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In this study, we examine a new approach for actuation of dynamical systems with
minimum work while maintaining constraints on system response and actuation force. Re-
cently, we applied the approach to a lightly damped, linear oscillator. Here, we extend
the method to nonlinear, resonant systems. Two methodology issues are addressed in the
paper: sensitivity analysis about the nonlinear transient response and exploration of the
strongly nonlinear relationship between the objective function and the actuation design
variables. The optimization analysis is carried out on a lightly damped Duffing system of
hardening and softening nonlinearities.

With a hardening nonlinear spring, the optimization formulation is assessed for depen-
dence of nonlinear response on initial conditions. The formulation of the two-objective
problem is found ideally suited to resolve the difficulty of dependence of response on initial
conditions. The tradeoff curve of minimum work and maximum amplitude is computed.
In comparison to harmonic actuation, the optimal actuation is found to yield the target
amplitude with 2.2% savings in expended work and 17% reduction in the force amplitude.
In some other designs, work savings amount to 135%. The optimal actuation strove to
compensate for the limited force amplitude by an abrupt change in the force in time. With
a spring with both softening and hardening, similar work savings and robustness of the
optimization were demonstrated. In addition, the optimization search taps into regions of
the response deemed discontinuous using harmonic actuation.

I. Introduction

The design of an actuation force providing minimum-work performance is motivated by increasing in-
terest in micro air vehicles (MAVs), where it is desired to operate the vehicle with the least amount of
actuation work or actuation force for a desired displacement amplitude.1–4 The MAVs are designed to favor
resonant response characteristics in an effort to minimize their power expenditure.5 Driving these systems
to their optimal performance may trigger nonlinear response of the system. This work develops an effective
optimization methodology to compute the optimal actuation of nonlinear resonant systems for minimum
work and maximum amplitude considering limited force amplitude.

In a previous study, the work and amplitude optimal actuation force was computed for a linear dynamic
system using a gradient-based optimization approach.6, 7 For a limited force amplitude the optimal design
provided a 25% increase in the displacement amplitude over that possible using a harmonic excitation. The
optimal actuation force was found to favor a snap-type variation (similar to that exhibited in biomechanical
actuated systems8). Additionally, the optimal actuation frequency approached the natural frequency of the
system (although not exactly equal) as the demand for larger displacement amplitude increased, but favored
lower frequencies at lower amplitudes.

A challenging aspect in the design of dynamic systems is the need to evaluate the system response
over an entire time interval in order to satisfy the constraints and evaluate the objective function. Different
methods exist to enforce the constraints over the time interval. The constraints may be enforced at the global
extremum,9 at closely spaced points,10 or more efficiently at only the local extrema of the response.11–13 In
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this study, since we are interested in maximizing the amplitude of the response, the amplitude constraint
is enforced at only the global maximum, where a one-dimensional optimization search is used to locate the
maximum.

Only the time-periodic characteristics of the work-and-amplitude performance measures are considered,
since transient behavior of the system is soon damped out. The time-periodic response of the nonlinear
system is computed using the spectral element method in time over one cycle. The spectral element method14

combines the local flexibility of the finite element method with high-order Lagrange polynomials interpolated
at time grid points corresponding to Gauss-Lobatto-Legendre polynomials. A monolithic-time approach is
favored here so as to transform the nonlinear time-dependent differential equation into an explicit algebraic
form. This allows a more direct computation of the response sensitivity.

The actuation force is parameterized using many design variables and represented using cubic splines.
A gradient-based optimization approach is used to find the optimal actuation force, where an adjoint sensi-
tivity analysis is developed to compute sensitivities of the performance measures with respect to the design
variables. The computational cost of computing the sensitivity using the adjoint method is independent of
the number of design variables. This enables an efficient optimization search due to the large number of
design variables required to simulate the actuation.

In this paper, we consider the optimal actuation force of nonlinear dynamic systems that exhibit resonant
behaviors. The formulation is applied to a forced Duffing oscillator15, 16 with softening and hardening spring
nonlinearities. The two-objective problem of minimum work and maximum amplitude is formulated using the
constraint method, where the minimum-work force is computed for a set of target displacement amplitudes.
A tradeoff curve of the two objectives is computed, where an improvement in one objective results in a
deterioration in the second objective.17 The inherent dependence of nonlinear response on initial conditions
is resolved by the optimization formulation. Results of the optimization search are compared to trivial
designs, where the optimal actuation force is found to favor snap-type variation over a harmonic force with
large amplitude.

The paper proceeds with the formulation of the dynamic optimization problem in Section II. The
computation of the time-periodic response using the spectral element method is described in Section III. The
adjoint sensitivity of the nonlinear response is presented in Section IV. Finally the optimization methodology
is applied to the Duffing system in Section V.

