

Mr. Tool
Autonomous Garage Butler

“Because You’re a Tool and Left the Garage Dirty, Again!”

Max Koessick

Final Report

EEL5666C, Intelligent Machine Design Lab

Summer 2003

Professors: Dr. A. Arroyo and

 Dr. E. Schwartz

TA’s: Uriel Rodriquez, Vinh Trinh, Louis Brandy

 Page 1 of 88

Mr. Tool, Final Report Table of Contents EEL 5666C, IMDL

Table of Contents

ABSTRACT 3

EXECUTIVE SUMMARY 4

INTRODUCTION 5

INTEGRATED SYSTEM 6

 Mechanical Overview

 Platform Fabrication
 Main Body Construction 7
 Arm Sy
 Arm 8

stem 8

 Winch (Tamiya Planetary Gear Drive) 9
 Electromagnet 10
 Peripherals
 LCD Display 11
 LED Display 11
 Drive Platform
 Speed Actuation 13
 Direction Actuation 15
 Servo Note 15
 Power Supply 16

 Sensor Overview

 Daventech SRF08 Sonar 17
 Cherry GS100701 Gear Tooth Sensor (Hall) 17
 Sharp GP2D12 IR Sensor 18
 Arm Feedback 19

 Electrical and Computing Overview

 Atmel ATMega323 Microcontroller 20
 Motor Drivers
 National LMD18200 H-Bridge 21
 Texas Instruments SN754410 H-Bridge 21
 Magnet Control—Fairchild HUF76107 Power FET 22
 Daughter Boards
 Main Daughter Board—Circuit Brief 22
 Motor Driver Board—Circuit Brief 23
 GP2D12 Digital Output Conversion—Circuit Brief 23

 Page 2 of 88

Mr. Tool, Final Report Table of Contents EEL 5666C, IMDL

SOFTWARE 24

BEHAVIORS 24

COMPONENT SOURCES 24

CONCLUSION 25

APPENDIX
 Main Robot.asm 26

A: SOURCE CODE

 323 16 Bit PWM and External Int.asm 39
 Ping.inc 43
 LCD.inc 50
 323 Microchip.asm 54
 WaitForBump.asm 62
 Arm and Magnet.asm 64

B: SCHEMATICS APPENDIX
 Main Daughter Board 69
 Motor Driver Board 71
 GP2D12 Digital Output Conversion 72

APPENDIX C: FLOWCHARTS AND GRAPHS
 Main 73
 Ping 74
 Forward Obstacle 75
 Go Right/Left 76
 Reverse 77
 Possible Target 78

 Electromagnet Power vs. Holding Force 79

APPENDIX D: SPECIAL SENSOR REPORT: DAVENTECH SRF08 SONAR 80

APPENDIX E: SPECIAL SENSOR REPORT: ELECTROMAGNET 84

APPENDIX F: SPECIAL SENSOR REPORT: HALL SENSOR 87

 Page 3 of 88

Mr. Tool, Final Report Abstract EEL 5666C, IMDL

ABSTRACT

Mr. Tool is an autonomous garage cleaner. He is designed
to randomly navigate a dark garage at night picking up
tools as he finds them. Mr. Tool implements object
avoidance, metal detection, object gathering and decision
king. ma

 Page 4 of 88

Mr. Tool, Final Report Executive Summary EEL 5666C, IMDL

Executive Summary

Mr. Tool is an autonomous vehicle based on a remote control
tank platform. Mr. Tool’s objectives are to randomly
maneuver around a garage floor while avoiding obstacles and
detecting metallic tool. He will then collect them in his
basket and move on.

An Atmel ATMega323 is used as the microprocessor. A winch
is attached to the back of Mr. Tool It manipulates a carbon
fiber arm that has an electromagnet attached. Pulse width
modulated (PWM) servos control speed and direction. Also,
PWM controls the speed of the winch.

Obstacle avoidance is accomplished with two main sensors,
sonar and infrared. The sonar is mounted on a servo for
180° field of view. This is the most critical sensors in
obstacle avoidance. IR is rearward looking.

Tool detection is accomplished by a Hall-effect gear tooth
sensor. It is located in the lower front apex of a vee-
shaped trough. Mr. Tool ‘stumbles’ on his targets and
locates them underneath the magnet by pushing them.

