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INTRODUCTION 
Machining optimization research has enjoyed a 
rich history. Initial theoretical work by Gilbert in 
1950 used the Taylor tool life equation and two 
criteria, maximum production rate and minimum 
cost, to determine optimized cutting speed [1]. 
Subsequent research efforts have applied 
various optimization criteria, including sums of 
weighted objectives, and implemented multiple 
optimization techniques. The purpose of this 
paper is to demonstrate a single objective 
function optimization formulation for milling that 
simultaneously considers tool wear and process 
dynamics effects in an analytical framework. We 
compare the costs for optimized conditions and 
manufacturer-recommended values. 
 
OBJECTIVE SELECTION 
A natural candidate for the optimization objective 
is profit, P. Profit may be expressed as: 
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where t0 is the current time, r is the discount rate 
that devalues future sales, R is revenue, and C 
is cost. Revenue is the product of price and the 
number of components. Cost, however, can 
have many inputs, which may be categorized 
into fixed and variable costs. Fixed costs 
include, for example, building and machinery 
depreciation, insurance, taxes, interest, indirect 
labor, engineering, rentals, general supplies, 
management expenses, and marketing/sales. 
Examples of variable costs are materials, 
tooling, labor, utilities/power, and maintenance. 
Cost considerations specific to machining 
include, e.g., setup time, part quality, CNC 
programming, inspection, cycle time, rework, 
finishing, part handling, fixturing, coolant use 
and disposal, and tool advance-retract-change 
times [2]. 
 
In job shop situations, the number of units to be 
sold, x, is typically known once a job is 

accepted. If we assume that the unit price is also 
known, then revenue is a fixed value and the 
objective becomes cost minimization. In the 
following sections, a method for including both 
process dynamics and tool wear in a cost 
minimization formulation is described. 
 
APPROACH 
The cost function, C(x), is provided in Eq. 2, 
where Cf represents fixed costs and Cm is the 
machining-related cost per part. 
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We will minimize Cm (Eq. 3) subject to the two 
constraints shown. 
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Here, tm is the overall machining time, rm is the 
machining cost per unit time, ttch is the tool 
changing time, Ct is the cost per tool, tc is the 
actual cutting time, and T is the tool life. 
Machining/cutting time and tool life are directly 
affected by: 1) the selected process parameters, 
including radial and axial depths of cut, a and b 
(limited by the process stability as indicated by 
the first constraint), spindle speed, Ω, and feed 
per tooth, ft; and 2) the tool information, 
including the diameter, d, (which defines the 
cutting speed, v = πdΩ, when combined with the 
spindle speed), cutting edge geometry, and the 
number of teeth, N. 
 
The machining time depends on the part path. 
For simplicity, we define it here as: 
 

tm = L/f,    (4) 
 
where L is the distance traveled by the tool and f 
is the feed rate, given by f = ΩNft. The tool 
cutting time can be calculated as: 
 



tc = V/MRR,   (5) 
 
where V is the volume to be removed and MRR 
= abftΩN is the mean material removal rate. The 
tool changing time, ttch, in Eq. 3 depends on the 
machining center and can range from less than 
one second (automated) to several minutes 
(manual). The machining cost per unit time 
depends on the manufacturing facility, 
machining center, and labor costs. 
 
Tool Life Model 
Coefficients for tool life models are typically 
determined from cutting test data. To 
demonstrate our approach, we have applied the 
data presented by Tsai et. al. [3] for a TiAlN-
coated, tungsten carbide endmill (HFK UF440A-
4ENSR-D10-R0.5) used to machine SKD61 tool 
steel. In [3], tool life is represented using an 
abductive polynomial network. The tool 
specifications are provided in Table 1 and the 
cutting conditions are listed in Table 2. 
 
TABLE 1. Tool specifications from Tsai et al. [3]. 

d (mm) N 
Overall 
length 
(mm) 

Helix 
angle 
(deg) 

Corner 
radius 
(mm) 

10 4 100 45 0.5 
 
TABLE 2. Cutting conditions from Tsai et al. [3]. 

v 
(m/min) 

Ω 
(rpm) 

ft 
(mm/tooth) 

b 
(mm)

a 
(mm) 

314-
628 

9994-
19989 

0.0075-
0.15 

0.5-
1.5 0.5 

 

 
FIGURE 1. Tool life contours from Tsai et al. [3]. 
 
Tool life contours obtained using the abductive 
polynomial network for a 0.0075 mm/tooth feed 
per tooth value (within the Ω and b ranges given 
in Table 2) are shown in Fig. 1. As expected, the 

tool life decreases with increasing spindle 
speed, Ω, and axial depth of cut, b. 
 
For optimization purposes, we wished to extend 
the allowable operating range beyond the cutting 
test conditions. Figure 2a shows extrapolated 
tool life contours for axial depths up to 3.5 mm 
and spindle speeds down to 2000 rpm. As seen, 
extrapolation of the abductive polynomial 
network yields unexpected results; the contours 
do not follow the general trend of decreased life 
with increased speed and axial depth. 
Therefore, we have used the data reported in [3] 
to generate a Taylor-type tool life model of the 
general form, T = Cv-pft-qb-r, where C, p, q, and r 
are constants. From the 42 tests completed 
using various v, ft, and b values, the Taylor-type 
tool life equation coefficients were determined 
by least squares fitting: 
 

T = 1.9549x106 v-1.6265 ft-0.1024 b-0.2837, (6) 
 
where T is expressed in min, v in m/min, ft in 
mm/tooth, and b in mm. In Fig. 2a, it is seen that 
the Taylor-type model exhibits the expected 
behavior. Figure 2b shows a comparison 
between the abductive polynomial network and 
Taylor-type model over the cutting test range. 
Reasonable agreement is observed. 
 