II. Formulation of Work-Optimal Optimization Problem

The optimization problem is to find the periodic actuation force which minimizes the amount of actuation
work over a cycle W for a specified target of displacement amplitude ΓTi :6

min
b

W (1a)

subject to
max(|xca|) ≥ ΓTi i = 1, ..., N, (1b)

where b is the vector of design variables, which consist of the magnitudes of the actuation force f at equally
spaced locations in one cycle (see Figure 1), and the circular forcing frequency, ω. The time-periodic response
in the direction of actuation force f is denoted by xca. The subscripts c and a refer to the cyclic response
and degree-of-freedom in direction of actuation, respectively. The index N refer to the total number of times
the optimization problem is solved. The force design variables (6 variables in Figure 1) are allowed to change
in the interval [−fmax, fmax] during the optimization search. The period T of the response cycle is equal to
the forcing period T = 2π/ω. The time interval t is scaled by T leading to a scaled cycle s of length 1. The
work expended during one scaled cycle (referred to as work henceforth), W , is

W =
∫ 1

0

f(s)ẋcads. (2)

The ˙ symbol refer to derivative with respect to s. To evaluate the work and enforce the amplitude con-
straint (1b), the time-periodic response is computed using the spectral element (SE) method in a monolithic-
time approach. In contrast to time-stepping methods, where the solution is unavailable between two time
steps, the SE method computes the time-dependent solution over the whole cycle.
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Once a SE solution of sufficient accuracy is constructed, the extrema are located by implementing a one
dimensional optimization search. The target constraint is then enforced on the global extremum.12, 13 Note
that the location of the critical time points may drift as b is iterated. Therefore, the extrema locations are
recomputed during the design process.

The integral in (2) is computed using Gauss-Lobatto-Legendre quadrature [18, page 56], where cubic
splines are used to interpolate the actuation force to the Gauss-Lobatto-Legendre grid point. During design
iterations the force design variables may change abruptly. In order to maintain an accurate interpolation
using the cubic splines, the number of design points must be chosen less than the number of degrees of
freedom in the SE method.7

The optimization problem is then solved one time for each target displacement for a total number of N
times to construct the tradeoff curve of minimum work per cycle and maximum displacement amplitude.
For each design on the tradeoff curve, the optimal actuation force (Figure 1) and frequency are computed.
The tradeoff curve, although expensive to compute, provides the designer with all possible optimal designs
of the two objectives, thereby allowing selection of the best design fitting user criteria.

Alternatively, the optimization problem of minimum work and maximum amplitude under limited force
may be formulated by maximizing the response amplitude for a set of constraints on the work objective.
Although this should lead to similar results to that of (1) the latter formulation is more effective for the
design of nonlinear systems due to dependence on initial conditions (more on this in Section 1).

s

f

s = 0

    fmax

 -fmax

f1

f2

s = 1f3

f4

f5

f6

f1

cubic spline

Figure 1. Schematic of the actuation force modeled using 6 force design variables in a cycle. The force value
between two design variables is computed using cubic splines.

III. Temporal Spectral Element Method

The spectral element (SE) method in time is applied to a set of first-order differential equations. Higher
order unsteady terms can easily be tackled by transforming to first-order form. The coupled set of differential
equations is,

dx
dt

+ Asx = f(x, t), (3)

where x represents the collocated dependent variables x ∈ RNv , Nv is the number of dependent variables,
time t is the independent variable, and f(x, t) is a nonlinear function of x and t. The equations are coupled
through the matrix As, which is assumed to be time invariant.

For transient analysis of (3) initial conditions need to be enforced. However, this is generally not the case
when cyclic solutions of (3) are sought, i.e., those that are time-periodic in response to a linear time-periodic
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forcing function, f(x, t) = f(x, t + T ) of period T . For nonlinear time-periodic f the initial conditions are
still not enforced. However, dependence of nonlinear response on initial conditions is achieved by specifying
different initial guess of solution.

In this paper, our focus is on time-periodic responses. However, we present the SE method for both
transient and cyclic analysis for completeness.

x(1)(ξ0)      x(1)(ξ1)            x(1)(ξ2)               x(1)(ξp)                        x(Nel)(ξ0)             x(Nel)(ξ1)         x(Nel)(ξ2)           x(Nel)(ξp)  

1st element                     last element, Nel

x0 x1 x2 xm . . .                                       xpxNel+1

Figure 2. Discretization of the time domain into Nel elements represented by an p order Lagrange polynomial
within each element. Nodes of each element are placed at zeros of Lobatto polynomials.

