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ABSTRACT 

High-speed milling offers an efficient tool for developing 
cost effective manufacturing processes with acceptable 
dimensional accuracy. Realization of these benefits depends on 
an appropriate selection of preferred operating conditions. In a 
previous study, optimization was used to find these conditions 
for two objectives: material removal rate (MRR) and surface 
location error (SLE), with a Pareto front or tradeoff curve found 
for the two competing objectives. However, confidence in the 
optimization results depends on the uncertainty in the input 
parameters to the milling model (time finite element analysis 
was applied here for simultaneous prediction of stability and 
surface location error). In this paper the uncertainty of these 
input parameters such as cutting force coefficients, tool modal 
parameters, and cutting parameters is evaluated. The sensitivity 
of the maximum stable axial depth, blim, to each input parameter 
at each spindle speed is determined. This enables identification 
of parameters with high contribution to stability lobe 
uncertainty. Two methods are used to calculate uncertainty: 1) 
Monte Carlo simulation; and 2) numerical derivatives of the 
system eigenvalues. Once the uncertainty in axial depth is 
calculated, its effect is observed in the MRR and SLE 
uncertainties. This allows robust optimization that takes into 
consideration both performance and uncertainty. 

INTRODUCTION 
In manufacturing, devising cost-effective processes is a 

constant pursuit. High-speed milling can substantially reduce 
machining time; however, this can come at the sacrifice of 
product surface quality and dimensional accuracy. Milling 

models are used in predicting part quality (stable cutting 
process) and dimensional accuracy (surface location error) for a 
specific set of cutting parameters. Selecting optimum cutting 
parameters that maximize productivity and accuracy without 
sacrificing quality is highly desirable. In a previous study [1] 
optimization was used to find these conditions for two 
objectives: material removal rate (MRR) and surface location 
error [2-7] (SLE), with a Pareto front, or tradeoff curve, found 
for the two competing objectives.  Although the milling model 
used in the optimization algorithm is deterministic (time finite 
element analysis), uncertainties in the input parameters to the 
model limit the confidence in these optimum predictions. These 
input parameters include cutting force coefficients (material 
and process dependent), tool modal parameters, and cutting 
parameters. By accounting for these uncertainties it is possible 
to arrive at a robust optimum operating condition. 

In previous studies [8-10], uncertainty in milling process is 
handled from a control perspective. The cutting forces 
uncertainty is accommodated using a control system. The force 
controller is designed to compensate for known process effects 
and accounts for the force-feed nonlinearity inherent in metal 
cutting operations. In this study, the uncertainties in the milling 
model are estimated using sensitivity analysis and Monte Carlo 
simulation. This would enable selection of preferred design that 
accounts for inherent uncertainty in the model a priori. 

The paper proceeds first with a description of the milling 
model considered and next a discussion of stability lobes and 
surface location error analysis with regard to their numerical 
accuracy. Sensitivity analysis is discussed in the next section. 
Then the next section presents case studies of numerical 
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accuracy of sensitivity of blim and SLE.  This will enable us to 
carry out the stability lobe and surface location error sensitivity 
analysis in the next two sections. Sensitivity is used to 
determine the effect of input parameters on the maximum stable 
axial depth, blim, and surface location error, SLE. This enables 
identification of parameters with high contribution to stability 
enhancement and SLE reduction. In the next section, the 
uncertainty in limiting axial depth, blim, and SLE predictions are 
calculated using two methods 1) Monte Carlo simulation; and 
2) use of numerical derivatives of the system characteristic 
multipliers to determine sensitivities. The uncertainty in axial 
depth effects a reduction in the MRR, and the SLE uncertainty 
provides bounds on its expected value. This allows robust 
optimization that takes into consideration both performance and 
uncertainty. 
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MILLING MODEL 
A schematic of a two degree-of-freedom milling tool is 

shown in Figure 1. Tool/work-piece dynamics and cutting 
forces are used to formulate the governing delay differential 
equation for the system. Solution of the delay differential 
equation is found using time finite element analysis (TFEA) 
[12-14]. This method provides the means for predicting the 
milling process stability and quality (SLE). However, the 
uncertainty in the input parameters to the solution method 
places an uncertainty on the stability and SLE prediction. These 
parameters are divided into two groups; 1) uncertainty from 
lack of knowledge of the tool modal matrices, K, C and M, and 
the cutting force coefficients (mechanistic force model); and 2) 
uncertainty due to variability (aleatory uncertainty) in other 
machining parameters, such as spindle speed, chip load and 

