K are the 2x2 modal mass, damping, and 
stiffness matrices, Kc and 0f

r
 are defined in references [41-

45], τ = 60/(NΩ) is the tooth passing period, Ω is the spindle 
speed given in rev/min (rpm), and N is the number of teeth on 
the cutting tool. 

TFEA [41-45] is used here to transform Eq. (2) into a 
discrete linear map. Stability of the milling process can be 
determined using eigenvalues of the dynamic map, while 
surface location error (see Figure 2) is found from the fixed 
points of the dynamic map. Details can be found in references 
[41-45]. 

 

Figure 2. Up-milling schematic showing surface location 
error in milling as a result of cutting tool vibrations. 

3 OPTIMIZATION PROBLEM STATEMENT 
The problem of minimizing surface location error 

SLEf and maximizing material removal rate MRRf is stated as 

follows: 

( ) ( ),  ,  - ,min 1 2 1 2SLE MRRf x x f x x
x X∈

⎡ ⎤⎣ ⎦r   (3) 

Subject to: ( ) ( ), : max , 11 2 1 2g x x x xλ λ ≤
r

 (4) 

 

where 1x is the axial depth of cut, 2x is the spindle 

speed, gλ is the stability constraint obtained from the dynamic 

map eigenvalues, SLEf  is found from the fixed points, 

and MRRf is given as: 
 

( )1 2 1 2,MRRf x x Cx x=    (5) 

 
where C depends on the feed per tooth, N, and radial depth of 
cut.  

3.1 Tradeoff method 
As shown in Figure 3, the Pareto front is comprised of a 

set of optimal points such that in moving from point A to point 
B in the set, any improvement in one of the objective functions 
from its current value would cause at least one of the other 
objective functions to deteriorate from its current value [47].  
Based on this definition, point C is not on the Pareto front (i.e., 
it is a dominated point), while points A and B belong to the 
non-dominated set (Pareto optimal set). In essence, the front 
defines a limit beyond which the Pareto solutions cannot be 
further improved with respect to all objectives simultaneously 
[48]. 

fMRR

A

B

C

Feasible space

x

at C fSLE is worse

for same fMRR

 
Figure 3. Typical Pareto front as per [48]. 

As noted, to address the multi-objective problem the 
tradeoff method is used, where the two-objective problem is 
transformed into a single objective problem of minimizing one 
objective with a set of different limits on the second objective. 
Each time the single objective problem is solved, the second 
objective is constrained to a specific value until a complete set 
of optimum points are found that are used to generate the 
Pareto front [40] of the two objectives. Each point on the 
Pareto front locates an optimum point of the two objectives in 
the design space. The transformed form of the problem 
becomes: 
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( ),min 1 2MRRf x x
x X

−
∈
r     (6) 

Subject to: ( ),       1, ...,1 2f x x for i kSLE i
ε≤ =  (7) 

( ) ( ), : max , 11 2 1 2g x x x xλλ ≤
r

                   (8) 

for a series of selected limits (ε  ) on SLEf . 

3.2 Robust Optimization: SQP vs. PSO 
Two optimization algorithms were used to solve the two-

objective problem, namely Sequential Quadratic Programming 
(SQP) using Matlab functions and Particle Swarm 
Optimization (PSO). The former is a local, gradient-based 
search method, while the latter is a global, non-gradient-based 
approach. In generating the Pareto front for this problem using 
the SQP algorithm, the minimum SLEf  points were found to 

favor spindle speeds where the tooth passing frequency is 
equal to an integer fraction of the system natural frequency 
which corresponds to the most flexible mode (these are the 
traditionally-selected ‘best’ speeds which are located near the 
lobe peaks in stability lobe diagrams). Figure 4 shows a 
stability lobe diagram, which describes the allowable axial 
depth of cut as a function of the spindle speed. Any (Ω, b) 
combination which lies above the boundary, represented by a 
heavy dashed line, gives chatter, or unstable cutting 
conditions. The diagram also gives the values of the objective 
functions: constant material removal rate is seen along the 
dotted MRRf lines and the surface location error magnitude is 

given by the thin SLEf lines. The optimum points obtained 

using SQP are superimposed on the plot (circles). 