A. Transient Analysis

The transient behavior (history) of each dependent variable can be discretized using spectral elements,18

where the approximate pth-order solution in each element is:

x̂(j)(ζ) =
p∑

k=0

x(j)(ζk)ψ(j)
k (ζ). (4)

Here ψ(j)
k represents the Lagrange polynomial of order k in element j, ζk are the zeros of the Lobatto-

Legendre polynomials defined on the interval ζ ∈ [−1, 1] and x(j)(ζk) are the unknown nodal values placed
at ζk for element j. See Fig. (2), where the physical time domain t ∈ [tj , tj+1] is transformed to the ζ domain
for each element. The Lobatto polynomials Loi are a set of orthogonal polynomials that can be defined as
the derivatives of order i+ 1 Legendre polynomials,19 Li:

Loi(ζ) ≡ L
′
i+1(ζ), (5)

where the Legendre polynomials are defined explicitly as

Li(ζ) =
1

2ii!
di(ζ2 − 1)i

dζi
. (6)

The SE solution is obtained by: 1) substituting the trial solution x̂(j) into the differential equation (3);
2) minimizing the residual in each element using the Bubnov-Galerkin method;20 and 3) assembling the Nel

time elements after enforcing inter-element continuity (more details can be found in 21). For one dependent
variable matrix As becomes a scalar As and the discretized form of the differential equation reduces to

LcXc = AsLωXc − LωF (Xc), (7)

where Lc and Lω are the global differentiation and weight matrices, F is the global weighted form of the
excitation and

Xc =
[
x
∣∣
t0

x
∣∣
t1

. . . x
∣∣
tp×Nel+1

]T

(8)

is the SE solution of the dependent variable x collocated at all nodal times (redundant shared elements nodes
are removed using inter-element continuity). The initial condition is applied by replacing the first row and
column of Lc with zeros except for the first element, which is replaced with one. Also, the first element in
Lω is replaced with zero and the first element in −LωF is replaced with the value of x at t = 0. The SE
solution Xc in (7) can then be computed using iterative methods. However, for a strictly time-dependent
forcing function (not function of Xc) both direct and iterative methods can be used. See Section C.
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B. Cyclic Analysis

In some problems, such as damped systems with periodic forcing functions or self-excited nonlinear systems
exhibiting limit cycle oscillations (LCO), the interest lies in the time-periodic response of the system, where
T = 2π/ω is the period of the dynamic response. In this case, it is computationally advantageous to compute
the steady-state cycle without simulating the transients.

For time-periodic or cyclic responses, the time cycle is discretized spectrally in the same way as in the
transient solution. However, assembly of global matrices Lc and Lω is different. Here, the initial conditions
are not imposed. Periodicity of the array of elements is enforced by requiring that the end node in the last
element to be the initial node of the first element:

x(1)(ζ0) = x(Nel)(ζp). (9)

Contributions to the end node in the last element are added to contributions from first element. Conse-
quently, the last row and column of Lc are added to their counterpart in the first row and column. Therefore,
the solution vector, Xc, becomes

Xc =
[
x
∣∣
t0

x
∣∣
t1

. . . x
∣∣
tp×Nel

]T

. (10)

C. Global Assembly and Solution

A number of dependent variables, Nv, can be handled through spatial connectivity matrix As of size Nv×Nv

(boldface capital symbols are used to denote matrices). Here, the tensor product is introduced in (7) to give
the global form of the system for Nv dependent variables:

LcgXcg = AcgXcg − LωgFcg(Xcg), (11)

where Lcg is the tensor product of the identity matrix (of size Nv × Nv) and Lc. In a similar fashion, the
Acg and Lωg matrices are constructed. The vector Xcg is a collocation of all dependent variables at nodal
times grouped by their corresponding dependent variables, Nv. For a transient solution, Xcg takes the form:

Xcg =

⎡
⎢⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1

∣∣
t0

x1

∣∣
t1

...
x1

∣∣
tp×Nel+1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

T

. . .

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xNv

∣∣
t0

xNv

∣∣
t1

...
xNv

∣∣
tp×Nel+1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

T ⎤
⎥⎥⎥⎥⎥⎦

T

. (12)

A compact form of (11) becomes

QXcg = −LωgFcg(Xcg), (13)

where
Q ≡ Lcg − Acg. (14)

Equation (13) can be solved using Newton’s method. By identifying a residual R we can evaluate the
degree to which (13) is satisfied:

R(Xcg) ≡ QXcg + LωgFcg(Xcg). (15)

A first-order Taylor series expansion of the nonlinear formula (15) gives

Rν+1 = Rν + JΔXcg, (16)

where
J = Q + Lωg

∂Fcg

∂Xcg
. (17)

The correction to a current approximation Xcg is computed by setting the residual, Rν+1 in (16) to zero.
To facilitate convergence, we apply a relaxation parameter λ to the correction:

Xν+1
cg = Xν

cg + λΔXcg. (18)

Note that when the forcing function is linear (independent ofXcg), the last term in (17) and updated residual
in (16) are zero. Then for λ = 1, the solution Xcg can be evaluated from (18) in one iteration.
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IV. Adjoint Sensitivity

In the optimization problem (1), the control force is represented using a large number of design variables.
To carry out a gradient-based optimization search, the sensitivities of the objective and constraints need to
be evaluated. The adjoint method7 is used here to compute the gradients. The method is attractive due
to the independence of the computational cost from the number of design variables. The gradient of the
objective function W (2) is

