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Abstract: Successful implementation of milling requires the selection of 
appropriate operating parameters. In this paper a semi-analytical modeling 
approach and multi-objective optimisation are used to select optimum spindle 
speed and axial depth. The trade-off curve of removal rate and surface location 
error is calculated. Some degree of robustness is achieved by calculating the 
surface location error as a moving average over an interval of spindle speeds. 
The stability boundary and a selected design are compared to experimental 
results. The results illustrate the need to be concerned with the robustness of the 
optimal designs. This is addressed in Part 2 of the paper. 
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1 Introduction 

Intense competition in manufacturing demands cost-effective manufacturing processes 
that provide acceptable dimensional accuracy. Milling often satisfies these requirements 
provided appropriate operating parameters are selected. However, the selection of these 
preferred operating parameters is not trivial. Barriers to the full realisation of potential 
productivity gains include:  

• the requirement for multiple tool point dynamic measurements 

• sensitivity of part quality to small changes in process variables 

• the difficulty in concurrently considering stability, accuracy, and surface finish  
in an analytical (or semi-analytical) framework.  

Therefore, balancing the multiple requirements, including high material removal rate, 
MRR, minimum surface location error (deviation of the actual cut surface from the 
commanded one resulting from the process dynamics), SLE, sufficient tool life, chatter 
avoidance, and adequate surface finish, to arrive at an optimum solution is difficult 
without the aid of optimisation techniques. 

Prior research in milling (particularly high-speed milling) optimisation has considered 
a single objective. For example, Kim et al. (2002) focused on optimising cutting speed to 
improve machining accuracy in high-speed ball end milling by accounting for the 
effective tool diameter during cutting. Juan et al. (2003) applied the concept of adaptive 
learning (polynomial network) to construct a machining model that gathered material 
removal, cost and time components of high-speed milling operations and then used 
simulated annealing optimisation to select optimum cutting parameters to minimise 
production cost for rough high-speed machining operations. In this study, a mathematical 
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model is used to analyse the process dynamics directly with regard to surface accuracy 
and stability with axial depth of cut and spindle speed as design variables. Other 
considerations such as tool wear and inclusion of more process parameters may be 
included in the future. 

Previous research in machining process optimisation has explored various objective 
functions. Three main objectives have been recognised:  

• maximum production rate or minimum cycle time (Deshayes et al., 2005) 

• minimum cost (Ermer, 1971; Hitomi, 1989; Shalaby and Riad, 1988;  
Hati and Rao, 1976) 

• maximum profit (Wu and Ermer, 1966; Boothroyd and Rusek, 1976).  

Agapiou (1992) considered a combined criterion based on a weighted sum of these.  
We apply multi-objective optimisation, which addresses the issue of competing 
objectives using concepts developed by Pareto (Schwier, 1971), the French-Italian 
economist who established an optimality concept in the field of economics for multiple 
objectives. A Pareto front (Kalyanmoy, 2001) is generated that allows designers to 
tradeoff one objective against others. This has the advantage of giving the designer the 
opportunity to tradeoff objectives directly, in contrast to optimising a weighted sum of 
the two objectives, where the weights selected by the designer may not correspond to a 
desirable tradeoff. Additionally, the Pareto front enables the designer to view the set of 
possible optimum designs and select his or her preference depending on the particular 
product objective. However, generating a Pareto front is typically much more expensive 
than optimising a single objective. Due to the computational intensity of the Pareto front 
calculation, an efficient analysis method should be used. The semi-analytical Time Finite 
Element Analysis (TFEA) (Mann, 2003; Halley, 1999; Mann et al., 2004) approach is 
used here to obtain rapid process performance calculations of SLE and stability in a single 
step. The computational efficiency of TFEA compared to conventional time-domain 
simulation methods makes it an attractive candidate for use in the optimisation algorithm. 
Additionally, TFEA provides a clear and distinct definition of stability boundaries  
(i.e., characteristic multipliers of the milling equation with an absolute value greater than 
one identify unstable conditions, see Section 2.2). 

In this paper we seek to develop a framework for pre-process selection of milling 
parameters. In Part 1, we calculate the Pareto front of SLE and MRR considering process 
stability. Additionally, we account for the regions of high SLE sensitivity to small 
changes in parameters using a moving average SLE objective. An experimental case 
study is presented which evaluates the robustness of designs to SLE sensitivity and 
stability. Although the study verifies the optimisation formulation, it also highlights the 
need to consider process parameter uncertainties due to disagreement between SLE 
prediction and experiment. In Part 2 of the paper we explore the influence of input 
uncertainties on prediction distributions. Sampling methods are used to propagate the 
input parameter uncertainties through the TFEA analysis. We identify the importance of 
considering correlations between parameters to mimic actual physical variations and 
show that when correlation is included, the propagated uncertainty better represents 
experimental results. 
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The main objectives of the paper are summarised as:  
• develop an optimisation method that accounts for objective sensitivity to small 

changes in a design variable 
• calculate the Pareto front of SLE and MRR under stability constraints 
• verify the robustness of the optimisation algorithm experimentally and evaluate 

uncertainty.  