Because SLEf can undergo large changes in value for 
small perturbations in Ω at the optimum points, the 
formulation provided in Eqs. (6)-(8) leads to optima which are 
highly sensitive to spindle speed variation. The Pareto front 
shown in Figure 5 gives the value of the objective functions 
of the optimum points found using this SQP approach. The 
‘optimal’ set is shown to converge on dominated optima 
(local), which are not part of the Pareto front. The only non-
dominated optima are located at {250 and 350} mm3/s. To 
show the sensitivity of these optimum points, a typical 
optimum point is superimposed on a graph of SLEf vs. Ω in 

Figure 6. It is seen that the optimum point is located in a 
high SLEf slope region. 

Therefore, the optimization problem was redefined in 
order to avoid convergence to these points. Two approaches 
were applied: 1) an additional constraint was added to the 

SLEf  slope; and 2) the SLEf  objective was redefined as the 

average of three perturbed spindle speeds. The latter proved to 

be more robust than the former. Therefore, Eq.(7) was 
redefined as: 

 

( ) ( ) ( ), , ,1 2 1 2 1 2

3

                                                                                     for 1, ...,

f x x f x x f x xSLE SLE SLE
i

i k

δ δ
ε

+ + + −
≤

=

 (9) 

where δ is the spindle speed perturbation selected by the 
designer (a typical value for our analyses was 50 rpm). 

Figure 4. Stability, |fSLE|  and fMRR contours with optimum 
points found using optimization statement in Eqs. 6-8. The 
figure shows that optimum points occur in regions sensitive to 
spindle speed variation. 
 

Figure 5. Pareto front for original problem defined by Eqs. 6-8, 
the non-dominated points are on Pareto front. 
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Figure 6. A typical optimum point found using Eqs. 6-8; 
optimum point sensitivity with respect to spindle speed is 
apparent. 

The optimization problem can be expressed in a reverse 
manner as well. That is, the objective function can be defined 
as the average of SLEf  as shown in Eq. (9) and the 

optimization problem can be solved for a different set of 
constraints on MRRf . Solution of this optimization problem 
statement using the SQP method converged to optimum points 
that are relatively insensitive to spindle speed variation, as 
shown in Figure 7. 
 

Figure 7. A typical optimum point (200 mm3/s) found using 
the modified optimization problem is shown; it is insensitive to 
spindle speed. 

 
 
 

Figure 8. Typical optimum point found using PSO (4µm 
constraint); relative insensitivity to spindle speed is noted. 

 
Figure 9. Stability, fSLE, and fMRR contours with optimum 
Pareto front points found using PSO and SQP with   and 
average perturbed  respectively. The figure shows that optimum 
points are not in regions sensitive to spindle speed. 

 

In comparison, when using the PSO method the objective 
function - MRRf  was minimized for a set of different constraints 

on SLEf  as shown in Eq. (7), rather than its perturbed average 

as defined in Eq. (9). In the PSO method, the optimum points 
didn’t converge on highly SLEf  sensitive points; an example 
point is shown in Figure 8. A comparison of the three 
optimization schemes is shown in Figure 9 and Figure 10. 
Figure 9 shows the optima for each approach superimposed on 
the corresponding stability lobe diagram. In Figure 10, the 
Pareto fronts for the three methods are shown. The optimum 
points found using the two SQP formulations closely agree.  
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Although the PSO points show the same trend, some 
improvement in the fitness is still possible relative to the SQP 
results. Because the PSO search avoided optimum points that 
are spindle speed sensitive, computational time can be reduced 
using this global search method. However, narrow optimum 
points may go undetected when using this approach. 
 

Figure 10. Pareto front showing optimum points found using 
three optimization algorithms/formulations; the same trends 
are apparent. However, the SQP methods required additional 
computational time. 