∂W

∂b
=

∫ 1

0

[
∂fg

∂b

T

Xcg + fT
g

∂Xcg

∂b

]
ds, (19)

where fg is the cubic-spline interpolated value of the actuation force at a Gauss-Lobatto-Legendre grid point.
With the finite-difference approach, the computational cost of computing this gradient is proportional to the
product of the cost of computing the response Xcg, with the number of design variables. To eliminate the
cost of recomputing Xcg when calculating the sensitivity to a design variable change, we compute ∂Xcg

∂b by
defining the performance function h:

h(b) = Xcg. (20)

The adjoint matrix is derived by adding the sensitivity of h to a change in b to the product of the adjoint
matrix and the sensitivity of the response in (13):

dh
db

=
dXcg

db
+ ΛQ

dXcg

db
+ Λ

(
Lωg

∂Fcg

∂b
+

dQ
db

Xcg

)
. (21)

The adjoint matrix becomes the solution to
I = −ΛQ, (22)

where I is the identity matrix. After evaluating the adjoint matrix, Λ (21) is reduced to

dh
db

= Λ
(
Lωg

∂Fcg

∂b
+

dQ
db

Xcg

)
. (23)

The sensitivity of Xcg is now computed by evaluating Λ from (22) and substituting into (23) without the
need to recompute the response Xcg. Additionally, the gradient of the objective W can then evaluated by
inserting (23) into (19).

V. Forced Duffing Oscillator

The forced Duffing oscillator models the dynamic response of damped elastic structures with large non-
linear displacements. Typically, the Duffing system consists of a cubic restoring force [22, page 158]. In this
work, a pentic restoring force is additionally considered:

ẍ+ 2ζωnẋ+ ω2
n(x+ βx3 + γx5) =

a

m
f(t), (24)

where ζ is the damping factor, ωn is the linear natural circular frequency, β is the coefficient of cubic
nonlinearity, γ is the coefficient of pentic nonlinearity, m is the mass of the system, and f(t) = f(t+ T ) is
the periodic actuation with an amplitude of a. Depending on the sign of the coefficients β and γ, the stiffness
of the system may increase or decrease nonlinearly. A positive or negative sign results in a hardening or
softening nonlinearity, respectively.

Below we consider the dependence of cyclic solutions on initial conditions, and asses the convergence
properties of the solution method (see Appendix A). We also apply the optimization to a hardening and to
a hardening-and-softening springs to establish the benefits of the optimal actuation.

A. Analysis

The SE method in time is applied to compute the time-periodic response of the Duffing system. Equation (24)
is cast in cyclic form

1
T 2
ẍca +

2
T
ζωnẋca + ω2

n(x+ βx3
ca + γx5

ca) =
a

m
f(s) (25)
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by normalizing the time t with the forcing period T and introducing a scaled time: s = t/T . The single
and double dots in (25) now mean d

ds and d2

ds2 , respectively. The solution is computed after transforming
the second-order differential equation into first-order by introducing the variables x1 = xca and x2 = ẋca.
The solution of (25) is computed for the parameters listed in Table 1, which correspond to a strictly cubic
hardening case analyzed by Lee et al.23

Table 1. Duffing equation parameters analyzed in Section A.

ωn ζ m a f(t) β γ

1 0.05 1 0.4 sinωt 0.1 0

The response is computed using the cyclic SE method. The accuracy of the SE solution depends on the
number of elements and Lagrange polynomial order. For a smoothly varying function the SE solution of 25
DOF (Nel = 5 and p = 5) gives high accuracy.21 Here we use a conservative number of DOFs (Nel = 10
and p = 5) in anticipation of sharp variation in the response. The displacement amplitude is reported in
Figure 3a as a function of the circular actuation frequency ω: ωT = 2π. To the right of natural frequency
ωn = 1, the frequency response indicates two solutions in the region of ω = [1.2 − 1.3]. In “this” fine region,
the equilibrium solution of the cyclic analysis depends on the initial guess in the Newton method. The
cyclic SE solution converges to one closer to the initial guess. For example, the upper branch cyclic solution
results from an initial guess amplitude of x1 = 4, whereas the lower branch solution results from an initial
guess closer to the lower one. The cyclic solutions corresponding to these initial guesses are reported in
Figures 3b and 3c, respectively. The initial guess is additionally noted in the figures. Note that in transient
analysis, the initial guess corresponds to the set of initial conditions. An initial condition close to the upper
branch (for example x(0) = 4 and ẋ(0) = 0) converges to a steady state solution at that branch.23 This
behavior can be used to our advantage in implementing the optimization search by capitalizing on dependence
of the response on the initial guess.