 Page 5 of 88

Mr. Tool, Final Report Introduction EEL 5666C, IMDL

Introduction

Mr. Tool was an idea born out of frustration. After many a
long day in the garage, the last thing one wants is to
clean up. Introducing Mr. Tool, he will pick up your tools
for you.

This report will detail all of Mr. Tool’s components. It
will also document the build and testing processes. First,
the platform and drivetrain will be discussed. Next, the
arm subsystem will be tackled. Finally, the electronic
subsystems will be revealed.

The appendices contain all source code as well as
behavioral flowcharts. Also included are circuit
schematics. Lastly, two special reports detailing the
operation of the sonar array and the metal sensing hall-
fect sensor are presented. ef

 Page 6 of 88

Mr. Tool, Final Report Integrated System EEL 5666C, IMDL

Integrated System

Mechanical Overview—Platform Fabrication

Main Body Construction/Integration

The overall platform consists of two major subsections.
First, the lower half is the cannibalized bottom of the
remote control tank. This consists of the gearbox, motor,
suspension and lower tub.

The gearbox is a stout dual clutch design powered by a
Marubuchi RS-540S racing motor that draws 2.2A at stall and
is powered by a 7.2V 3000 mAh NiMH battery. The suspension
consists of 18 wheels, 14 of which are independently
suspended using a mini-torsion bar system. Of the
remaining four wheels, two are the main drive sprockets and
two are used to keep tension on the tracks. These four do
not move. The overall concept of the lower half remains
virtually unchanged from the original R/C tank with the
exception of mounting brackets for servos and the hall
sensor. Figure 1 details the lower tub, including dual
clutches, gearbox, motor, speed controller and torsion
bars. Figure 2 shows typical suspension deflection.

Figure 1. Lower Tub and Drive Mechanism

Figure 2. Suspension Deflection

The upper body houses the microcontroller (µC) development board as well
as the 3 daughter boards. The top, with the exception of the microcontroller
housing, was fabricated in the Mechanical Engineering machine shop from
sheet aluminum. The side skirts are bolted on using standard 6-32 socket

 Page 7 of 88

Mr. Tool, Final Report Integrated System EEL 5666C, IMDL

head screws. This detail is shown in Figure 3. The rear skirt is a floating
design. Moreover, it is suspended on springs. Figure 4 illustrates the
suspended aft bumper. Originally, a front floating skirt was employed, but
removed in the final stages. It was non-functional as it is the sonar’s
responsibility for front object avoidance.

The upper body is attached to the lower via a four thumbscrews and a main
electrical trunk.

Figure 3. Upper Body Detail

Figure 4. Aerial View of Floating Rear Skirt

Arm Systems

Arm The arm is almost composed entirely of lightweight
carbon fiber composite. It is 1/2 inch in diameter. It is
boxed together with ¼ inch threaded rod (6-32 pitch).
Moreover, the rod serves to sandwich the carbon fiber
together. The All Thread rod is secured with both socket
head set screws as well as nuts. In order to smooth 90°
transitions, the carbon fiber tube ends were coped. Figure
5 shows the set screws and nuts as well as the coping
detail.

Figure 6 details the 5/8 inch nylon spacers that are used
to 1) determine appropriate box diameter of the arm as well
as 2) reduce friction between the arm and the body. These
spacers were turned on a Hardinge lathe from 1” nylon
stock.

 Page 8 of 88

Mr. Tool, Final Report Integrated System EEL 5666C, IMDL

Figure 5. Front Arm Joint with Coping
Detail, Set Screws, and Threaded Rod

Figure 6. Rear Arm Detail with Nylon Spacer

Arm travel is determined by stop switches located on the
body at both extremes of travel. At the raised limit, the
stop switch also incorporates a leaf type spring to push
the arm down to the lower rest position. More information
will be discussed later.

Winch The winch motor is a commercially available kit made
by Tamiya Model Company. It is a planetary gear drive
system that uses a 3V DC motor that spins at 18000 rpm.
Motor actuation is controlled through a National
Semiconductor LM18200 H-Bridge integrated circuit that is
discussed later. The shaft energy is then reduced through
a set of four planetary gears to a final drive ratio of
400:1. The output shaft is coupled to a take up spool via
a standard servo horn. A bracket is wrapped around the
spool and bolted to the upper body. The support bracket’s
purpose is to counter the upward force on the output shaft
caused by the pulling cable. Lastly, the winch cable is
fed though an elevated guide to provide a proper fulcrum to
facilitate lift.