In summary, we apply TFEA and multi-objective optimisation to the selection of 
optimum spindle speed, Ω, and axial depth of cut, b, for peripheral end milling 
operations, Figure 1. Two objectives are simultaneously addressed, SLE and MRR, where 
only stability and side constraints of the design variables are considered.  
The constraint method (Eschenauer et al., 1986) is used to generate the Pareto front of 
SLE and MRR. The stability boundary and a selected Pareto design in the trade-off curve 
are then compared to experimental results. 

Part 1 of the paper is organised as follows: Section 2 gives the milling model 
description and analysis technique; Section 3 defines the multi-objective optimisation 
problem and solution approach used; Section 4 describes a case study; and Section 5 
summarises the main conclusions of the paper. 

Figure 1 (a) Schematic of 2-DOF milling tool; (b) identification of key variables  
and (c) various types of milling operations 

 
 (a) (b) 

 
(c) 
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2 Milling problem 

2.1 Milling model 

In this paper we consider a two Degree-of-Freedom (2-DOF) analysis (see Figure 1(a)) of 
the milling operation for optimisation. However, the semi-analytical approach described 
here is also applicable to milling processes with multiple DOF (Mann et al., 2005).  
With the assumption of either a compliant tool or structure, a summation of forces gives 
the following equation of motion in orthogonal physical coordinates: 

0 0 0 ( )( ) ( ) ( )
,

0 0 0 ( )( ) ( ) ( )
x X x x

y y y y

M C K F tx t x t x t
M C K F ty t y t y t

            
+ + =            

            
 (1) 

where Mx, Cx, Kx and My, Cy, Ky are the modal mass, viscous damping, and stiffness terms 
and Fx and Fy are the cutting forces in the x and y-directions, respectively. A compact 
form of the milling process can be found by considering the chip thickness variation and 
forces on each tooth (a detailed derivation is provided in references (Mann, 2003;  
Halley, 1999; Mann et al., 2004, 2005): 

0( ) ( ) ( ) ( ) ( ( ) ( )) ( ) ,X t X t X t t b X t X t f t bτ+ + = − − +cM C K K  (2) 

where [ ]( ) ( ) ( ) TX t x t y t=  is the two-element position vector; M, C and K are the 2 × 2 
modal mass, damping, and stiffness matrices, respectively; Kc is a 2 × 2 matrix 
representing the component of cutting forces which depend on the position vector and 

0 ( )f t  is the 2 × 1 vector that represents the component of the cutting forces that are 
independent of the position vector; b is the axial depth of cut; τ = 60/(NΩ) is the tooth 
passing period; N is the number of cutting teeth on the cutting tool; Ω is the spindle speed 
in rev/min (rpm). As shown in equation (2), the milling model depends on modal 
parameters of the tool or workpiece and the cutting force coefficients. In Part 2 of this 
paper we describe the experimental procedure used to estimate these parameters. 

2.2 Analysis method 

The dynamic behaviour of the milling process, governed by equation (2), can be 
determined using numerical time-domain simulation (Smith and Tlusty, 1991) or the 
semi-analytical TFEA. As noted previously, TFEA is numerically more efficient.  
Using this method, a dynamic map (matrices generated using weighted residual 
projection of the time dimension in equation (2)) is generated that relates the vibration 
while the tool is in the cut to free vibration out of the cut. Stability of the milling process 
can be determined using the characteristic multipliers of the dynamic map; SLE is found 
from the fixed points or steady-state solution of the dynamic map. For a more detailed 
description of the method the interested reader may refer to Mann et al. (2005). 

The use of TFEA in an optimisation algorithm requires ascertaining its convergence 
characteristics in the entire design domain. The convergence of TFEA depends on the 
number of elements and cutting parameters, including spindle speed and radial depth of 
cut. Both |SLE| and the characteristic multipliers of the dynamic map can be used to 
check for convergence. The stability boundary is determined using the maximum 
magnitude of the characteristic multipliers: 
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max max ,kk
λ λ=  (3) 