radial depth. To estimate the parameters in the former, modal 
testing is used to measure the dynamic parameters while cutting 
tests are completed to estimate the cutting force coefficients. In 
the modal parameter estimation peak amplitude method is used 
to fit a theoretical transfer function to the milling model 
measured transfer function. In this method [11], the peak of the 
absolute value of the transfer function corresponds to the 
natural frequency. From which, the half power frequencies are 
used to estimate the damping ratio. Table 1 lists the mean 
modal values for 25.4 mm diameter endmill having a 12o helix 
angle with 114 mm overhang length and the corresponding 
cutting force coefficients for 6061 aluminum. These parameters 
will be used in the simulations. The milling process parameters 
are also listed in the table for a down milling case. 
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Feed
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Figure 1 Schematic of 2-D milling model. The surface 

location error (SLE) due to phasing between tool 
force and displacement is also shown. 

M  (kg) K (N/m x10 6 ) C (N.s/m)

x 0.44 4.45 83 0.030
y 0.44 3.55 90.9 0.036

K t (N/m 2 x10 6 ) K n (N/m 2 x10 6 ) K ne (N/m x10 3 )
600 180 6

Tool diameter (mm) radial depth,a (mm) chip load, c (mm/tooth)
25.4 0.508 0.1

K te (N/m x10 3 )
12
N
1

ζ

 
Table 1 Cutting force coefficients, modal parameters and 

cutting conditions of milling process. 

STABILITY AND SURFACE LOCATION ERROR 
ANALYSIS 

The stability lobes are used to represent the stable space of 
axial depth ( )b  and spindle speed ( )Ω  of a milling process. In 
TFEA [12-14], a discrete map is used to match the tool-free 
vibration while out of the cut with the tool vibration in the cut. 
The system characteristic multipliers (λ

r
) of the map provide 

the stable cutting zone where max λ
r

is less than one.  

TFEA provides a field of λ
r

 in the design space of b and 
Ω. The limit of stability, blim can be found using root finding 
numerical techniques. Here we use the bi-section root finding 
method. The convergence criterion of the bi-section method 
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should account for the amplification of numerical noise induced 
by sensitivity estimation. It should be noted that the number of 
elements affects the accuracy of the estimation. 

For the case of calculation of SLE in TFEA, the numerical 
noise is only due to the number of elements. In this section we 
will discuss the effect of both the convergence criterion and the 
number of elements on the sensitivity estimation of blim and 
SLE.  

Bi-section method convergence criterion 
In order to find the axial depth limit, blim, at corresponding 

input parameters, the bi-section method is used in the TFEA 
algorithm to solve for blim at which the maximum characteristic 
multiplier is equal to one (stability limit). An absolute error is 
used as a criterion for convergence, 

 1i i

i

b b
b

ε−−
≤                         (1) 

where ε  corresponds to the error tolerance and ib  is the root 
corresponding to max 1λ =

r
 at iteration i. Although a relatively 

large value of ε  can be adequate for the calculation of the 
stability lobes, a tighter limit is needed to calculate the 
sensitivities. This is attributed to amplification of numerical 
noise in the derivative calculation. This comparison is made in 
the case studies section.  

Number of Elements 
The accuracy of TFEA prediction of stability and SLE is 

highly dependent on the number of elements used. The effect of 
the number of elements is even more apparent when calculating 
the sensitivity of the prediction, where an even higher number 
of elements is needed to eliminate numerical noise from the 
sensitivity calculation.  

SENSITIVITY ANALYSIS 
The sensitivity of axial depth limit to input parameters 

( )lim /b Xi∂ ∂  is cumbersome to compute analytically using the 

TFEA method; therefore, a numerical derivative is used by 
implementing an infinitesimal perturbation.  
       Factors which affect accurate calculation of sensitivity to 
inputs include: 1) central difference truncation error; and 2) 
step size selection. Therefore, a balance needs to be used in 
calculating the sensitivity that does provide a stable estimation 
of the sensitivity while maintaining computational efficiency. 
In the following, we describe these factors and their 
consideration in the calculation of stability and SLE 
sensitivities. 