The manufacturer boasts a lifting capacity of 15Kg with the
400:1 drive ratio. This specification far exceeds the need
as the target lift will be under ½ pound.

 Page 9 of 88

Mr. Tool, Final Report Integrated System EEL 5666C, IMDL

Figure 7. Planetary Gear Winch, Cable Guide and Bracket Detail

Electromagnet Solenoid City’s E-20-100 electromagnet
($32.50) is the second of the two lifting workhorses. When
a positive target is identified, the microcontroller
activates it via field effect transistor (Fairchild
Semiconductors HUF76107P3 Power FET, discussed later). The
electromagnet then stays energized through the entire cycle
finally de-energizing at the apex of the lift.

From Graph 1, Typical Hold Force vs. Input Power (located
in Appendix C), hold force is greater than the minimum of
18 pounds. Again, this specification far exceeds the
needed ½ pound coupled with any gravitational effects.

It is attached to the lift arm by a floating collar. This
way, the magnet is free to rotate and remain parallel to
the ground. The attaching collar was machined on the
Hardinge lathe from one inch aluminum circular stock. The
magnet assembly is retained by two set screws on either
side that prevent lateral movement while the electrical
wiring is routed inside the carbon fiber arm for
protection.

More information is available in Appendix E, “Special
Sensor Report, Solenoid City’s E-20-100 Electromagnet.”

 Page 10 of 88

Mr. Tool, Final Report Integrated System EEL 5666C, IMDL

Figure 8. Magnet Mount, Collar and Wire Route

Peripherals

LCD Display The LCD display is a standard 2 line by 16
character dot display that uses the standard ASCII set. It
is a parallel (8 data bus lines) type display. It uses the
industry standard Hitachi HD44780 LCD controller.

The original intent of the LCD was to display the range to
the closest target. Unfortunately, time was short and the
end result is that it displays the robot’s name and other
curt information. The ASCII to hex conversion was just too
time invasive.

LED Display Mr. Tool has a ‘Knight Rider’ style bar of LEDs
that is for display. The circuit board was constructed by
hand on a protoboard. All of the traces were fabricated
from spent resistor leads.

The circuit is active low, i.e. the anode is tied to a port
through a current limiting resistor and the cathode is
applied to 5V.

 Page 11 of 88

Mr. Tool, Final Report Integrated System EEL 5666C, IMDL

Illustration 1. LED Schematic

Figure 9. LED Protoboard

Figure 10. Mounted LED Arra

 Page 12 of 88

Mr. Tool, Final Report Integrated System EEL 5666C, IMDL

Mechanical Overview—Drive Platform

Speed Actuation The main drive motor is controlled via a
mechanical switch and servo combination. There are 2
speeds in forward and reverse as well as a neutral (stop)
position.

The servo requires a 1-2ms pulse every 10ms to determine
position. For example, a 1ms pulse produces a full right
position and a 2ms produces a full left position. A pulse
width modulation (PWM) output was used from the
microcontroller to generate the requisite periods.
Exactly, proper pulse widths had to be determined to move
the servo to the exact position for the desired speed.

To generate the PWM, the output compare (OC) feature of the
µC was utilized. As background, the OC is nothing more
than an 8 bit counter that counts up to 255 and back down
again. With a known clock speed, the PWM is generated by
storing a number that the OC looks for. When this number
is spotted, the OC toggles an output pin. This is repeated
on the down count, again toggling the pin.