where λk denotes the kth characteristic multiplier of the dynamic map. A typical 
convergence test is to observe the change in the estimated value (λmax or |SLE|) as the 
number of elements (mesh refinement) or interpolating polynomials order (Garg et al., 
2007) is increased. In Figure 2, the dependence of λmax on the number of elements for 
three spindle speeds is shown for a randomly selected cutting condition of 5% radial 
immersion (i.e., the percentage of radial depth of cut to tool diameter) and 18 mm axial 
depth. As shown in panel (b), false convergence for a small number of elements (≤3) can 
occur. However, increasing the number of elements (>3) shows poor convergence for 
both lower speeds. A convergent solution is reached for the 1000 rpm spindle speed for 
fewer elements (E = 11) than for the 500 rpm case (E = 17). This is due to the fact that,  
as the spindle speed decreases, the time in the cut increases, which requires a higher 
number of elements to achieve convergence. Because the optimisation algorithm will 
pick milling parameters anywhere within the design space, it is necessary to choose  
a sufficiently high number of elements to ensure convergence over the full test range. 
However, a penalty in computational time is incurred for more elements. Since the 
greatest potential for high MRR is in the higher spindle speed range, a minimum spindle 
speed of 5000 rpm is used here. This ensures that a typical number of elements (E = 10  
is used in the following analyses) is efficient and adequate (see Figure 2). 

2.2.1 Stability boundary 

In order to find the axial depth stability limit, blim, at the corresponding cutting 
conditions, the bi-section method is used to solve for the axial depth at which λmax = 1 
(stability limit). An absolute error is used as a criterion for convergence: 

1 ,i i

i

b b
b

ε−−
≤  (4) 

where ε is the convergence tolerance and bi is the axial depth corresponding to λmax = 1 at 
iteration i. The value of ε is based on the numerical accuracy required in the calculation 
of blim. A value of ε = 0.001 is usually acceptable. 

A typical example for the calculation of the stability limit, blim, is shown in  
Figure 3(a) where the variation of blim vs. spindle speed shows lobe peaks where C1 
(slope) discontinuity of the stability boundary is observed. The discontinuity happens 
when two characteristicmultipliers change places in terms of having the largest 
magnitude. Accounting for this discontinuity is important in the implementation of the 
optimisation search method. 
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Figure 2 Convergence plots of the stability constraint showing the effect of spindle speed  
on convergence for 5% radial immersion and an 18 mm axial depth: (a) {500, 1000, 
5000} rpm compared for full range of number of elements; (b) false convergence of 
{500, 1000} rpm speeds for number of elements ≤3; (c) convergent solution for all 
spindle speeds and (d) convergent solution for {1000, 5000} rpm. It is seen that 
convergence at lower speeds requires more elements 

 
 (a) 

 
(b) 

 
(c) 

 
(d) 
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Figure 3 (a) A typical stability boundary-the C1 discontinuities at the cusp peaks are identified 
and (b) surface location error and its absolute value (red curve in the insert). 
Discontinuity of the absolute surface location error is apparent in the lower insert 

 
 (a) (b) 

2.3 Optimisation problem statement 

The problem of minimising SLE and maximising MRR is stated as follows: 

min ( , , , , ) , ( , , , , ) ,SLE a b h N MRR a b h N Ω − Ω    (5) 

maxsubject to: max ( , , , ) 1,kk
a b Nλ λ= Ω ≤  

where the stability constraint, λmax, defines the stable domain of b and Ω, SLE is found 
from the fixed points (amplitude of the steady state response) of the dynamic map, and 
the mean MRR is given as: 

,MRR abhN= Ω  (6) 

where a and h are radial depth of cut and feed per tooth, respectively (see Figure 1).  
The SLE incurred due to the process dynamics can be positive (undercutting which 
results in inaccurate part) or negative (overcutting which results in a scrapped part).  
We elected to minimise the magnitude of SLE. However, negative SLE is more 
unfavourable than a positive one, so with data on the relative costs it may be more 
appropriate to have an objective function that reflects these costs. Note that in  
equations (5) and (6) the SLE and MRR are stated as a function of cutting conditions 
(a, b, h, N and Ω). This reflects the relative ease by which these conditions can be 
adjusted to achieve optimality of the objectives. However, to minimise the computational 
complexity of the problem we only consider b and Ω as design variables. 

Correct use of an optimisation method depends on its limitations. Gradient-based 
methods, for example, generally require C1 continuity (i.e., the first derivative of the 
function is continuous) of the objective functions (MRR and |SLE|) and stability 
constraint for efficient performance. Figure 3(a) shows that the stability boundary has C1 
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discontinuities near lobe peaks. The reader may note some irregularity in the bottom  
part of the stability boundary. This is mainly due to the analysis method (TFEA),  
which considers the interrupted nature of the cutting process. This can lead to two  
types of instability: Hopf and flip bifurcations. These irregularities are due to flip 
bifurcation and become more pronounced at very small radial depths of cut. Figure 3(b) 
depicts the variation of SLE and |SLE| as a function of spindle speed for a typical  
set of cutting parameters. Although SLE is C1 continuous, the absolute value is 
discontinuous where SLE switches sign. C1 discontinuity inhibits rapid convergence  
of gradient-based optimisation algorithms. To overcome this difficulty we use multiple 
initial guesses procedure to enable convergence of the optimisation method to local 
optima (see Section 3.2). 