Truncation Error 
The central difference method is used in the sensitivity 

calculation. The formula for this method is, 

 ( )21 1

2i

b bb O h
X h

−−∂
= +

∂
 (2). 

where h denotes the step size in input parameter Xi, 
( )1 ib b X h= + , ( )1 ib b X h− = − and O(h2)  is the 2nd order 

truncation error. A higher order formula with 4th order 

truncation error O(h4) can also be used. However, as shown in 
Eq. (3), it is two times more computationally expensive than 
Eq. (2), 

    

 ( )42 1 1 28 8
12i

b b b bb O h
X h

− −− + − +∂
= +

∂
 (3) 

In order to help decide whether the higher truncation error 
formula need to be applied (Eq. (4)), the sensitivity of blim with 
respect to modal stiffness Kx ( )lim / xb K∂ ∂  is calculated as a 
function of step size h. This comparison is made in the case 
studies section.  

Step Size 
The step size, h, in Eqs. ((2) and (3)) should be chosen 

carefully. This is especially important when there is numerical 
noise in the calculated blim due to the convergence criterion (Eq. 
(1)). The step size should be large enough to be out of the 
numerical noise range, however, not so large to incur large 
truncation errors. The case studies section will illustrate this 
idea. 

CASE STUDIES 
In this section numerical estimations of the sensitivity are 

made based on different variations of convergence criterion, 
number of elements, sensitivity analysis formula (Eq. (2) and 
Eq. (3)), and step size. The comparisons are made for a 10 
(krpm) spindle speed, 10 elements and an 43 10ε −= ×  unless 
noted otherwise. The logarithmic derivative can be used in 
making these comparisons. To evaluate percentage of change in 
an output (axial depth, b) due to a percentage change in the 
input, Xi. It is expressed as, 

 
( )
( )

ln
ln

i

i i

b X b
X b X

∂ ∂
=

∂ ∂
 (4) 

To illustrate the effect of convergence criterion, In Figure 2 
the logarithmic derivative of blim with respect to Mx (the X 
direction modal mass) is calculated for two error limits as a 
function of step size percentage ( )% / 100i ih X X= ∆ × . It can 
be seen that a tighter error limit nearly eliminates the numerical 
noise in the derivative calculation.  

The effect of number of elements on SLE sensitivity is 
illustrated in Figure 3, where the SLE sensitivity with respect to 
Kx is calculated. A higher number of elements provide a larger 
stable region of sensitivity. Figure 4 compares the noise in the 
second and fourth order sensitivity calculation. A finite step 
size percentage ( )% / 100x xh K K= ∆ ×  is needed to reach a 
stable value of the derivative for both formulas. It can be seen 
that Eq. (3) gives a wider range of step sizes at which the 
sensitivity calculation is stable. However, the improved stability 
range, or reduction in numerical noise, is not significant to 
sacrifice computational efficiency for its usage. 

The importance of step size selection is evident from 
Figure 5, which shows the logarithmic derivative of critical 
axial depth with respect to input parameters versus step size 
percentage. The figure also indicates the relative sensitivity of 
critical axial depth to each input parameter, spindle speed 
having the largest effect followed by modal mass and stiffness. 
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Figure 2 The effect of error limit in the bisection method on 

numerical noise in the sensitivity calculation. 
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Figure 3 Sensitivity of SLE with respect to Kx. The higher 

number of elements, E, provides more stable 
sensitivity estimation. The second order finite 
difference formula is used here. 

From Figures 4 and 5 it can be seen that an h=0.2% 
provides an accurate sensitivity estimation. To verify that a step 
size of 0.2%, convergence limit 43 10ε −= ×  , E=10, and the 2nd 
order finite difference approximation give correct calculation of 
sensitivity, the variations of blim to modal parameters and 
cutting coefficients are plotted in Figures 6 and 7 respectively. 
Also, the slope predicted using Eq. (2) is superimposed on the 
same plot .The figures verify that the sensitivity calculations 
approximate the slope accurately. 

STABILITY SENSITIVITY ANALYSIS 
In this section calculations of the sensitivity of axial depth 

limit blim to input parameters are provided. The parameters used  
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Figure 4 Comparison between 2nd and 4th order central 

difference formulas. The 4th order formula shows a 
wider stable region for step size, but higher 
computation time. 
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Figure 5 The logarithmic derivative of axial depth with 

respect to input parameters versus step size 
percentage.  

in the sensitivity calculations are provided in Table 2. The axial 
depth limit calculated as a function of spindle speed is shown in 
Figure 8 where Eq. (1) is used to solve for blim. The variation of 
the characteristic multipliers (λ

r
) is also shown in the figure. 