 Page 13 of 88

Mr. Tool, Final Report Integrated System EEL 5666C, IMDL

Illustration 2. PWM Basics

Speed OC Value
(hex)

Direction OC Value
(hex)

Sonar
Direction

OC Value
(hex)

Fwd Fast $C9 Full Right $A1 Look Right $F6
Fwd Slow $CB Slip Right $A3 Straight $D9
Neutral $CE Straight $A7 Look Left $BF
Rev Slow $D2 Slip Left $AF
Rev Fast $D5 Full Right $B2

Table 1. Output Compare Match Values

Up Count Down Count

255

Hypothetical Compare Match

Counting Sequence

PWM Output

0 0

 Page 14 of 88

Mr. Tool, Final Report Integrated System EEL 5666C, IMDL

Figure 11. Speed Controller and Servo

Figure 12. Dual Clutch (Direction Control)

and Servo

Direction Actuation Directional control is actuated in much
the same way. A servo controls a dual clutch set, one for
each track. As pressure is applied by the servo on the
lever arm, the clutch on that side is engage or allowed to
slip. The resulting action is either full track stop on
that side or reduced power. The end result is one of two
turn styles: full pivot or gradual slip. The latter is
more graceful.

Servo Note The servos were originally mounted to the lower
tub using double sided adhesive tape. A great deal of play
was introduced into the push-pull system by the flexibility
of the tape. Further, no precise servo movement was
attained. While acceptable n a remote control situation
where human feedback is present, the servo was not
providing consistent movement. The solution involved
fabricating aluminum brackets to secure the servos to the
lower tub walls. All play was eliminated. These brackets
are evident in both Figures 11 and 12.

 Page 15 of 88

Mr. Tool, Final Report Integrated System EEL 5666C, IMDL

Mechanical Overview—Power Supply

Electrical power is supplied to Mr. Tool through 3 main
nickel metal hydride (NiMH) battery packs. Three
individual packs were used to reduce potential noise caused
by the motors and motor drivers.

One, the µC pack, is composed of 12 1.2V 1800 milli-Amp
hour (mAh) AA cells. Theoretical voltage is 12*1.2 or 14.4
volts. However, the battery pack is consistently above
16V, unloaded.

The second battery pack is a 7.2V, 3000 mAh remote control
car pack. This pack is the main battery for the drive
system only. Electrically, the motor and drive system are
disconnected from the all other electronics.

Last, a 6V, 1800 mAh battery is used to provide sole
current for the electromagnet. Typically, electromagnets
demand high current. By incorporating its own power
supply, the electromagnet will not drain current from the
icrocontroller and thereby possibly causing faults. m

 Page 16 of 88

Mr. Tool, Final Report Sensor Overview EEL 5666C, IMDL

Daventech SRF08 Sonar

The Daventech SRF08 ultrasonic range finder (sonar array)
uses a pulse (‘ping’) of sound to determine the range of up
to 17 targets in an area. The SRF08 emits a ping and then
waits for the first echo to return. This process takes
approximately 65ms to complete.

The sonar array communicates with the host microprocessor
via the Inter Integrated Circuit Bus (I2C) developed by
Phillips for communicating within consumer electronics.
Atmel uses this standard in the form of the Two Wire
Interface (TWI).

The SRF08’s main purpose in the world of Mr. Tool is
obstacle avoidance from forward, left and right directions.

More detailed information and pictures are in the
abbreviated Daventech Special Sensor Report located in
Appendix D.

Cherry GS100701 Gear Tooth Sensor (Hall)

The GS100701’s primary purpose is high speed gear sensing.
Normal applications include automotive applications and
machinery speed sensing. However, this hall type sensor
can also be used to detect metal objects that are within
close proximity to the head. In Mr. Tool, it is used to
accept/reject ferrous targets.

This model is a sinking interface, i.e. it produces
negative logic.

The sensor contains internal integrated circuitry that is
basically an open collector bipolar junction transistor
(BJT). The BJT supplies ground on the signal output wire
when a ferrous (gear) target is sensed. The only external
circuitry that is needed is a pull-up resistor that is
determined by input voltage. The GS100701 can operate on
voltages from 5 to 24 VDC.

Testing is as simple as placing a metal object in front of
the sensor. A multimeter reveals that the voltage drops
from 5V to approximately 0V with detection. Interfacing
proves just as simplistic. The single output wire is

 Page 17 of 88

Mr. Tool, Final Report Sensor Overview EEL 5666C, IMDL

connected to an external interrupt on the µC that is
configured for falling edge trigger. The sample code “16
Bit PWM and External IRQ.asm” was used to test
functionality.

More information is contained in Appendix F.