 
FIGURE 2. Comparison of tool life contours (in 
minutes) for abductive polynomial network and 
Taylor-type tool life models (ft = 0.0075 
mm/tooth). a) Extrapolation outside test range – 
abductive network shows unexpected results. b) 
Comparison of abductive and Taylor-type tool 
life models within the test range. 
 
As noted, a key goal of this study was to 
compare manufacturer-recommended cutting 
conditions with those determined using the 
optimization approach. Because manufacturer 



recommendations were not available for the 
tool-workpiece combination used in the Tsai et 
al. study, we selected an equivalent tool from 
Sandvik Coromant. This enabled us to use their 
recommended cutting conditions. Sandvik 
Coromant solid carbide tools with approximately 
the same coating as the tool in Table 1 have a 
grade designation GC1630. The SKD61 tool 
steel machined by Tsai et al. corresponds to an 
ISO CMC No. P03.11 high-alloy steel. The 
closest available Sandvik Coromant geometry 
was provided by an R216.34-10045-AC22N tool, 
p. A148 [4] (see Table 3). Additionally, cutting 
force coefficients for the ISO CMC No. P03.11 
high-alloy steel were given as Kt = 2395x106 
N/m2 and Kn = 718x106 N/m2 [4], which 
proportionally relate the tangential (t) and normal 
(n), or radial, direction cutting force components 
for the rotating cutter to the commanded chip 
area (i.e., the product of b and ft). 

RESULTS  
We considered cost minimization for removing a 
cube of material with dimension W = 100 mm. 
For the full radial immersion conditions (a = d) 
shown in Fig. 5, the distance traveled by the tool 
is: 
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TABLE 3. Sandvik Coromant tool specifications. 

d (mm) N 
Overall 
length 
(mm) 

Helix 
angle 
(deg) 

Corner 
radius 
(mm) 

10 4 72 45 Chamfer

FIGURE 3. Tool point FRF for selected tool-
holder-spindle combination. 
 

 

 

Tool-Point Frequency Response Function 
In order to determine the limiting axial depth of 
cut as a function of spindle speed (for the first 
constraint in Eq. 3), the tool point frequency 
response function (FRF) of the tool-holder-
spindle combination must be known. To obtain 
the tool point FRF, we rigidly coupled models of 
the selected tool and a CoroGrip precision 
power chuck (392.410HMD-63 20 077, p. D113 
[4]) with a cylindrical collet (393.CGS-20 10 52, 
p. D165 [4]) to a representative high-speed 
spindle (FRF determined experimentally) using 
Receptance Coupling Substructure Analysis [5-
7]. Figure 3 shows the predicted assembly FRF 
as reflected at the tool point.  

FIGURE 4. Stability lobe diagram for test case. 
Cost per part contours are also shown (ft = 
0.027 mm/tooth). 

 
Process Stability Model 
We applied the frequency domain approach 
given in [8] to predict the limiting axial depth of 
cut as a function of spindle speed. Inputs to the 
algorithm include the tool point FRF, cutting 
force coefficients, and radial depth of cut. Using 
the Fig. 3 FRF, Kt = 2395x106 N/m2 and Kn = 
718x106 N/m2 cutting force coefficients [4], and a 
= d, the stability lobe diagram shown in Fig. 4 
was obtained, where b-Ω combinations below 
the stability boundary indicate stable, or chatter-
free, cutting. 

 
Based on the cost parameters listed in Table 4 
and travel distance defined by Eq. 7, the cost 
per part was determined as a function of axial 
depth, b, and spindle speed, Ω (see contours in 
Fig. 4). It is seen that the minimum cost for 
chatter-free cutting corresponds to the highest 
possible combination of b and Ω  defined by the 
stability boundary (3.4 mm and 10800 rpm). A 
gradient-based search algorithm with multiple 
guesses was implemented in Matlab (to handle  



TABLE 6. Cost comparison – the optimized 
conditions provide a 90% cost reduction.  

discontinuities in the stability boundary) and 
verified this operating point. 
 Source b (mm) Ω (rpm) Cm ($) 

Sandvik 1.0 2817 775.44
Optimized 3.4 10800 76.78 

TABLE 4. Cost parameters for test case. 
ttch (sec) Ct ($/tool) rm ($/min) 

4 114 1  
CONCLUSIONS 

2 – return via same path as 1 In this paper we formulated a cost-based 
objective function which considered both tool life 
and process stability. Based on test data from 
the literature, it was shown that significant cost 
reduction relative to manufacturer 
recommendations could be achieved through 
the application of dynamic models within an 
optimization framework. 

1 

a = d 3 
4 
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FIGURE 5. Part path for machining cube of 
dimension W = 100 mm. This path (1, 2, 3, 4, …)  
is repeated in multiple axial levels as required by 
the limiting axial depth of cut. 
 
The manufacturer-recommended cutting 
conditions for the selected tool-workpiece 
combination (p. A303, [4]) are listed in Table 5, 
where a correction factor of 1.18 was applied to 
obtain the recommended spindle speed 
corresponding to the SKD61 material hardness 
(p. A321, [4]). In a previous publication of the 
Sandvik Coromant handbook [9], the 
recommended axial depth for a slotting 
operation was listed as 50% of the tool diameter. 
This would correspond to b = 5 mm, which is in 
the unstable region for our test case. 
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