The optimization search (discussed next) is implemented using a gradient-based optimization method
in which the provided gradients guide the search. The adjoint method allows an efficient and accurate
computation of the gradients. Consider, for example, the two cyclic solutions around ω = 1.2. The adjoint
sensitivity is computed with respect to ω using (23) for the two cycles and compared to the finite-difference
sensitivity (see Figure 3d). The adjoint sensitivities of both branches are in excellent agreement (difference
< 1 × 10−6) with finite-difference analysis.

B. Optimization Results

Two forms of the forced Duffing oscillator are studied to test the optimization methodology. The first one
corresponds to a strictly cubic hardening spring. The difficulties encountered in the optimization search are
described and the tradeoff curve is computed for the two-objective problem. In the second application, a
spring with combined softening and hardening is analyzed to demonstrate the robustness of the optimization
search to softening nonlinearities (while retaining bounded solutions).

1. Cubic Hardening Nonlinearity

The optimization problem (1) is solved for the Duffing oscillator using parameters (Table 2) analyzed pre-
viously by the authors: a linear dynamic system7 with an additional cubic nonlinear term (with β = 0.3).
The cyclic form of the Duffing equation (25) is implemented in the study with a = 1. The design variables
correspond to the actuation frequency, ω, and the instantaneous force at equally spaced locations over the
cycle, fi. The design variables are free to change within an upper and lower bounds corresponding to:

ωl ≤ ω ≤ ωu, (26a)
−fmax ≤ fi ≤ fmax, (26b)

where the upper, ωu, and lower, ωl, values of ω are set proportional to the system natural frequency, ωn,
and fmax is set based on the maximum permissible force available to the system.

The gradient-based optimization search is implemented using fmincon in Matlab, which is based on the
sequential quadratic programming algorithm (SQP). The sensitivities of the objective and constraints are
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Figure 3. Solution of the hardening Duffing equation: a) response amplitude versus frequency, the x1 amplitude
of two different initial guesses are denoted by the two squares; b) response orbit at ω = 1.2 and initial guess
close to upper branch (max|x1| ≥ 4); c) response orbit at ω = 1.2 and initial guess close to lower branch
(max|x1| ≤ 0.2); d) comparison of response sensitivities at ω = 1.2 computed using adjoint and finite-difference
methods for both lower and upper branches.

Table 2. Fixed parameters of optimization problem for the cubic hardening Duffing equation.

ωn ωl ωu ζ m nd p Nel β Objective tolerance Constraint Tolerance
31.57 2

3ωn 4ωn 0.019 0.01 31 5 30 0.3 1 × 10−6 1 × 10−6
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computed using the adjoint method. The optimization problem is solved for the actuation force history and
period yielding the minimum work per cycle for a target displacement amplitude (1b). The tradeoff curve is
constructed by solving the optimization problem for a series of target amplitudes.

Convergence of the optimization search hinges on the feasibility of enforcing the constraint on the target
amplitude. In the previous section, we noted existence of multiple solutions (Figure 3) in the response near
the resonant frequency of the linear system, and the subsequent dependence of the response on the initial
guess in Newton’s method. The optimization search tends to favor this complicated region in the design
space. Therefore, to enable a successful optimization search, the later initial guess needs to be in coherence
with the desired response. The formulation of the optimization problem as minimization of the work, while
enforcing an upper constraint on the displacement amplitude, makes this choice rather simple by selecting
the displacement initial guess close to the target displacement. This enables rapid convergence to the optimal
design. A poor initial guess may lead the optimization search to a solution branch far from the desired one,
resulting in an infeasible search.

The tradeoff curve of optimal work-and-amplitude is computed assuming different levels of permissible
control force, |fmax|. For example, the tradeoff curve for |fmax| = 1 is constructed by solving the optimization
problem five times, for each a different value of the target amplitude ΓT : {0.5, 1.0, 1.5, 2.0, 2.5}. The lower
and upper bounds of ΓT may be selected based on the user preferences and system limitations. For each
optimization search, the initial estimate of the control force is set to |fmax| sin(0.9ωnt). The above procedure
is repeated to generate a different tradeoff curve for a specific permissible control force |fmax|.

The search for an optimal actuation is guided by the sensitivities of the objectives and constraints to the
design variables. The sensitivities of the objective and amplitude with respect to the optimal control force
are reported in Figure 4 for ΓT = 1 and |fmax| = 1. The figure indicates that the sensitivity of the objective
(work per cycle) to a change in the instantaneous control force is larger than the sensitivity of the amplitude.
However, the sensitivity of the objective and amplitude to change in ω is even larger: ∂W/∂ω = −20.3 and
∂(max |xca|)/∂ω = 6.6. The large difference in the sensitivity magnitude between the design variables ω and
fi results in faster convergence of the former to the optimal design.
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Figure 4. Cubic hardening Duffing equation: Gradients of the objective and maximum amplitude with respect
to actuation design variables at a target amplitude of ΓT = 1 and |fmax| = 1 of the optimal design: a) objective;
b) maximum amplitude.

