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Abstract: Milling models provide tools for estimating stability and surface 
location error. Existing models are deterministic, though inherent variations in 
the model inputs propagate to uncertainty in the model outputs. In this paper 
the experimental procedures used to estimate the model parameters are 
presented. The effect of correlation between parameters is addressed.  
The variability of the stability boundary and surface location errors are 
determined using Latin Hypercube sampling. It is seen that including the 
correlation between parameters reduced the output variability by as much as 
55% with a minimum reduction of 10%. Comparisons between mean model 
predictions and experimental results are provided. 
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1 Introduction 

In milling operations, models may be used to predict process stability and dimensional 
accuracy (surface location error) for a specific set of cutting parameters. Selecting 
optimum cutting parameters that maximise productivity and accuracy is highly desirable. 
In Part 1 of this paper, optimisation was used to select optimum cutting conditions.  
Two competing objectives, Material Removal Rate (MRR) and Surface Location Error 
(SLE) (Schmitz and Ziegert, 1999; Smith and Tlusty, 1991; Kline et al., 1982), were 
simultaneously considered using a Pareto front, or tradeoff curve. Although the milling 
model used in the optimisation algorithm (time finite element analysis, or TFEA  
(Mann et al., 2005; Mann, 2003)) is deterministic, variations in the input parameters of 
the model limit the confidence in these optimum predictions. Experimental results in  
Part 1 emphasised the need to account for variations in the input parameters, which 
include cutting force coefficients (material and process dependent), tool modal 
parameters, and cutting parameters. Quantifying variations in these values is necessary 
for the selection of robust optimum designs. 

Different types of uncertainties exist in model predictions including (see for example 
Thoft-Christensen and Baker, 1982):  

• physical variations in loads, material properties and dimensions 

• lack of information resulting from limited number of experiments 

• model limitations which occur due to simplified mathematical representations, 
unknown boundary conditions and unknown effects of other variables and their 
interactions.  

In this study we account for the first and second types only, with measurement errors 
representing the source of lack of information. In previous studies (e.g., Guerra et al., 
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2003; Kim et al., 2003; Rober et al., 1997), uncertainty in the milling process was 
handled through a posteriori compensation. In Kim et al. (2003) and Rober et al. (1997), 
the cutting force uncertainty was accommodated using a control system. The force 
controller was designed to compensate for known process effects and account for the 
force-feed nonlinearity inherent in metal cutting operations. A relevant study considered 
uncertainty directly for maximisation of material removal rate in a turning operation, 
where the confidence intervals of the design variables were obtained using prior 
knowledge and heuristic methods to find a robust optimum (Deshayes et al., 2005). 

We quantify the output variation by propagating the variation of the process 
parameters through the analysis model. Some of the process parameters are correlated. 
Considering the physical interdependence of the parameters can lead to different 
variation in the response. For example, Honda and Antonsson (2003) has considered 
parameter variation when the parameters are correlated and uncorrelated. Rooney and 
Biegler (2001) showed the importance of including parameter correlation in design 
problems by using elliptical joint confidence regions to describe the correlation among 
the uncertain model parameters. In a recent paper, Becerra and Hernandez (2006) deemed 
parameter correlation imperative to the proper evaluation of air density uncertainty.  
In our study, the variation and correlation in the model parameters are measured and 
propagated through the model using sampling methods. The variation in the output for 
both correlated and uncorrelated parameters is reported. Results show a noteworthy 
difference between the responses for correlated and uncorrelated parameters.  
This enables more accurate quantification of the performance uncertainty and selection of 
a design that accounts for the inherent input uncertainties a priori. 

The objectives of this study are to:  

• measure the mean values of the milling model parameters and determine their 
variation and correlation 

• use Monte Carlo and Latin Hypercube sampling methods to propagate the variations 

• quantify the stability boundary and SLE uncertainties 

• illustrate the significance of accounting for the correlation between parameters  
on the output variability in the milling model 

• compare the experimental case study in Part 1 to the realised sample distribution  
of stability and SLE.  