Sharp GP2D12 IR Sensor

The Sharp Electronics GP2D12 Analog IR sensor is used to
detect rear obstacles. Normally, the detecting distance is
between 10 and 80 cm. Mr. Tool was originally configured
around a GP2D15 digital output sensor that gives logic one
at a fixed detection distance of 24 cm. Unfortunately, the
GP2D15 met an untimely demise due to reverse battery
application. The analog version was readily available (in
lieu of ‘Next Day Air’ charges).

A conversion was devised to change the output to a digital
one so that no platform revision were needed (discussed
later). Succinctly, the digital output conversion uses an
LM311 comparator to compare against an output reference
voltage from a set distance. Approximately 24 inches was
chosen for convenience, corresponding to a voltage of
2.04V. Table 2 shows the results of near field testing.
Figure 12 shows the mounted sensor.

Figure 13. Sharp GP2D12 Sensor (Circle) Mount with Winch Assembly in Background (Arrow)

 Page 18 of 88

Mr. Tool, Final Report Sensor Overview EEL 5666C, IMDL

Arm Feedback

The first attempts at arm control involved many attempts to
time the lift cycle. This proved unworthy due to the winch
spool. Moreover, the exact length of the string would have
to be precisely measured, as well as having a known spool
speed. From there, the distance travel would be factored
in . . . there are much better ways to do this.

Instead, limit switches were used. In fact, two switches
were attached to the skirts. One is at full rest and the
other lies at full upright. Each is tied directly to a
port pin through a current limiting resistor and then to
ground. Both switches are of the normally closed type.
The Atmel’s internal pull-ups are enabled to pull the
output high when the switch is open.

Front

Figure 14. Upper Arm Limit Switch and Return Spring

A leaf type return spring hand rolled from aluminum is used to coax the spring back
towards the rest position once the tension on the winch has been released.

 Page 19 of 88

Mr. Tool, Final Report Electrical and Computing EEL5666, IMDL
 Overview

Electrical and Computing Overview

Atmel ATMega323 Microcontroller

The ATMega 323 was actually the second choice for a
microcontroller. The first choice was the ATMeg1a 128,
however, due to technical difficulties; design was switched
to the 323.

The 323 is more adequate in terms of ports and timers.
Features present on the board that were utilized include
the 4 timers in 8 bit PWM mode, all available external
interrupts and the two wire interface or I2C bus.

Software development was on the proprietary Atmel board,
the STK500. Originally, the STK501 top module with 64 pin
zero insertion force (ZIF) socket was used, but it
developed some problems. The STK500 is also the same board
that is incorporated into Mr. Tool.

Great care was taken in the routing and termination of all
wiring. Early on in development, faults and frayed wires
were discovered near the shear junction of wire to
connector (i.e. solder point). To remedy, heat shrink
tubing (22AWG) was used as a strain relief. The result is
shown in Figure 15 below. Note the absence of the typical
‘bird’s nest.’

Figure 15. Precision Wiring Harness and STK500

 Page 20 of 88

Mr. Tool, Final Report Electrical and Computing EEL5666, IMDL
 Overview

Motor Drivers

Experiments were performed on two discrete integrated
circuit packages. Ideally, PWM was desired to control all
electrical motors inside Mr. Tool. However, due to the
high current draw of the main motor, no suitable motor
driver was found for the main motor. In contrast, two
drivers were tested in conjunction with the winch motor.

Texas Instruments SN754410 H-Bridge Originally, the TI H-
bridge was chosen to control the winch motor. It was
thought that the 1.1A capacity of this package was adequate
for the motor. However, after extensive testing, the winch
motor revealed a stall current of close to 1A. Although
the SN754410 is rated to 1.1A, it never performed near that
level. It seemed to deliver closer to .85 to .95A under
load all the while generated copious amounts of heat.
Also, this IC is only available in a PDIP with no included
sink to alleviate heat.

National LMD18200 H-Bridge A much more robust package, the
LMD18200 is available with a current capacity of 3A and is
encased in a TO-220 type with included heatsink. It was
tested on both the main motor and the winch motor. While
it performed flawlessly on the winch motor, the LMD18200
could not keep up with the main motor and would ‘thermal
out,’ or go into thermal protection mode due to the large
amount of current demand.