The optimization results are reported in Table 3 and Figures 5a,b. Each curve in Figure 5a refers to a
tradeoff curve of maximum amplitude and minimum work for a permissible |fmax|. Data for the tradeoff
curves are arranged column wise in Table 3. The tradeoff curve is indicated to have a quadratic relationship
between Wmin and ΓT , which is similar to the analytical relationship between work and amplitude for linear
systems with harmonic actuation [24, page 120]. This relationship is maintained as |fmax| is increased, where
a more relaxed constraint on the control force enabled a decrease in the work necessary to achieve the same

9 of 19

American Institute of Aeronautics and Astronautics



target amplitude. As the control force is set to its lower limit, |fmax| = 1, the optimization search is unable to
enforce the constraint ΓT = 2.5. To analyze the source of infeasibility, the frequency response of the optimal
actuation at ΓT = 2.0 and |fmax| = 1 is reported in Figure 6 for both the linear and nonlinear systems. The
peak of the frequency response diagram, max (max |xca|) of the nonlinear system is slightly higher than 2.0
but less than 2.5 (=3.3 for the linear system). Consequently, the optimization search is unable provide a
design due to the infeasibility of enforcing the amplitude constraint ΓT = 2.5.

Optimal values of the forcing frequency corresponding to the tradeoff curves are shown in Figure 5b
as a function of target amplitude. The optimal frequency, ωo, is indicated to increase as the demand for
larger amplitude is increased. This is similar to what is shown in Figure 3a, where the response amplitude
increases for an increasing ω. However, at |fmax| = 6, the optimal frequencies remained constant for ΓT =
{0.5, 1.0}. This occurs because at this large force, the initial response is significantly larger than the target
one. Consequently, it is not required to increase ω to enforce the amplitude constraint. On the contrary, the
frequency is allowed the opportunity to decrease in value to decrease the work objective until the lower limit
of ω is reached (a more relaxed lower limit on ω may decrease ωo even further for ΓT = 0.5 and ΓT = 1.0).
Subsequent optimization iterations only refined the shape of the control force to further decrease the value
of work while enforcing the amplitude constraint.

The shape of the optimal actuation at |fmax| = 6 (see Figure 7a) strove to vary in an abrupt manner,
with an extra cycle in the actuation trying to emerge. Orbits of the displacement and velocity responses
for the optimal actuation are reported in Figure 7b,c, where the amplitude of the displacement is observed
to satisfy the constraint, ΓT = 1.0. When the constraint on the force is reduced (|fmax| = 1), the abrupt
behavior of the actuation becomes more apparent, see Figure 8a. Here, the optimization search compensates
for the lack of available force |fmax| by a sudden change of the actuation.

In the absence of optimization, a designer may choose to actuate the system using a trivial harmonic
force and vary the amplitude or frequency of actuation to find the best performance. Consider first varying
the amplitude of |fmax| sinωnt (Table 4 and Figure 5c). The sinusoidal actuation is chosen at ω = ωn due
to the anticipated large response at this frequency. A direct comparison to the results in Table 3 can be
accomplished by solving for an |fmax|, using a one-dimensional optimization search, that yields an amplitude,
max(|xca|) equal to the target one, ΓT . The value of expended work (not necessarily the minimum work)
corresponding to the max(|xca|) is reported on the left ordinate axis. For small amplitude (ΓT = 0.5),
the benefits of optimization may not be clear, since the computed |fmax| = 0.34 is much less than any of
the enforced limits on the instantaneous force. For larger target amplitudes (ΓT ≥ 1.0) the amplitude of
harmonic actuation necessary to achieve ΓT increases substantially (see right ordinate axis in Figure 5c).
In contrast, the optimal actuation does not need actuation forces nearly as large as the harmonic |fmax| .
Consider for example the second column in Table 4. To achieve the same target (=1.0), the amplitude of
the harmonic actuation is two times the optimal one (first column in Table 3 with |fmax| = 1). The optimal
actuation for this case is reported in Figure 8a, and is seen to vary in a snap-type manner. This indicates
that the optimal actuation trades force amplitude for a smaller and sharper variation in the control force to
achieve the design requirements.

However, this exchange of smoothness and force does not occur at the expense of the work objective. The
improvement in the work objective may be observed by comparing force amplitudes of harmonic actuation
|fmax| = 7.25 (third column in Table 4) with the optimal one |fmax| = 6.0. Here we observe for the same
maximum amplitude (ΓT = 1.5) a 2.2% decrease in the work from the harmonic actuation, even with a 17%
decrease in the optimal force amplitude. The comparison to other columns in Table 3 is not trivial, since
the constraint on the force is much less than |fmax| = 7.25.