3 Multi-objective optimisation formulation 

In this section a discussion of the concepts of single and multi-objective optimisation is 
briefly provided, the interested reader may refer to the book by Miettinen (1999) for  
a more elaborate discussion. The multi-objective problem is formulated using the 
constraint method and then a robust formulation is provided to account for the sensitivity 
of the |SLE| objective to spindle speed. 

3.1 Single and multi-objective optimisation 

In single-objective optimisation, the maximum/minimum of a single criterion is desired. 
In milling, for example, a designer may be concerned with MRR alone. As shown in 
Figure 4(a), there are two design variables Ω and b, where the feasible design domain is 
limited by the stability constraint λmax. There are several possible designs in the feasible 
domain (A, B and 1–6). These designs can be mapped from the design space, Figure 4(a), 
into the criteria space, Figure 4(b). For the single MRR objective, point B corresponds to 
the maximum productivity optimum design. However, if part accuracy is most important, 
a designer may choose |SLE| as the objective function. The optimum design for the  
|SLE| objective corresponds to point A. Depending on the objective function, constraints, 
and design variables, different techniques may be used to solve for the single-objective 
optimum. 

In contrast, multi-objective optimisation requires a vector of objectives to be 
optimised. For the milling problem, two competing objectives may be considered with 
different combinations of the two objectives being most attractive to different designers. 
This leads to a set of tradeoff optimum solutions. This set A, B, 5 and 6 is defined as the 
Pareto optimal set which constitutes the Pareto front (Rakowska et al., 1991; Kalyanmoy, 
2001; Coello Coello et al., 2006) (Figure 4(b)). The concept of Pareto optimality can best  
be described by the domination principle. A solution X is said to dominate solution Y  
(or X is non-dominated by Y) if the following two conditions hold:  

• solution X is no worse than solution Y for both objectives 

• solution X is better than Y for at least one objective.  

The set of non-dominated feasible solutions is said to be Pareto optimal. For example, 
designs 1–3 are dominated by design 5 for both objectives and therefore do not belong to 
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the Pareto optimal set. Although design 4 dominates design 5, it is dominated by design 6 
which excludes it from the Pareto set. Designs which belong to the Pareto front are 
candidate designs that trade off one objective against the other. Depending on the 
decision maker’s preferences, a single solution can be chosen from that set. 

Figure 4 (a) Design variables b and Ω, and constraint λmax in the design space  
and (b) corresponding Pareto front in the criterion space 

 
(a) 

 
(b) 

3.2 Constraint method 

To address the multi-objective problem, the constraint method is used. This method was 
applied previously to different optimisation problems, see for example (Papila et al., 
2006). To implement this approach, the two-objective problem is transformed into  
a single-objective problem of minimising one objective with a set of different limits on 
the second objective. Each time the single-objective problem is solved, the second 
objective is constrained to a specific value until a sufficient set of Pareto optimum points 
are found. These are used to generate the Pareto front (Kalyanmoy, 2001) of the two 
objectives (Figure 4(b)). The Pareto front, although computationally more expensive, 
assigns the task of selecting an optimum design to the designer, which allows the design 
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to evolve according to product requirements. In the case that |SLE| is chosen as the 
objective function to be minimised, equation (5) is transformed to: 

max

min ( , )
subject to: ( , ) , for 1

( , ) max ( , ) 1,
i

kk

SLE b
MRR b e i k

b bλ λ

Ω
− Ω ≤ =

Ω = Ω ≤
…  (7) 

for a series of k selected limits (ei) on MRR, where the axial depth (b) and spindle  
speed (Ω) are the design variables. The boundary of the limits ei is based on the 
designer’s preferences and stability constraint limitation. For example, points A and B in 
Figure 4(b) may be set as the minimum MRR tolerated by the designer and the maximum 
MRR possible in the design domain, respectively.  

The Sequential Quadratic Programming method (SQP) is used to find the Pareto front 
using the formulation in equation (7). The SQP method is a local search method that is 
dependent on C1 continuity of the objective function and constraints. However, the use of 
multiple initial guesses circumvents this weakness. The fmincon function in the Matlab 
optimisation toolbox is used to implement the method. To obtain a global optimum, 
initial guesses are made at selected spindle speeds (we have used 1000 rpm intervals in 
the spindle speed range) along each MRR constraint limit. A set of designs are obtained 
from these initial guesses. The minimum of these designs is nominated as a global 
optimum. However, since designs found by fmincon are not necessarily optimal designs, 
the number of initial guesses along the MRR constraint is increased and the optimisation 
simulation is again executed to check the validity of that global optimum. 