Each calculated value of blim corresponds to max 1λ =
r

. Any 

discontinuity in λ
r

 would affect the accurate sensitivity 
estimation of blim to input parameters. In Figure 9 the 
sensitivities of stiffness, K, and modal mass, M, are compared 
in the x (feed) and y-directions of the tool. As can be seen in the 
figure, the sensitivities in the x and y-directions are comparable 
in magnitude; however, the sensitivities are fairly large near 
discontinuities in the system characteristic multipliers (see 
Figure 8)  
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Table 2. Parameters used in sensitivity analysis. 

h (%) E Central difference ε  
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Figure 6 The variation of axial depth limit blim with a ± 10% 

change in nominal input parameters. The linear 
extrapolation based on sensitivity of blim with 
respect to each parameter is superimposed. 
Linearity and non-linearity of blim(Xi)  can be 
observed (see Table 2). 
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Figure 7 The variation of blim with a ± 10% change in Kt 

and Kn. The linear extrapolation based on 
sensitivity of blim with respect to each parameter is 
superimposed. Linearity of blim(Xi) can be observed 
(see Table 2). 

In Figure 10, the effect of damping on the stability is 
shown to be minimal compared to the modal stiffness and mass. 
This is a somewhat counter-intuitive result, but can be 
explained by regeneration, which is a primary physical 
phenomenon that causes instability. The modal mass and 
stiffness have a great effect on the system natural frequency, 
which has a significant effect on regeneration. This also 

explains the result shown in Figure 11, where the sensitivity of 
critical axial depth limit blim to a change in spindle speed Ω  is 
significant and comparable to modal mass and stiffness. The 
effect of cutting force coefficients is shown in Figure 12, where 
the tangential cutting force coefficient, Kt, has larger effect on 
the axial depth limit than the normal direction coefficient, Kn.  
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Figure 8 The axial depth limit as a function of spindle speed 

(stability boundary). Also shown is the variation of 
the system characteristic multipliers. 
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Figure 9 Sensitivity of critical axial depth limit blim to 
changes in modal mass M and modal stiffness K in 
the x and y-directions. 
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Figure 10 Sensitivity of critical axial depth limit blim to 

changes in modal damping C in the x and y-
directions. It is compared to modal stiffness. 

SURFACE LOCATION ERROR SENSITIVITY 
ANALYSIS 

The sensitivity of surface location error, SLE, to changes in 
input parameters is examined here. The parameters used in the 
sensitivity calculations are provided in Table 2. In Figure 13, 
the sensitivity of SLE to changes in modal parameters in the y-
direction is shown. Again, it can be seen that changes in Ky and 
My contribute more than the Cy to a change in SLE. In Figure 
14, the effect of cutting force coefficients is observed, where it 
is observed that the highest contributors to SLE sensitivity are 
Kt and Kte. Also, in Figure 15, SLE sensitivity to spindle speed 
and radial depth is shown. Substantial sensitivity to spindle 
speed can be seen. This is due to the dependence of SLE on the 
relationship between the tool point frequency response and the 
selected spindle speed. As the spindle speed changes, it tracks 
different parts of the response. 
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Figure 11 Sensitivity of critical axial depth limit blim to 
changes in spindle speed. It is compared here to the 
modal damping and stiffness in y-direction. 
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Figure 12 Sensitivity of critical axial depth limit blim to 

changes in force cutting coefficients in the 
tangential Kt and normal directions Kn. Higher 
sensitivity can be seen for Kt. 

UNCERTAINTY OF STABILITY BOUNDARY AND 
SURFACE LOCATION ERROR 

Monte Carlo Simulation 
The combined standard uncertainty of stability boundary 

(blim) and surface location error (SLE) can be predicted using 
Monte Carlo simulation. In this method, a random sample of 
size n is selected from the population of each input parameters 
(such as Kt, Kx …). A normal distribution of the input 
parameters is assumed. In the sample n, the nominal value and 
standard deviation of each input parameter are used to generate  
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Figure 13 Sensitivity of surface location error SLE to 

changes in modal parameters in y-direction. 
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Figure 14 Sensitivity of SLE to cutting force coefficients. 
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Figure 15 Sensitivity of SLE to spindle speed and radial 

step, or depth of cut. 

the sample. The axial depth limit, blim, and surface location 
error, SLE, are then calculated using TFEA (the bi-section 
method is used to calculate blim) for each point in the sample. 
The standard deviation of the predicted blim and SLE is then 
calculated from sample output for the range of spindle speeds 
of interest. It should be noted here that in doing so, no 
correlation between the input parameters is assumed, which is 
the most conservative approach.  