Alternatively, the designer may vary the actuation frequency, while holding the force amplitude constant.
The frequency corresponding to the optimal displacement amplitude is computed in a similar manner to
selection of the force amplitude (see Table 5 and Figure 5d). To enable comparison with the tradeoff set, the
force amplitude is fixed at |fmax| = 4. The left and right ordinate axes of the figure display the respective work
and frequency (not necessarily optimal) corresponding to max |xca|. Although the same trend of variation in
W as a function of max |xca| is observed, there is an increase in work ranging from 2-135% in comparison to
the optimal designs. Furthermore, when the required power (P = W/T ) is compared, the increase in power
is in the range of 3 - 380%.

The variation of ω as a function of max |xca| (solid line) indicate a monotonic increase in amplitude. This
is similar to the upper branch in Figure 6. However, for max |xca| = 0.5, there are two possible frequencies
at which max |xca| = 0.5 may be attained. One in the lower branch -near the multiple solution region- and
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Figure 5. Optimization results of cubic hardening Duffing problem. The Pareto front is computed for different
side constraints |fmax| on the force design variables: a) Pareto front, see Table 3; b) optimal periods of actuation
corresponding to the Pareto front; c) work and maximum force amplitude values corresponding to a maximum
displacement amplitude equal to the target one. The force variation conforms to a sinusoidal actuation at
ω = ωn (see Table 4); d) work and period values corresponding to a maximum displacement amplitude equal
to the target one. The force variation conforms to a sinusoidal actuation at fmax = 4 (see Table 5).
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Figure 7. Response of the cubic hardening Duffing equation for ΓT = 1 and fmax = 6.0 a) optimal actuation; b)
orbit of optimal actuation and displacement response; and c) orbit of optimal actuation and velocity response.
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actuation and displacement response; and c) orbit of optimal actuation and velocity response.
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the other in the upper branch of the frequency response diagram. The disjoint value indicated in the figure
correspond to the former. In contrast the optimal frequency favored the upper branch at ωo/ωn = 0.67 in
order to minimize the work.

Table 3. Pareto fronts optimal sets for a β = 0.3 and initial estimate of the control force corresponding to
|fmax| sin(0.9ωnt). Each Pareto set corresponds to an |fmax| side constraint on the control force design variables.

|fmax| 1 2 4 6
ΓT Wmin ωo/ωn Wmin ωo/ωn Wmin ωo/ωn Wmin ωo/ωn

0.50 0.26 0.89 0.20 0.72 0.17 0.67 0.17 0.67
1.00 1.22 1.05 1.13 0.98 0.92 0.83 0.70 0.67
1.50 3.11 1.19 2.98 1.15 2.72 1.07 2.44 0.98
2.00 6.24 1.36 6.06 1.33 5.75 1.27 5.45 1.22
2.50 NF§ NF§ 10.73 1.51 10.37 1.47 10.04 1.43
§ Not feasible

Table 4. Displacement amplitude (max(|xca|)) and expended work W for |fmax| sinωnt. The amplitude of the
control force |fmax| is computed to yield a displacement amplitude equal to the target one in the Pareto front,
see Table 3.

max(|xca|) 0.5 1.0 1.5 2.0 2.5
W 0.30 1.17 2.57 4.43 6.71
|fmax| 0.34 2.23 7.25 16.48 30.35

Table 5. Displacement amplitude (max(|xca|)) and expended work W for |fmax| sinωt with |fmax| = 4. The
frequency of the control force is computed to yield a displacement amplitude equal to the target one in the
Pareto front, see Table 3.

max(|xca|) 0.5 1.0 1.5 2.0 2.5
W 0.40 1.04 2.88 5.96 10.54
ω/ωn 1.37 0.91 1.11 1.30 1.49

2. Softening-and-Hardening Nonlinearity

A softening Duffing system results when the coefficient of nonlinearity is negative, i.e., the spring stiffness
decrease as deflection increases. The softening is relevant to many physical phenomena such as rolling
motion of a ship25 or longitudinal vibrations of piezoceramic rods.26 The hardening system is characterized
by a jump-down frequency, where the amplitude jumps down for an increasing frequency sweep. When the
nonlinearity is of softening type, a jump-up frequency occurs. Recently, Berennan et al.27 and Malatkar
and Nayfeh 28 calculated these frequencies for either a softening or hardening cubic nonlinearities. In this
section, the optimal actuation of a combined softening-and-hardening Duffing system is analyzed. The cubic
coefficient is selected to provide softening, whereas the pentic coefficient provides hardening. In this manner,
the system near resonance softens and encourages response until the restraining nonlinearity dominates.
Parameters of the system are listed in Table 7. The jump-up and jump-down behavior is observed by
computing the frequency response of the system for a harmonic force of unit amplitude. The response is
reported in Figure 9. The response is indicated to possess a double discontinuity due to the simultaneous
hardening and softening effects.
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The optimization problem is applied to this system to test the robustness of the gradient-based search
method. Results of the optimization search are listed in Table 7. The initial estimate of the design force is
sin(ωit). The initial design is denoted with the subscript i. Two optimization problems are solved for target
amplitudes ΓT = 0.5 and ΓT = 1.0. The optimal actuation for each target are indicated in Figure 10.