A numerical example was completed; the down milling cutting conditions are 
provided in Table 1. Modal parameters for a two flute, 19.05 mm diameter, d, 12° helix 
angle tool with one mode in the x- and y-directions and nominal values of the tangential, 
Kt, and normal, Kn, cutting force coefficients and edge coefficients Kte and Kne, are also 
given (the coefficients are used to compute the cutting forces in equation (1)). Numerical 
results for four selected limits on MRR are shown in Figure 5. 

Table 1 Cutting conditions, cutting force coefficients and modal parameters for numerical 
example shown in Figure 5 

M (kg)  C (N.s/m)  K (N/m) 

0.056 0 3.94 0 1.52 × 106 0 
0 0.061 0 3.86 0 1.67 × 106 

d (mm) h (mm) a (mm) N 
19.05 0.18 0.76 2 

Kt (N/m2) Kn (N/m2) Kte (N/m) Kne (N/m) 
550 × 106 200 × 106 0 0 
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Figure 5 (a) Stability, |SLE| and MRR contours with optimum points overlaid – the figure shows 
that optimum points occur in regions where |SLE| is sensitive to spindle speed variation 
and (b) an optimum point for MRR = 100 mm3/s. The optimum point sensitivity with 
respect to spindle speed is apparent (Table 1) 

 
 (a) 

 
 (b) 

In this formulation, the minimum |SLE| points were found to favour spindle speeds where 
the tooth passing frequency is equal to an integer fraction of the system’s natural 
frequency, fny (Figure 5(a)) which corresponds to the most flexible mode (these are the 
traditionally-selected ‘best’ speeds which are located near the stability lobe peaks). 
Because SLE can undergo large changes in value for small perturbations in Ω at these 
optimum points, the formulation provided in equation (7) leads to optima which are 
highly sensitive to spindle speed variation or, equivalently, small changes in the tool 
point dynamics. To show the sensitivity of these optimum points, the 100 mm3/s 
optimum point is superimposed on a graph of |SLE| vs. Ω in Figure 5(b). It is seen that the 
optimum point is located in a high |SLE| slope region. 

3.3 Robust optimisation 

The optimisation problem was reformulated in order to avoid convergence to spindle 
speed sensitive optima by redefining the |SLE| objective as the average |SLE| at three 
adjacent spindle speeds. This more robust form of the problem transforms equation (7) to: 
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max max max

( , ) ( , ) ( , )
min

3

subject to: ( , ) , for 1
{ ( , ) ( , ) ( , )} 1,

i

SLE b SLE b SLE b

MRR b e i k
b b b

δ δ

λ δ λ λ δ

 Ω + + Ω + Ω − 
 
 

− Ω ≤ =
Ω − Ω Ω + ≤

…
∩ ∩

 (8) 

for a series of k selected limits (ei) on MRR. The spindle speeds include the nominal Ω 
plus two perturbations Ω + δ and Ω – δ. The additional evaluations of SLE and stability 
constraint triples the computation time of the optimisation. The perturbation, δ, is 
selected by the designer based on the confidence in the natural frequency of the 
tool/workpiece combination (a 50 rpm perturbation was used in our analyses). 

The superiority of the moving |SLE| average as an objective function can be seen in 
Figure 6. In this figure, the moving |SLE| average is plotted together with |SLE|, where 
points A and B correspond to highly and moderately spindle-speed-sensitive |SLE|, 
respectively. The |SLE| moving average at point A (high slope point) is shown to be 
higher than at point B (recall that a small value is desired). Therefore, using the moving 
|SLE| average as an objective function criterion can avoid spindle-speed-sensitive |SLE| 
optima (such as the |SLE| region near point A). 

Figure 6 Moving average of |SLE| validation as optimisation criterion that avoids spindle speed 
sensitive |SLE|. Points A (close to steep slope region of |SLE|) and B (close to the 
moderate slope region of |SLE|) are identified. The moving average of |SLE| near A  
is higher than at B. Therefore, using the moving average as an optimum criterion is 
beneficial 

 

4 Comparison with experiments 

In this section the optimisation results are evaluated experimentally. First stability 
boundary tests are conducted to show the validity of the stability constraint and then  
a selected robust design is compared to experiment. 
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4.1 Stability boundary tests 