The paper is arranged as follows. Section 2 provides the theoretical and experimental 
background for measuring the mean, variation and correlation of the input parameters in 
the milling model. Section 3 describes the sampling methods used in the confidence 
interval calculation. Section 4 gives a numerical example for the estimation of SLE and 
stability boundary distributions and Section 5 outlines the main conclusions of the paper. 

2 Model parameter estimation 

In this section the mean levels, variation and correlation of the model parameters are 
estimated for the tool modal parameters, cutting force coefficients and other machining 
parameters. 
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2.1 Measurement of tool modal parameters 

Modal parameters are used to represent the tool point frequency response function of the 
tool-holder-spindle-machine system. The tool point frequency response function is 
typically measured using an impulse force to excite the tool and an accelerometer to 
measure the response (i.e., impact testing). The time signals of the impulse and response 
are transformed into the frequency domain using the Fast Fourier Transform. The peak 
amplitude method (Pandit, 1991; Ewins, 1982) may then be applied to fit the measured 
frequency response function. In this method, the frequency at the peak of the magnitude 
of the frequency response function, H (≅ 1/[2ζK]) of a particular mode is taken as the 
natural frequency, fn, of that mode: 

1( ) ,
2nH f

Kζ
≅  (1) 

where the natural frequency is: 

1 .
2n

Kf
Mπ

=  (2) 

From equation (1) the damping ratio ζ is estimated from the half power frequencies,  
f1 and f2, corresponding to: 

1,2( ) 1/(2 2 ).H f Kζ=  (3) 

This enables determination of modal mass, M, damping, C, and stiffness, K, of the  
tool-holder-spindle-machine for each modelled mode (a rigid workpiece was assumed in 
this study). It should be noted here that the peak amplitude method is limited to the case 
where the modes are well separated. However, because the tool used in our experimental 
study can be approximated as single mode, the method can be applied here. 

2.2 Variation and correlation of tool modal parameters 

The variation, correlation and mean values of the modal parameters are calculated by 
repeating the measurement and fitting procedure multiple times. Due to the general 
symmetry of the tool-holder-spindle assembly, it is expected that the x and y-direction 
modal parameters should exhibit some level of correlation. Therefore, in sampling from 
the distribution of potential modal values for uncertainty propagation through the milling 
model, this correlation should be considered. For example, a random selection of a high 
stiffness in the x-direction would be expected to correlate with a high stiffness in the  
y-direction. The correlation between the modal stiffness in the x and y-directions, ,

x yK Kρ  

is calculated according to: 

1

2 2
1 1

( )( )
,

( ) ( )
i i

x y

i i

Q
y y x xi

K K Q Q
y y x xi i

K K K K

K K K K
ρ =

= =

− −
=

− −

∑
∑ ∑

 (4) 
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where Q is the number of times the experiment is conducted and xK  and yK  are the 
mean values. Several factors contribute to the variability in the estimated modal 
parameters:  

• the fitting method 

• changes in the tool-holder interface due to tool-holder removal/replacement 

• the thermal state of the machine spindle 

• the impact testing procedure.  

The combined effect of all these factors can be estimated by repeating the measurement 
under varying conditions. However, the reader may note that this approach does not 
account for potential impact testing biases (such as accelerometer mass loading or 
incorrect calibration constants for the transducers) and we have not addressed variations 
due to removal of the tool from the holder. 

2.3 Measurement of cutting force coefficients 

A mechanistic model is used to determine the cutting forces. In this approach the cutting 
forces are expressed as a function of cutting force coefficients. The average milling 
forces during one tooth period in the x and y-directions is given by Budak et al. (1996) 
and Altintas (2000): 

[ cos(2 ) [2 sin(2 )]] [ sin( ) cos( )]
8 2

ex

st

x t n te ne
Nbh NbF K K K K

φ

φ

φ φ φ φ φ
π π

 = − − + − + 
 

 (5) 

[ [2 sin(2 )] cos(2 )] [ cos( ) sin( )]
8 2

ex

st

y t n te ne
Nbh NbF K K K K

φ

φ

φ φ φ φ φ
π π

 = − + − + 
 

 (6) 

where N is the number of teeth on the cutting tool, b is the axial depth, h is the  
feed per tooth, φ is the cutter angle, and {Kt, Kn, Kte and Kne} are the tangential,  
normal, and tangential and normal edge cutting force coefficients, respectively.  
In slotting tests (see Figure 1(c)), the start and exit angles of the cutter are  
φst = 0 and φex = 180°, respectively. The average forces per tooth period for this case 
simplify to: 