 
As noted, when comparing the Pareto fronts in Figure 10, 

it is seen that the PSO approach did not converge to the same 
fitness as SQP method. A check of the optimum points which 
correspond to a value of SLEf = 4 µm, for example, shows 

that PSO converged to 100 mm3/s, while SQP converged to 
150 mm3/s. To better understand this result, the design space 
was divided between the two design vectors, b and Ω, for SQP 
and PSO using a factor, a, that was normalized between 0 and 
1. The PSO and SQP optimums were normalized to a = 0 and 
1 respectively. Next, the stability constraint (eigenvalue), 
material removal rate and  SLEf  was plotted against that 

ratio. In Figure 11 it is seen that discontinuities exist in the 

SLEf  constraint and first derivative of the eigenvalue 

constraint within this region. Although PSO is not affected 
much by a discontinuity in the derivative constraint, it can be 
affected by a discontinuity of the SLEf  constraint, where the 

discontinuity tends to narrow the search region of the swarm. 
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Figure 11. Variations in the eigenvalues, surface location error, 
and removal rate for PSO and SQP optima, where fMRR is the 
objective for both. The discontinuities in the surface location 
error and first derivative of the stability constraint (eigenvalue) 
cause PSO to not converge on the SQP optimum. 

 
Although SQP in both variations of the objective function and 
constraint converged to approximately the same optima, the 
one with the average perturbed SLEf  constraint required a 

large number of initial guesses in order to converge to the same 
optimum as the SQP with the MRRf  constraint approach. This 
can be attributed to the low damping in the dynamic system 
used in this study which makes the SLEf  contours (constraint) 

quite steep. 
 
Table 1: Modal parameters for 19.05 mm diameter tool used in 
optimization simulations and cutting tests. 
 

 

4 EXPRIMENTAL VERIFICATION 
To validate the TFEA stability boundary and accuracy 

predictions, milling tests were performed using a compliant 
19.05 mm diameter tool as shown in Figure 12 [41].  The 
modal parameters for the tool are listed in Table 1. 
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Figure 12. Schematic of test setup and machined blocks used 
for stability and surface location error tests. 
 
4.1 Stability boundary tests 

The stability boundary was verified by performing 5% 
radial immersion down milling tests on an aluminum (7050-
T7456) block. Cuts were completed at different axial depths 
and spindle speeds and the tool displacement was recorded 
during each test. A cut was declared stable if the 1/tooth-
sampled displacement approached a constant value [45]. The 
cutting test results are overlaid on the TFEA stability 
boundary in Figure 13. Good agreement is seen. 
 
4.2 Surface accuracy tests 

The TFEA accuracy predictions were verified by 
machining the 250 mm long islands (see Figure 12) on the 
aluminum block to a final width, d, of 19.05 mm using a 
constant axial depth (2.03 mm) and chip load (0.18 mm/tooth) 
with different spindle speeds for each island. A coordinate 
measuring machine (CMM) was used to measure SLEf  at six 

different locations along each island (near the middle portion 
of each island). 

The average SLEf  values measured by the CMM are 

shown together with the predicted surface location error in 
Figure 14; good qualitative agreement is evident. 

To compare the optimization results with the CMM 
measurements, the SQP optimization was modified to consider 
only spindle speed as the design variable (the axial depth was 
set equal to the depth used for the surface error tests). The 
optimum points are included in Figure 14, where they show 
good correspondence with CMM measurement trends. 
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Figure 13. Down-milling experimental results vs. TFEA 
stability boundary for 19.05 mm tool. 

 
Figure 14. TFEA surface location error prediction vs. CMM 
measured error and optimum points. 

  

5 CONCLUSIONS 
This paper describes initial efforts toward the multi-

objective optimization of high-speed milling. Material removal 
rate and surface location error were considered to arrive at a set 
of optimum operating conditions, referred to as the Pareto 
front. Consideration was given to the practical issue of 
convergence to optima near regions of high sensitivity of 
surface location error to spindle speed variations. Experimental 
results were provided and good agreement with prediction was 
seen.  
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