The National H-bridge included many extra features not
available on the Texas Instruments controller. Notably, it
includes provisions for an external heatsink, single
direction control pin (as opposed to two on the TI), and
braking capability. First, an aluminum TO-220 style
heatsink was bolted to the back with thermal grease in
between the two. Next, braking was introduced by
connecting the brake input to an unused port pin on the
microcontroller. Use of the brake allowed for even
transitions between lift and descent of the arm. The only
precaution is that there must be a 1µS delay in between
application of the direction pins or brake pins.

 Page 21 of 88

Mr. Tool, Final Report Electrical and Computing EEL5666, IMDL
 Overview

Magnet Control—Fairchild HUF76107 Power FET

Erik Sjolander’s ‘Butler Bot’ provided the solution for the
control of the electromagnet. A TTL switch was needed to
activate the magnet that could handle the high current.
Enter the Fairchild HUF76107 field effect transistor. Part
of the UltraFET series, the ‘76107 offers a 20A, 30V
capacity with 200nS switching time. The FET is directly
tied to a port pin on the microcontroller and is active
high. The only external circuitry is a pull down resistor
to guarantee the state of the transistor in a floating
input situation.

Daughter Boards

There are three daughter boards that reside underneath the
upper body. The main board serves as a junction point to
the entire lower circuitry such as the servos, IR, sonar,
Hall, etc. It was design in Protel and milled on the IMDL
T-tech CAM router. Both the motor driver and IR digital
conversion board were hand made with protoboard readily
available from Radio Shack.

Main Daughter Board—Circuit Brief The main daughter board
supplies 5V regulated power to the servos, sonar, hall, and
LEDs by means of a National LM1085 (3A 5V regulator). Also
included are the switch inputs for both front and rear bump
and arm limit switches. The port pins are directly
protected by the use of in line 150Ω resistors. Pull is
selectable up or down through a jumper.

Originally, the TI motor driver was to be located on this
board, but motor driver was relocated off board due to
router schedule time constraints (there was not enough time
to route a new board). Also, this board derives its power
from the microcontroller battery back with voltage inserted
to separately power the magnet.

Input supply is bypassed by way of a 100µF electrolytic
capacitor. Output is stabilized via a 10µF Tantalum
capacitor.

 Page 22 of 88

Mr. Tool, Final Report Electrical and Computing EEL5666, IMDL
 Overview

Digital Output
Converter for IR

Main Daughter
Board Motor Driver

Figure 16. Daughter Boards

Motor Driver Board—Circuit Brief The motor driver board
consist of two main parts, the LMD18200 H-Bridge and a
470µF bypass capacitor. Male headers are used as
attachment points for the wire harness. A large aluminum
TO-220 heatsink is attached to dissipate heat. Again, the
board was constructed on protoboard and hand routed with
discarded resistor leads.

GP2D12 Digital Output Conversion—Circuit Brief To review,
the analog output of the GP2D12 was modified to put out a
logic 1 at a predetermined distance. Normally, the IR
sensor outputs a voltage between roughly 0 and 3V according
to the distance of an object. A fixed distance was chosen
and this voltage recorded and input into a comparator. The
comparator weighs this input against a reference voltage
and then turns on (logic one). The reference voltage can
be adjusted through a 10kΩ potentiometer to represent a
distance of approximately 4 to 35 inches. Mr. Tools stops
if an object is closer than approximately 24 inches. A 1µF
electrolytic capacitor was added between signal and ground
to help reduce noise. Also, a .1µF capacitor was added to
bypass the supply voltage. Board power is taken from the
main daughter board.

 Page 23 of 88

Mr. Tool, Final Report EEL5666, IMDL

SOFTWARE

Atmel’s AVR Assembly was the programming language of
choice. It was chosen because of speed and ease in
programming. For example, one does not have to mediate
rough a third party compiler such as WinAVR, etc. th

BEHAVIORS

Behaviors implemented include 360° obstacle avoidance
through the use of pivoting sonar and IR. Also implemented
are metal detection and target acquisition through the use
of the Hall-effect sensor. The last behavior was arm
edback to positively control arm movement fe