4x n ne
Nb NbF K h K

π
= − −  (7a) 

.
4y t te

Nb NbF K h K
π

= +  (7b) 
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Figure 1 (a) Schematic of 2-DOF milling tool; (b) identification of key variables  
and (c) various types of milling operations 

 
 (a) (b) 

 
(c) 

Equation (7) can be written as a function of h as: 

, / , / , .x y x y h x y eF F h F= +  (8) 

The experimental procedure consists of completing multiple cutting tests at varying  
h values and recording the cutting forces. For each feed per tooth, the average cutting 
forces in the x and y-directions /( )x yF  are calculated, then a linear regression of the 
average forces versus feed per tooth is completed to extract the cutting coefficients.  
See equations (7) and (8), where / ,( )x y hF  and / ,( )x y eF  are the slope and intercept of the 
linear regressions, respectively: 

, ,4
,y h y e

t te

F F
K K

Nb Nb
π

= =  (9a) 

, ,4
, .x h x e

n ne

F F
K K

Nb Nb
π

= − = −  (9b) 
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2.4 Variation and correlation of cutting force coefficients 

The linear regression performed in the previous section is a single response analysis. 
However, the measured responses are the forces in both the x and y-directions during a 
single measurement (recorded using a dynamometer). This represents a multi-response 
measurement. Therefore, analysis of the data should take into consideration its 
multivariate nature, which would provide information regarding potential correlation 
between the responses. However, it should be noted that both single and multi-response 
linear regressions give identical estimates of the mean and variation of the fitting 
parameters. The development of the multi-response model follows the description 
provided in reference (see Khuri and Cornell, 1996, pp.252–254). If we let Q be the 
number of times the experiment is conducted and r be the number of response variables 
(two in our case, i.e., Fx and Fy) measured for each feed per tooth, then the x or y 
response models can be written in vector form as: 

or ,i i i iF i x yβ ε= + =Z  (10) 

where Fi is a Q × 1 vector of observations of the x or y average cutting force responses,  
βi is a 2 × 1 vector of unknown constant parameters, and εi is a random error vector 
associated with the ith response. Equation (10) can be written in matrix form as: 

01

2 11

02
2

12

0
1 1

,
0

1 1

x x
x

Q

yy y
Q

F
Q Q
F

Q Q

β ε
β
β ε
β

×

×

    
      × ×      = +      
       × ×        

Z

Z
 (11) 

where Zi is defined as: 

1 1
,x y Q Q× ×

 = =   
1Z Z h  (12) 

h represents the feed per tooth vector at which the responses are observed and 1 is  
a vector of ones. The assumption of a simple linear regression applies here. That is,  
the expected value of εi is, E(εi) = 0. However, the variance-covariance matrix between 
the responses is not zero; this matrix can be written as:  

2

2 .x xy

xy y

σ σ
σ σ

 
=  
  

∑  (13) 

Therefore, ε (with a 2Q × 1 size) has the following variance-covariance matrix: 

Var( ) ,Qε∆ = = ⊗∑ I  (14) 

where IQ is Q × Q identity matrix and ⊗ is a symbol for the direct (or Kronecker) product 
of matrices. The direct product of two matrices ∑ and IQ, of sizes 2 × 2 and Q × Q, 
respectively, gives a 2Q × 2Q matrix which is partitioned as σijIQ where σij is the (i, j)th 
element of matrix ∑. The best linear unbiased estimate of β = [β01 β11 β02 β12]T is given 
by Zellner (1962): 

1 1 1ˆ ( ) ,T Tβ − − −= ∆ ∆Z Z Z F  (15) 
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where F is the left hand side of equation (11) and Z is the coefficient matrix (matrix  
size 2Q × 4) of β in equation (11). The variance-covariance matrix of the estimated 
vector β̂  is: 