The cutting tests were conducted on a Makino V55 vertical machining center located  
at TechSolve, an Ohio-based not-for-profit manufacturing research organisation 
(http://www.techsolve.org). The cutting tool was a 4 flute, 12.7 mm diameter, solid 
carbide endmill with a 70 mm overhang length and 30° helix angle. Four measurements 
of the tool point frequency response function were made after running the spindle for 30 s 
at a specific spindle speed. For each test, five repeated tap tests in the x-direction were 
completed, then the spindle was run for another 30 s and five repeated tap tests  
were completed in the y-direction. Between tests, the holder was removed from the 
machine and replaced. This measurement procedure enabled the estimation of the 
variation of the modal parameters due to the spindle thermal variations, holder 
replacement effects and variation in impact testing technique (accelerometer placement 
and impact direction). Figures 7 and 8 show frequency response measurements of the tool 
in the x- and y-directions, respectively, for the average of the five tap tests. Table 2 lists 
the tool modal parameters obtained by fitting the measurement using the peak amplitude 
method (described in Part 2). The mean values of these parameters are used in the TFEA 
calculations. Also, the cutting force coefficients for the 7475 aluminum/tool geometry 
combination were estimated by conducting a series of slotting cutting tests and recording 
the force. The tests were conducted at a spindle speed equal to 1000 rpm. Higher spindle 
speeds were not possible due to bandwidth limitations of the dynamometer. A regression 
analysis was conducted to evaluate the cutting force coefficients (detailed in Part 2). 
Table 3 gives the cutting force coefficients, as well as the tool geometry and cutting 
conditions, used in the case study. 

Figure 7 Tool point frequency response function measurement for the x-direction. Four sets  
of five measurements were made to estimate spindle thermal and holder replacement 
effects, as well as impact testing variability. The mean of the single DOF modal fits  
to the measurements data (1–4) is also shown 
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Figure 8 Tool point frequency response function measurement for the y-direction. Four sets  
of five measurements were made to estimate spindle thermal and holder replacement 
effects as well as impact testing variability. The mean of the single DOF modal fits  
the measurements data (1–4) is also shown 

 

Table 2 Fitted tool modal parameters in x and y-directions. Four impact tests were conducted 
for the same tool. Between each test, the tool-holder was removed and replaced. 
Additionally, the thermal state was varied by running the spindle at different speeds. 
The thermal states correspond to a cold spindle state and running the spindle at  
{5000, 10000 and 20000} rpm for 30 s intervals. These states are denoted  
by 1, 2, 3 and 4 respectively 

Measurement state Mx (kg) ζx Kx (N/m × 106) My (kg) ζy Ky (N/m × 106) 
1 0.03 0.03 4.83 0.03 0.04 4.30 
2 0.03 0.03 4.38 0.02 0.09 2.60 
3 0.03 0.03 4.28 0.02 0.06 2.90 
4 0.02 0.04 3.95 0.02 0.06 3.40 
Mean 0.03 0.03 4.36 0.02 0.06 3.30 

Table 3 Cutting conditions and cutting force coefficients for 7475 aluminum/endmill 
geometry for case study. The cutting force coefficients were obtained from  
slotting tests completed at 1000 rpm, 3.05 mm axial depth, and feed per tooth values 
of {0.025, 0.05, 0.10 and 0.15} mm/tooth. The 0.10 mm/tooth cut was repeated  
five times 

d (mm) h (mm) a (mm) N α 

12.7 0.1 3.175 4 30° 
Kt (N/m2) Kn (N/m2) Kte (N/m) Kne (N/m) 
841 × 106 253 × 106 127 × 102 101 × 102 
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To verify the stability lobes experimentally, a 7475 aluminum workpiece was mounted 
on the machining centre table. Cutting tests with different axial depths were conducted at 
a range of spindle speeds from 10000 rpm to 20000 rpm in 1000 rpm steps. The stability 
of each cutting operation was determined by recording the time-domain sound signal 
(approximate signal length was 1.5 s) of the cut (44 kHz sampling rate) and transforming 
into the frequency domain (Delio et al., 1992). An analysis of the signal frequencies was 
used to identify the chatter frequency, if one existed (i.e., significant content was seen at 
a frequency other than the runout and tooth passing frequencies and their harmonics).  
As expected, the observed chatter frequency, when it existed, was always slightly higher 
than the tool natural frequency. 

The results of the cutting tests are provided in Figure 9. The TFEA stability boundary, 
which was obtained using mean values of the input parameters (see Tables 2 and 3),  
is also shown. Example sound signal analyses results are provided in Figure 10. As noted 
previously, the chatter frequency occurred near the natural frequency of the tool 
(approximately 2000 Hz). At 13000 rpm with b = 1.52 mm axial depth, and 14000 rpm 
with b = 3.05 mm, for example, the chatter frequencies occurred near 2110 Hz and 
2220 Hz, respectively. It should be noted that the chatter frequencies were difficult to 
identify when the tooth passing frequency or one of its harmonics was near the tool 
natural frequency. This is evident from the cutting tests at 10000 rpm and 16000 rpm that 
show high magnitude near the tool natural frequency. In these cases, examinations of the 
cut surface of the workpiece aided in identifying chatter, in which case the cut surface 
exhibited significant amount of waviness rendering the part unusable. 