For ΓT = 0.5 the response to the initial harmonic design (ωi = 0.91ωn) is larger than the demanded
one (see Figure 9). This allows the optimization search the opportunity to decrease the work by around
80%, until the amplitude constraint becomes active. The optimal design enabled this improvement by first
adjusting the actuation frequency and then the instantaneous force, see Figure 10a. However, for ΓT = 1.0,
the initial design response is close to the target one. There, the decrease in work objective competes with
the enforcement of the amplitude constraint. The optimal actuation force compensates for this by varying
the force in a snap-type manner. See Figure 10b. Comparison of the minimum work with the initial work
indicates a 13% decrease for almost the same response amplitude.

Furthermore, the optimal design at ΓT = 0.5 can not be easily compared to the harmonic one, since
the frequency response is discontinuous near max |xca| = 0.5; see Figure 9. In this case, the optimization
search penetrates a region in the design space inaccessible by the trivial design by varying the instantaneous
actuation force. Without the optimization search and the ability to tailor the actuation force, this response
may only be possible by using larger force amplitude than the resources permit.
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Figure 9. Frequency response diagram of softening-and-hardening Duffing system using harmonic actuation,
sinωt.
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Table 6. Fixed parameters of optimization problem for the softening-and-hardening Duffing system.

|fmax| ωn ωl ωu ζ m nd p Nel β γ Objective tolerance Constraint Tolerance
1 31.57 2

3ωn 4ωn 0.019 0.01 31 5 30 -1 1 1 × 10−6 1 × 10−6

Table 7. Optimization results of softening-and-hardening Duffing system for |fmax| = 1.

ΓT Wmin ωo/ωn Wi ωi/ωn max |xca|,i
0.5 0.23 0.79 1.14 0.91 1.04
1.0 0.99 0.86 1.14 0.91 1.04
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Figure 10. Optimal actuation force of the softening-and-hardening Duffing system at |fmax| = 1: a) ΓT = 0.5;
b) ΓT = 1.0.
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VI. Conclusions

In this paper, a formulation is developed to compute the optimal actuation of nonlinear, resonant dynamic
systems for the dual objectives of minimized actuation work and maximized amplitude of the time-periodic
response. The constraint method is used to compute the tradeoff curve of both objectives by minimizing
the actuation work for a set of constraints on the response amplitude. The nonlinear dynamic response of
the periodic actuation is computed over one cycle using the monolithic-time spectral element method. The
actuation force is constructed using the values of numerous design variables at equally spaced nodes in a
cycle. Cubic splines are used to interpolate the force between any two variables. The adjoint sensitivity
method is developed for the monolithic-time method to enable efficient gradient-based optimization search
considering the large number of design variables.

The optimization methodology is applied to Duffing systems with cubic nonlinear hardening and cu-
bic/pentic nonlinear hardening and softening. In the softening case, an additional pentic hardening spring is
considered. The strict hardening application demonstrates the superiority of the optimization formulation
in resolving dependence of nonlinear response on initial conditions, where the initial conditions are selected
close to the specified constraint on the response amplitude. The tradeoff curves of minimum work and
maximum amplitude are computed for different levels of maximum available force. The optimal designs are
compared to harmonic actuation yielding the same maximum amplitude. For equal force amplitudes, the
work of harmonic actuation is found to be 2-135% larger than the optimal one. However, when the demand
on the response is large, the harmonic actuation can only enforce the constraint using a large-force amplitude.
The optimal actuation compensates for the limited available force by varying the force abruptly in time. In
some cases, to attain the same response, a 20% increase in the harmonic force is needed over the optimal
one, although the latter resulted in a 2.2% work savings. The application of optimization formulation to
Duffing system with softening and hardening verified robustness of the search method and showed similar
improvements in the performance measures. Additionally, the optimal design is found to yield designs in
regions deemed discontinuous using harmonic actuation.
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A. Convergence of Newton Method: Duffing

The convergence properties of the nonlinear solution is reported in Figure 11 for the Duffing problem
with strict cubic hardening. The nonlinear solution is computed using (18). Iterations are started using
a harmonic initial guess with an amplitude ε = 1 × 10−6. The residual (15) is reported as a function of
iteration number, where the jacobian is evaluated for the first 20 iterations and frozen for larger iterations.
Solution of the Duffing system is computed for a sinusoidal actuation force using a forcing frequency equal to
the natural frequency of the linear system (ωn = 31.57) and far from the natural frequency (=0.7ωn). The
standard quadratic convergence rate of the Newton method is attained for 0.7ωn, however the convergence
rate deteriorates for ω = ωn.
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Figure 11. Convergence of the nonlinear solution for the hardening Duffing system β = 0.3 using a harmonic
actuation sin ωt. Convergence rate deteriorates near the natural frequency.
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