1 1ˆVar( ) ( ) .Tβ − −= ∆Z Z  (16) 

Since ∑ is usually unknown, its terms are estimated as (Zellner, 1962): 
1 1[ ( ) ][ ( ) ]

ˆ .
T T T T T

i Q i i i i Q j j j j j
ij Q

σ
− −− −

=
F I Z Z Z Z I Z Z Z Z F

 (17) 

It should be noted that ˆ ijσ  is computed from minimising the residuals (the second term in 
both bracketed expressions in equation (17) using ordinary least-squares fits of the x and 
y-directions single response models to their respective data sets. Using the estimate for ∑ 
in equation (17), an estimate of the variance of β̂  can be obtained. The cutting force 
coefficients are determined using the linear transformation defined in equation (9): 

cut
ˆ[ ][ ],A β=K  (18) 

where Kcut = [Kne Kn Kte Kt]T and the matrix A for slotting is: 

0 0 0

40 0 0
.

0 0 0

40 0 0

Nb

Nb

Nb

Nb

π

π

 − 
 
 − 

=  
 
 
 
 
  

A  (19) 

Therefore, the variance-covariance matrix of cutting force coefficients can be found as 

cut
ˆVar( ) Var( ) .T β=K A A  (20) 

Using equation (20) the correlation between the tangential cutting force coefficients,  
for example, can be written as: 

, ,t te

t te

t te

K K
K K

K K

σ
ρ

σ σ
=  (21) 

where 
t teK Kσ  is the covariance between the Kt and Kte cutting coefficients and 

tKσ  and 

teKσ  are the corresponding standard deviations. 
As seen in equation (9), some correlation is expected between the coefficients Kt and 

Kte and between the coefficients Kn and Kne. This is because each pair depends on the 
cutting force in a single direction. Again, the reader may note that this approach does not 
account for potential calibration errors (for the dynamometer in this case). 
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2.5 Variation in other machining parameters 

The uncertainty in spindle speed and radial depth are also considered here. These 
uncertainties are aleatoric in nature (irreducible). Based on the authors’ experience,  
a standard deviation of 50 rpm and a coefficient of variation of 0.05% are assumed for 
the spindle speed and radial depth, respectively. The uncertainties here are assumed due 
to machine characteristics and process setup and are considered to be constant 
independent of operating conditions. 

3 Uncertainty propagation methods (sampling methods) 

In this section we discuss the two methods used in propagating uncertainty from input to 
output. First, we discuss simple random sampling using the Monte Carlo method and then 
we describe the more efficient Latin Hypercube sampling method. 

3.1 Monte Carlo sampling 

In this approach, a random sample of size L is selected from the population of each input 
parameter. The nominal value (mean) and standard deviation of each input parameter are 
used to generate a sample from a distribution (we have assumed normal, or Gaussian, 
distributions). This sample is propagated through the mathematical model to yield 
statistical information about the model output. In our case the milling model outputs are 
the axial depth limit, blim, and surface location error. The standard deviations of the 
predicted blim and SLE are then calculated from the sample output at each spindle speed in 
the range of interest. An improved sampling method will be discussed next. 

3.2 Latin hypercube sampling 

This method was originally proposed as a variance reduction technique (see McKay and 
Beckmann, 1979) in which the estimated variance is asymptotically lower than with 
simple random sampling (Monte Carlo method) (Cheng and Druzdzel, 2000; Stein, 
1987). That is, for the same sample size L, this method gives a lower estimate of the 
output variance than is possible with the Monte Carlo method. The basic idea of this 
method is that each value (or range of values) of a variable is represented in the sample, 
no matter which value turns out to be the most important. In this way, the sampling 
distribution is divided into a number of strata with a random selection inside each 
stratum. In the following analysis Latin Hypercube sampling is used to propagate the 
uncertainty from input to output using both zero correlation and a calculated correlation 
matrix between parameters. 