Figure 9 The case study stability boundary with experimental results overlaid  
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Figure 10 Fast Fourier Transform (FFT) of sound signals for selected stability tests of different 
axial depths and spindle speeds. The runout and tooth passing frequencies were comb 
filtered out and are not shown 

 

In Figure 9, the stability of the cutting conditions agreed well with the mean  
stability prediction almost everywhere along the spindle speed. However, near  
spindle speeds corresponding to integer fractions of the tool natural frequency  
(e.g., Ω = 60 fn/(2N) = 7.5fn = 15000 rpm), the predicted stability boundary 
underestimated the experimental stability limit. This may be attributed to decreased 
confidence in the modal fitting near the natural frequency of the tool. Additionally,  
a slight horizontal shift in the stability boundary can be observed. This suggests that the 
spindle dynamics may vary slightly with spindle speed – the impact tests were 
necessarily completed on the non-rotating tool so they would not capture this effect.  
In Part 2 of the paper we examine the effect of variations in the input parameters on the 
computed stability boundary. 

4.2 Pareto front tests 

This section begins with the calculation of the Pareto front for a selected single DOF tool 
considering b and Ω as design variables. The experimental procedure used to validate the 
Pareto front is then described, followed by the results. 
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4.2.1 Pareto front simulation results 

The Pareto front for the |SLE| moving average and MRR is generated for the same 
material (7475 aluminum), cutting conditions, and tool used in the stability tests  
(Tables 2 and 3). To compute the Pareto front, we follow the multiple initial guesses 
scheme described in Section 3.2. First eleven initial guesses of Ω and b are used  
to compute each of the eleven Paerto designs, where Ω ∈ [10000 – 20000] rpm.  
The maximum number of iterations in fmincon was set to 50. The computation time  
for this number of initial guesses on a Pentium(R) 4 CPU 3.0 GHz processor was around 
15 min. However, the computed set of designs was not Pareto optimal, therefore another 
run was made using 41 initial guesses and the corresponding time for this run was  
around 60 min. 

Figures 11 and 12 illustrate the Pareto front and optimum designs, respectively.  
The knee of the Pareto front at MRR = 700 mm3/s (Figure 11) indicates the design beyond 
which the SLE increases at a higher rate, which could make that knee a preferred design 
point. Additionally, the maximum MRR = 1400 mm3/s was found to be limited by the 
stability boundary and had the maximum SLE. 

Figure 11 Pareto front of moving |SLE| average and MRR used for experimental validation case 
(mean input parameters for TFEA computations are given in Tables 2 and 3) 

 

Figure 12 Stability boundary, MRR contours and Pareto optimal designs are overlaid  
for experimental case study 
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4.2.2 Experimental procedure and results 

As a first step in conducting the SLE tests, the workpiece was machined to a  
specified dimension (nominally 40 mm width) using shallow axial depth slotting cuts  
(see Figure 13). Careful attention was paid to minimising positioning errors of the 
machine by feeding from the same direction prior to cutting (i.e., minimise the influence 
of reversal errors). The workpiece webs, shown in Figure 13, were milled from both 
sides. A Coordinate Measuring Machine (CMM) was used to measure the base of the 
web (dimension A) and the top portion (dimension B). The measured surface location 
error was then taken to be SLE = (A – B)/2 – 3.175 mm, where the commanded radial 
depth was 3.175 mm. Each dimension (A and B) was measured 15 times in order to 
evaluate the CMM measurement repeatability. The 15 measurements had a maximum 
standard deviation of 2 µm (the CMM accuracy is estimated to be <5 µm based on 
calibration tests). 

Figure 13 Schematic of SLE experimental setup 

 

The set of cutting conditions for the maximum MRR optimal design was selected from 
Figure 11. This situation would represent a designer who preferred reduced cycle time, 
even at the expense of part accuracy. For this design condition of axial depth and spindle 
speed, four additional cuts were made by varying the spindle speed around the selected 
design (see Table 4). The purpose of these extra cuts was to check the sensitivity of the 
stability and surface location error to spindle speed. The measured SLE for the set of 
cutting tests is shown in Figure 14. It should be noted here that all cuts were stable. 
Therefore, all SLE results are shown in the figure. The reader may also note the low 
sensitivity of SLE to spindle speed, which validates the |SLE| moving average criterion. 