To illustrate the effect of uncertainty in the input 
parameters on stability boundary uncertainty, standard 
uncertainties of 5%, 0.5%, 0.0984% and 0.5% are assigned to 
nominal values of the cutting force coefficients, modal 
parameters, radial depth, and spindle speed, respectively. A 
sample size of 1000 is used. The stability boundary confidence 
level is found as shown in Figure 16 for a two standard 
deviation confidence interval. 

Sensitivity Method 
Uncertainty can also be found using sensitivities of output 

(blim or SLE) to input parameters. It is given as [15], 

 ( ) ( )
2

lim
lim

1

m

c i
i i

b
u b u X

X=

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠
∑ , (5) 

where uc(blim) is the uncertainty in axial depth limit, u(Xi) refers 
to the standard uncertainty in the input parameter Xi, and m is 
the number of input parameters. This relation assumes no 
correlation between input parameters. However, it should be  
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Figure 16 Confidence level in stability boundary due to 
input parameter uncertainties using Monte Carlo 
simulation.  

noted that cutting force coefficients (Kt, Kn, Kte, Kne) and modal 
parameters (K, C, M) may be correlated. 

The same uncertainty is assumed in the input parameters as 
in Monte Carlo method and the uncertainty in axial depth limit 
uc(blim) is calculated for 2uc(blim). Figure 17 shows the close 
agreement found using the two methods. However, it should be 
noted that the sensitivity method can be inaccurate near points 
where the function is C1 or C0 discontinuous. This is attributed 
to the characteristic multipliers (λ

r
) of the system. Figure 18 

shows this direct correspondence between the inaccurate 
sensitivity and discontinuity in the λ

r
.  

It should be noted here that predicting the uncertainty 
using Eq. (5) applies a linear approximation. If the uncertainties 
in the input parameters are large, then that linear approximation 
is no longer valid. 
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Figure 17 Comparison of 2-sigma confidence levels in 

stability boundary in axial depth limit using 
sensitivity method and Monte Carlo method. 
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The surface location error uncertainty is found similarly 
using both methods. However, as shown in Figures 13-15, the 
SLE sensitivities are accurate and do not depend on the 
characteristic multipliers continuity. This is due to the 
continuity of SLE. This explains the close prediction of 
uncertainty in SLE using sensitivity and Monte Carlo methods 
(Figure 19). 

CONCLUSIONS 
In this study, the sensitivities of axial depth limit and 

surface location error to model input uncertainties are studied. 
Numerical estimation of the sensitivities can be challenging, 
where several factors contribute to the accuracy of the 
estimation. The step size is one of the significant factors that 
affect the accuracy of the estimation. 

The sensitivity analysis helps in identifying the relative 
contribution of the milling model input parameters to the 
sensitivity of either axial depth limit or surface location error. 
For the case of axial depth limit, the spindle speed, followed by 
modal stiffness and mass, is the most significant contributor. In 
the case of cutting force coefficients, the tangential cutting 
force coefficient is found to contribute more to the sensitivity 
than the normal cutting force coefficient. As for the surface 
location error sensitivity, the same trend can be observed. 
However, for the cutting force coefficients the edge tangential 
cutting force coefficient has significant contribution to SLE.  
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Figure 18 Uncertainty in axial depth using sensitivity and 

Monte Carlo methods. Inaccuracies in the 
sensitivity method can be seen near C0 and C1 

discontinuity in the real and imaginary part of 
system characteristic multipliers.  
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Figure 19 Surface location error with 2uc(SLE) confidence 

interval on the  nominal SLE. Close prediction is 
observed. 

The uncertainty in axial depth limit and surface location 
error is predicted using two methods: the sensitivity method 
and the Monte Carlo simulation approach. Comparable 
agreement is shown. However, the sensitivity method is more 
efficient computationally. For example, in the case of SLE 
uncertainty prediction, Monte Carlo simulation required 9.34 
hours, while the sensitivity method needed only 0.26 hours (36 
times more efficient). Noting that for uc(SLE) case, when the 
milling parameters are well into the stable region, the accuracy 
of sensitivity method is not sacrificed at the cost of efficiency 
as is the case for uc(blim) at discontinuities in the characteristic 
multipliers.  
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