4 Stability boundary and surface location error variations 

The output distribution of the stability boundary and surface location errors were 
calculated using TFEA in conjunction with the bi-section method for the experimental 
comparison study presented in Part 1. Using the procedure outlined in Section 2, means, 
standard deviations and correlations for the tool modal parameters and cutting force 
coefficients were calculated. Tables 1 and 2 give the tool modal parameter results and 
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Table 3 gives the cutting force coefficients results. In Table 1 we note that the correlation 
between the modal mass and stiffness in the x and y-directions, ρM,K, is large which  
can be explained by the small variations in the natural frequency of the system,  
see equation (2). Also, the symmetry of the tool explains the high correlation ,x yM Mρ  and 

,x yC Cρ  where: 

, ,4 .x y n x yC f Mπζ=  (22) 

Table 1 Fitted tool modal parameters in x and y-directions. Four impact tests  
(with five repetitions for each test) were conducted for the same tool. The tool holder 
was removed from/replaced in the spindle between each test and the thermal state  
of the spindle was varied. The thermal states corresponded to cold and the condition 
after running the spindle for 30 s at {5000, 10000 and 20000} rpm. These states are 
denoted by 1, 2, 3 and 4, respectively 

Measurement state Mx (kg) Cx (N.s/m) Kx (N/m × 106) My (kg) Cy (N.s/m) Ky (N/m × 106) 
1 0.03 24.34 4.83 0.03 29.09 4.30 
2 0.03 22.05 4.38 0.02 37.25 2.60 
3 0.03 22.66 4.28 0.02 29.54 2.90 
4 0.02 24.18 3.95 0.02 29.85 3.40 
µ, mean 0.03 23.31 4.36 0.02 31.43 3.30 
σ, standard deviation 0.002 0.976 0.316 0.004 3.368 0.644 
µ/σ 0.07 0.04 0.07 0.20 0.11 0.20 

Table 2 Correlation coefficient matrix between modal parameters 

ρij Mx Cx Kx My Cy Ky 
Mx 1.00      
Cx 0.23 1.00     
Kx 0.99 0.13 1.00    
My 0.86 0.69 0.80 1.00   
Cy –0.09 –0.75 –0.05 –0.50 1.00  
Ky 0.66 0.88 0.58 0.95 –0.64 1.00 

Table 3 Cutting force coefficients for 7475 aluminum obtained from slotting cutting tests  
at 1000 rpm, for a 3.05 mm axial depth, and feed per tooth values of {0.025, 0.05, 
0.10, and 0.15} mm/tooth. The cut at 0.10 mm/tooth was repeated five times.  
The correlation matrix between the coefficients was obtained using  
the multi-response regression 

 Kt (N/m2 × 106) Kn (N/m2 × 106) Kte (N/m × 102) Kne (N/m × 102) 
µ 841 253 127 101 
σ 21.9 26.6 17 20.7 
ρij Kne Kn Kte Kt 
Kne 1.00    
Kn –0.93 1.00   
Kte –0.13 0.12 1.00  
Kt 0.12 –0.13 –0.93 1.00 
Regression P – value 2 × 10–8 8 × 10–5 3 × 10–4 3 × 10–3 
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Latin Hypercube sampling was then combined with TFEA to calculate stability boundary 
and SLE confidence intervals. The effect of nonzero correlation between parameters is 
compared to the case of zero correlation. First, a random sample of size L = 1000 was 
generated while ignoring the correlation between parameters. Another sample of the same 
size was generated while considering the correlation between cutting force coefficients 
and between the tool modal parameters (zero correlation was assumed for the other 
machining parameters, spindle speed and radial depth). In Figure 2, the stability 
boundaries of seven uncorrelated samples are shown. The average of the stability 
boundary peaks of the sample, max ,b  was calculated as: 

lim1
max

max( ( ))
,

L
ijj

b x
b

L
==

∑
 (23) 

where i is the input parameter index (total of 12 parameters) and j is the sample index.  
It is seen that both the peak location (spindle speed) and the magnitude of the peak vary 
widely. The large variation in peak location means that for a stability diagram obtained 
by averaging, the individual samples will be greatly smeared and will give the wrong 
impression of the peak. In Figure 3, the stability boundaries of seven correlated samples 
show only small variations in the peak location, with larger variations in the peak 
magnitudes than the peak location. We note here that a fine grid of spindle speeds 
(50 rpm) is used in generating the boundaries in the figure. 