Table 4 Surface location error cutting conditions for the maximum MRR Pareto optimal design 

Cut no. b (mm) Ω (rpm) MRR (mm3/s) SLE (µm) 
1  14853   
2  14803   
3 4.45 14753 1400 85.7 
4  14903   
5  14953   
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Figure 14 Measured surface location error for b = 4.45 mm at multiple locations along the axial 
depth of cut 

 

To illustrate the effect of the 30° helix angle tool on the SLE, the CMM measurements 
were repeated for distances of 1, 2, 3, and 3.4 mm from the top surface of the workpiece 
web along the tool axis. Figure 14 shows that the SLE varies along the axial depth of the 
cut. This variation corresponds with previous SLE studies, see for example Tlusty (2000) 
where similar variation of SLE due to the helix angle is described. 

The disagreement between the measured (Figure 14) and predicted SLE can be 
attributed to:  

• the milling model used in the prediction assumed straight cutter teeth which would 
yield higher SLE 

• the cutting force coefficients used in the prediction were measured for 1000 rpm, 
while the SLE cuts completed around 15000 rpm.  

At higher spindle speeds the cutting force coefficients (cutting forces) tend toward lower 
values. These two factors explain the high prediction of SLE for the 1400 mm3/s case 
relative to the measured one. Additionally, the potential change in the tool point 
dynamics with spindle speed (as observed in the Figure 9 stability tests) would influence 
the experimental results. 

5 Conclusions 

In this paper the two-objective problem of surface location error, SLE, and material 
removal rate, MRR, was addressed using the constraint method to find the Pareto front,  
or tradeoff curve, of |SLE| and MRR. In this method one criterion, |SLE|, was minimised 
for different levels of the other criterion, MRR. A local optimisation algorithm with 
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multiple initial guesses along the MRR objective was applied. The multi-start search 
procedure was found to be effective in finding the Pareto optimum as well as in 
overcoming the effect of objective and constraint first derivative discontinuities. 
However, the initial implementation of the optimisation formulation indicated the need to 
be concerned with objective sensitivity. A robust formulation of the |SLE| objective, 
defined as the moving |SLE| average, was found to be successful in finding operational 
optima insensitive to spindle speed variation. Finally a Pareto front was calculated for an 
experimental case study. Tests for a maximum MRR design did not exhibit chatter and 
the measured surface location error did not show high sensitivity to spindle speed 
variation. This demonstrated the robustness of the optimisation formulation. Additionally, 
the computed Pareto front allowed visualisation of the existing tradeoff between the 
process accuracy and productivity. 

In Part 2 of this paper, the measurement procedure used in estimating the mean, 
variation and correlation of the milling model parameters is described. The variability in 
the parameters is propagated through the model using sampling methods. The variability 
in stability boundary and SLE are quantified by calculating the standard deviation of the 
realised samples. Additionally, the effect of correlation between parameters on the output 
variability is quantified. 
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Nomenclature 

a Radial depth of cut (mm) 
b Axial depth of cut (mm) 
bi Axial depth corresponding to stability limit at iteration i 
blim Axial depth at stability limit (mm) 
C 2 × 2 modal damping matrix 
Cx Modal viscous damping in x-direction (N.s/m) 
Cy Modal viscous damping in y-direction (N.s/m) 
d Tool or cutter diameter (mm) 
E Total number of elements used to approximate time in the cut 

0 ( )f t  Time dependent 2 × 1 cutting force coefficient vector 

fn Natural frequency (Hz) 
Fx(t) Total cutting force acting on tool in x-direction (N) 
Fy(t) Total cutting force acting on tool in y-direction (N) 
h Feed per tooth (mm/tooth) 
K 2 × 2 modal stiffness matrix 
Kc(t) Time dependent 2 × 2 cutting force coefficient matrix 
Kn Normal cutting force coefficient (N/m2) 
Kne Edge effiect normal cutting force coefficient (N/m) 
Kt Tangential cutting force coefficient (N/m2) 
Kte Edge effect tangential cutting force coefficient (N/m) 
Kx Modal stiffness in x-direction (N/m) 
Ky Modal stiffness in y-direction (N/m) 
Mx Modal mass in x-direction (kg) 
My Modal mass in y-direction (kg) 
M 2 × 2 modal mass matrix 
MRR Material removal rate (mm3/s) 
N Number of cutter teeth 
n Tooth passage period number 
SLE Surface Location Error (µm) 
x Feed direction 

( )X t  Two-element position vector for x and y-directions 

y Direction normal to feed in the cut plane 
α Helix angle of cutter (degrees) 

ε Bi-section method convergence limit 

λk Characteristic multiplier k 
λmax Magnitude of maximum characteristic multiplier 

Ω Spindle speed (rpm) 

φ Cutter angle (degrees) 
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φex Cut exit angle (degrees) 

φst Cut entry angle 

τ Tooth passing period (s) 
ζ Damping ratio 

 