COMPONENT SOURCES

1. Bump switches, LEDs, protoboard, heatsinks, batteries
+ chargers Radio Shack

2. Electromagnet, www.solenoidcity.com, $32.50
3. TI SN754410 H-Bridge, www.ti.com, free sample
4. Fairchild HUF76107 Power FET, www.fairchildsemi.com,

free sample
5. LMD18200 H-Bridge, www.national.com, free sample
6. Sharp GP2D15, GP2D12, $15 and $12 respectively,

www.hobbyengineering.com
7. Atmel STK500 with ATMega 32 and STK501 with

ATMega128, www.digikey.com, $158
8. Tamiya Planetary Gear, www.towerhobbies.com, $12
9. Flakpanzer Gepard R/C tank, bought in Middle School,

original price $300 (including servos)
10. Aluminum flat stock, courtesy SAE, free
11. Carbon fiber tube, courtesy SAE, free
12. Daventech SRF08 Sonar and mounting bracket,

www.acroname.com, $70
13. Spare RS-540S Motors, www.allelectronics.com, $10
14. Hall sensor, GS100701, www.cherrycorp.com, free

sample

 Page 24 of 88

http://www.solenoidcity.com/
http://www.ti.com/
http://www.fairchildsemi.com/
http://www.national.com/
http://www.hobbyengineering.com/
http://www.digikey.com/
http://www.towerhobbies.com/
http://www.acroname.com/
http://www.allelectronics.com/
http://www.cherrycorp.com/

Mr. Tool, Final Report EEL 5666C, IMDL

CONCLUSION

Mr. Tool was very time invasive. Most of the goals set
forth at the beginning of the semester were implemented
(see Behaviors above). The only goal no implemented was
positive target grasp. Further, a goal was set to include
a sensor that acknowledges that the magnet has the tool.
This was not accomplished. All other behaviors were
implemented successfully.

The unmet goal above constitutes an area of improvement.
Another area would be the PWM control of the main motor. A
possibility was found as a Motorola H-bridge capable of
sinking or sourcing up to 5A, but there was not enough time
to order samples or test. Issues that would have been
dealt with include heat and increased power supply. A PWM
controlled main motor would have given more precise speed
control. Also, as all timer channels on the ATMega 323
were used, a larger microprocessor would have been needed
with additional timer channels.

Warnings for future students would include early testing of
a completed system. Mr. Tool’s first full system test was
days before the final demonstration. A mysterious bug
prevented movement on demo day. Start early!! Also,
students should make full use of many of the sample
programs that may semiconductor manufactures have.

Future work would include the stouter H-Bridge for the
motor and adding target acquisition acknowledgement. Also,
a means to judge the size of the tool should be added.
Lastly, the arm should be tool height independent.
Currently, tools with a height of approximately 1.5” only
are readily picked up.

 Page 25 of 88

Mr. Tool, Final Report Appendix A: EEL5666, IMDL
 Source Code

;---
; Name: Main Robot.asm
; Description: ATMega1323 Two Wire Interface (IC2) Test Program
; Interfaces Daventech SRF08 Range Finder to I2C
Bus

; Author: Max Koessick
; Class: EEL5666C, Intelligent Machine Design Lab
; Date: July 27, 2003
; Revision 1.a
; Changes to Date:
; 7/27/03 First Revision

;---

.nolist ; Do not include
in .lst file
.include "m323def.inc" ; Standard ATMega128 Include
File
.include "TWI.inc" ; Two Wire Interface
Error code definitions
.list
; Interrupt service vectors

.org $0000
 rjmp Reset ; Reset vector
.org INT0addr
 rjmp IntV0
.org INT1addr
 rjmp IntV1
.org INT2addr
 rjmp IntV2

; ** ---------------------
; ***** Register defines for main loop ***** ---------------------
; ** ---------------------

.def mpr =r16 ; defines multipurpose
register
.def MPR2 =r17 ; multipurpose register 2
.def mpr3 =r18
.def ECHO1L =r19
.def LEDreg =r20
.def ErrorReg =r21
.def Obsreg =r22 ; Contains the object
detected flag

; ******************* --
; ***** Equates ***** --
; ******************* --

 Page 26 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

; Equate statements for SRF08 Sonar
.equ W = 0 ; Write Bit
.equ R = 1 ; Read Bit
.equ SLA = $FE ; Slave Address of SRF08
.equ CommandReg = $00 ; Random address
.equ Inches = $50 ; Ranging Mode returns
results in inches
.equ EchoReg2 = $02
.equ EchoReg3 = $03