Figure 2 Seven stability boundaries calculated using seven of the 1000 samples of the input 
parameters generated using Latin Hypercube with no correlation. The mean of  
1000 samples peaks, maxb  (see equation (23)) is found to be =3.7 mm) 
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Figure 3 Seven stability boundaries calculated using seven of the 1000 samples of the input 
parameters generated using Latin Hypercube with correlation. The mean of 1000 
samples peaks, maxb  (see equation (23)) is found to be =4.8 mm) 

 

The mean of the blim distribution, lim ,b  was calculated for the aforementioned cases and 
compared to blim obtained using the mean values of measured parameters, lim ( )ib x  where 

( )1
/L

i ijj
x x L

=
= ∑  (Tables 1 and 3). A comparison is provided in Figure 4. The first 

observation from the figure is that neglecting the correlation gives very different 
estimation of the mean value of the stability boundary. A comparison between the peak 
on the graph and the mean value of the peak, equation (23) shows that for the 
uncorrelated case there is substantial smearing due to the shifting of the peak location. 
For the correlated case, however, there is much better agreement between the peak of the 
mean inputs stability boundary and the mean of the peaks of the individual simulations. 
These do not match exactly due to the effect of the operator non-linearity.1 The stability 
boundary obtained by using mean properties (solid line in Figure 4 is different from the 
mean of the stability boundaries. This effect is especially true when the variation in the 
parameters is large. For example, for the small variation case of Kt (circles in Figure 4) 
only, limb  and lim ( )ib x  predictions are nearly identical. However for the large variation 

case of My (squares in Figure 4), limb  and lim ( )ib x  predictions are quite different.  

The calculated maxb  values stress the importance of correlation. For the uncorrelated case 

(Figure 2 and the dotted line in Figure 4), max 3.7 mmb =  is substantially higher than the 
calculated peak of 2.7 mm. This implies that the uncorrelated case underestimates  
the peak of limb  due to horizontal shifts in the stability boundary peaks. For the correlated 

case (Figure 3 and the dashed line in Figure 4), max 4.8b =  is closer to the calculated peak 

of 4.3 mm. This suggests that the correlated result limb  provides a better representation of 
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the physical variability in the input parameters. Note that, aside from this effect, we also 
have a band of uncertainty around the mean. For simple random sampling, the standard 
deviation of the estimated sample mean depends on the sample size, L, for example for 
the axial depth limit, blim:  

limlim

1/ 2
( ) .ib xb Lσ σ−=  (24) 

Figure 4 Stability boundary calculated using the mean value of input parameters, ,ix  mean  
of blim distribution considering correlation between parameters and without considering 
the correlation. The mean of blim considering a coefficient of variation, CV, of 2.6%  
and 20% in My and Kt (squares and circles, respectively) at selected spindle speeds is 
also shown 

 

For an L = 1000 sample size, this gives an approximately 3% accuracy. This accuracy is 
improved for Latin Hypercube sampling (Stein, 1987). With this accuracy in mind,  
the propagated variation in the stability boundary using the Latin Hypercube method was 
computed to compare the resulting levels with the accuracy limit imposed by the sample 
size. Results are provided in Figure 5, which shows the standard deviation, 

lim
,bσ  in the 

axial depth limit, blim, both with and without correlation. Clearly the correlation has 
significantly reduced the variation in the limiting axial depth of stability compared to the 
zero correlation case. However, in both cases, the percentage of the standard deviation to 
the mean (see Figure 4) is much higher than 3%. The reduction in standard deviation with 
the inclusion of correlation is expected since ignoring correlation results in a physically 
unrealistic sample. For example, while ignoring correlation, the modal stiffness in  
the x and y-directions for a particular sample may be at the extreme opposite sides of the 
normal distribution, while we do not expect this to be true in practice. Therefore, 
neglecting the correlation between tool stiffness values, for example, can overestimate its 
influence on the stability limit. 



   

 

   

   
 

   

   

 

   

   14 M.H. Kurdi et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 5 Standard deviation of the axial depth limit due to parameter variations. The Latin 
Hypecube method was used for the correlated and zero correlation cases 

 

Latin Hypercube sampling with correlation is used to propagate the variation from input 
to output for the analyses that follow. The histogram of the blim output sample is shown at 
12000 rpm in Figure 6(a). The histogram indicates non-normality of the distribution  
at that spindle speed. The corresponding boxplot (a plot used to show variation and 
measures of central tendency for a sample) is shown in Figure 6(b). In the figure,  
the median, 25% and 75% quartiles and two whiskers, which mark the sample extremes, 
are shown. The unequal lengths of the two whiskers identify the non-normality of the 
distribution. Also, the Interquartile Range (IQR) gives a measure of the distribution 
variability. Figure 7 shows the variation in the limiting axial depth as a function of 
spindle speed with the experimental results presented in Part 1 overlaid. As indicated in 
the figure, the experimental results generally agree with the median of the sample.  
In Figure 8 the experimental results are shown with a 95% confidence interval,  
the interval lies between the 2.5% and 97.5% percentiles of the output distribution.  
Also shown in the figure is the confidence interval based on two standard deviations of 

lim ,b  in which the upper bound of this interval agrees with the 97.5% percentile. Though 
the lower bound gives unrealistic negative blim values, which emphasises that due to the 
non-linearity in the response, a standard deviation correction may not provide an accurate 
variation of the response. Furthermore, the confidence interval of the stability limit is also 
prohibitively large. Accounting for the change in the tool dynamics after tool-holder 
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removal/replacement caused large variation in the modal parameters (see Table 1) and, 
consequently, the stability limit confidence interval was increased. 

Figure 6 The blim sample variation for 12000 rpm spindle speed with no correlation:  
(a) histogram depicting the sample distribution and (b) boxplot corresponding to 
histogram shown in part (a) – the boxplot summarises the sample distribution 
characteristics by indicating the sample variation using Interquartile Range (IQR), 
sample median and non-normality of the distribution by the unequal lengths of the 
whiskers. The interval between the two solid squares constitutes a 95% confidence 
interval or the corresponding 2.5% and 97.5% percentiles 

 
 (a) 

 
 (b) 

Figure 7 Stability boundary generated using mean values of input parameters with experimental 
results overlaid. The boxplot corresponding to each spindle speed used in the 
measurements is also shown. At some spindle speeds the boxplot is skewed.  
This indicates the non-normality of the sample distribution 
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Figure 8 A 95% stability limit confidence interval with experimental results overlaid.  
The interval is based on 2.5% and 97.5% percentiles calculated from the distribution  
of the output sample. A two standard deviation interval is also shown – the upper limit 
of the standard deviation interval generally agrees with the 97.5% percentile 

 

The SLE results from the experimental case study presented in Part 1 (see Table 4) are 
shown in Figure 9 with the SLE boxplots overlaid. It should be noted here that,  
because SLE is undefined in the unstable region, only the SLE values of the sample in the 
stable domain are shown in the boxplot. In Figure 9, it is seen that the variation in the 
SLE is nearly constant for the five cases considered. It is also seen that the prediction  
SLE sample median is larger than the experimental results. Although the bounds of the 
numerical SLE sample depend on the sample size, we believe the discrepancy is 
dominated by modelling simplifications rather than input value variations. As noted in 
Part 1, TFEA does not include the effects of the cutting teeth helix angle and we have 
assumed that the system dynamics and cutting force coefficients do not vary with spindle 
speed. The figure also identifies the difference between the calculated SLE using  
the mean parameters, (shown as circles), and the median or mean SLE of the sample.  
The notch in the figure indicates that the SLE median is essentially constant between 
consecutive spindle speeds. This result, combined with the small variation in the 
experimental results, validates the robustness of the maximum MRR (1400 mm3/s with a 
4.45 mm axial depth) optimum design. 

Table 4 Surface location error cutting conditions for maximum MRR Pareto optimal design 
(the first cut listed) with four extra cuts at different spindle speeds 

Cut no. b (mm) Ω (rpm) MRR (mm3/s) SLE (µm) 

1  14853   
2  14803   
3 4.45 14753 1400 85.7 
4  14903   
5  14953   
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Figure 9 Boxplot of SLE variability at different spindle speeds for 4.45 mm axial depth case. 
Also shown are 95% confidence intervals within the filled squares. The ( iSLE x  value 
for the 14953 rpm spindle speed is not shown in the figure because it falls in the 
predicted unstable region where the SLE is undefined by TFEA 

 

5 Conclusions 

In this study the Latin Hypercube method was used to quantify the uncertainty in stability 
boundary and surface location error by propagating the parameter variations through the 
milling model. The parameter mean values, variation and correlation were measured 
experimentally. The variation in the tool modal parameters accounted for thermal and 
tool-holder replacement effects, as well as inconsistencies in the impact testing 
procedure. This variation was transformed to stability and SLE confidence intervals;  
the large size of these intervals suggest the need to measure the tool point frequency 
response function immediately prior to cutting tests, if possible. Using a multi-response 
regression analysis and measurement repetition, significant correlation was found 
between the cutting force coefficients, as well as between the tool modal parameters. 
Accounting for this correlation reduced the variation in the calculated output sample by 
55% with a minimum reduction of 10%. It was found that stability limit and SLE values 
computed from the input means did not agree with the means of the distributions obtained 
after propagating the input variations through TFEA. This was especially true when large 
variation in the parameters existed. 
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Note 
1As an example, consider the case of propagating a mean zero normal distribution of samples, x, 
through the nonlinear absolute value operator, y = |x|. Clearly, the mean value of ( 0)y y >  is not 

equal to 0.x =  Further, the greater spread of x, the higher the disagreement between y  and x . 

Nomenclature 

A Slotting transformation matrix 
a Radial depth (mm) 
b Axial depth (mm) 
bi Root corresponding to stability limit at iteration i (mm) 
blim Axial depth at stability limit (mm) 

maxb  Average of the stability boundaries peaks of the sample 

Cx Modal damping in x-direction (N.s/m) 
Cy Modal damping in y-direction (N.s/m) 
CV Coefficient of Variation 
F Vector of average observed cutting forces for x and y-directions (N) 
Fi Average observed cutting force for response i (N) 
Fx Observed cutting force in x-direction (N) 
Fy Observed cutting force in y-direction (N) 

xF  Average cutting force in x-direction (N) 

yF  Average cutting force in y-direction (N) 

/ ,x y hF  Average cutting force per chip load (N/m) 

/ ,x y eF  Average edge cutting force (N) 

fn Natural frequency (Hz) 
f1,2 Half power frequencies (Hz) 
h Feed per tooth (mm/tooth) 
H Feed per tooth 
IQ Identity matrix of size Q 
Kt Tangential cutting force coefficient (N/m2) 
Kn Normal cutting force coefficient (N/m2) 
Kte Tangential edge cutting force coefficient (N/m) 
Kne Normal edge cutting force coefficient (N/m) 
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K Modal stiffness (N/m) 
Kcut Vector of cutting force coefficient (N/m2) 
Kx Modal stiffness in x-direction (N/m) 
Ky Modal stiffness in y-direction (N/m) 
L Sample size 
MRR Material removal rate (mm3/s) 
Mx Modal mass in x-direction 
My Modal mass in y-direction 
N Number of teeth on the cutting tool 
Q Number of times the experiment is conducted 
SLE Surface location error (µm) 
Var Variance-covariance matrix of a vector 

ix  Mean of milling parameter xi 

y y-direction 
Zi Coefficient matrix of size (Q × 2) 
Z Coefficient matrix of size (2Q × 4) 

β̂  Unbiased estimate of β 

β Vector of unknown constant parameters 

εi Random error vector associated with ith response 

φ Cutter angle (degrees) 

φst Cutter angle at start of cut (degrees) 

φex Cutter angle at exit of cut (degrees) 

Ω Spindle speed (rpm) 

ρ Correlation factor 

∑ Variance-covariance matrix 

σi Standard deviation of generic parameter i 

limb
σ  Standard deviation of axial depth limit 

σij Covariance between i and j 

ˆ ijσ  Estimate of σij 

ζ Damping ratio 

 