; Equate statements for Servos
.equ LookRT =$F6 ; Sonar directions
.equ LookFwd =$D9
.equ LookLFT =$BF
.equ FullLFT =$B2 ; Turning
.equ SlipLFT =$AF
.equ Straight =$A7
.equ SlipRT =$A3
.equ FullRT =$A1
.equ StopPWM =$FF
.equ FwdSlow =$d5
.equ FwdFast =$d5
.equ Stop =$CE
.equ RevSlow =$cb
.equ RevFast =$c9
.equ Turntime =$FFFF ; Turning Delay
.equ Revtime =$FFFF ; Reverse Delay
.equ NoPing =$FFFF ; Wait for Servo to
turn
.equ MinDist =20

.equ brake = 1
.equ ArmDir = 0
.equ MagOn = 6

; ************************ ---------------------------------------
; ***** Reset Vector ***** ---------------------------------------
; ************************ ---------------------------------------

Reset:
;---
; ***** Setting Stackpointer ***** -------------------------------
;---
 ldi MPR,low(RAMEND) ; Set stackptr to ram
end
 out SPL,MPR
 ldi MPR, high(RAMEND)
 out SPH, MPR
;---
; ***** Set Port Directions ***** --------------------------------
;---
 ser mpr ; Set TEMP to $FF to...

 out DDRA,mpr ; LCD

 Page 27 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 ldi mpr,0b11111000
 out DDRB,mpr ; Set PORTB to output
 ldi mpr,(1<<PB0)|(1<<PB1)
 out PORTB,mpr ; Enable Internal pull up for
PB0,PB1

 ser mpr ; LEDs and TWI
 out DDRC,mpr
 out PORTC,mpr

 ldi mpr,0b11110011 ; Set PD2 and PD3 to input
 out DDRD,mpr ; Set PORTD to output

;---
; ***** Initialize I2C(TWI) Interface ***** ----------------------
;---

; Set TWIBitRate for fclk=16Mhz

 ldi mpr,11 ;
100Khz=3.69MHz/(16+2*11) See Datasheet Pg202
 out TWBR,mpr ; Note: This system clock
does not support 400kHz

; Initialize TWCR Register
 clr mpr
 ldi MPR,(1<<TWEN);
 out TWCR,MPR ; Initialize Two Wire Control
Register

; ldi mpr,$01
; out TWAR,mpr
;---
; ***** Initialize TC0,TC1A,TC1B,TC2 ***** -----------------------
;---

 clr mpr
 out TIMSK,mpr ; Turn Off any Timer
associated interupts

;-----Enable 16Bit PWM (Sonar Servo) Counter in 8Bit Mode---------

 ldi mpr,0b11000001 ; Bit7:6 -> Inverted PWM
 ; Bit5:4 -> Disable
OC1B
 ; Bit3;2 -> FOC =n/a
 ; Bit1:0 -> 8Bit PWM
mode
 out TCCR1A,mpr

 ldi mpr,0b00000011 ; Bit7 -> Input Noise
Canceler Disabled

 Page 28 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 ; Bit6 -> Input Capter
Edge Select n/a
 ; Bit5:4 -> Unsused
 ; Bit3 -> Clear on
Compare Match Disabled
 ; Bit2:0 -> Prescale =
/64
 out TCCR1B,mpr

 sbi PORTD,Brake ; Set Brake bit to low PD0=0

;-----Enable 8 bit PWM (Dir and Speed) ---------------------------

 ldi mpr,0b01110011 ; Bit7 -> FOC2 force Output
Compare = n/a
 ; Bit6 -> PWM0 Enables
PWM output
 ; Bit5:4 -> Set on
match upcount, clear on match downcount (11)
 ; Bit3 -> CTC0 No clear
on match
 ; Bit2:0 -> Prescale =
/64
 out TCCR0,mpr ; Enable PWM0
 out TCCR2,mpr ; Enable PWM2

;---
; ***** Enable External Interrupts ***** --------------------------
;---

 in mpr,MCUCSR
 andi mpr,0b10111111 ; Clear the INT2 Sense Control Bit
-> Falling Edge triggered
 out MCUCSR,mpr

 in mpr,MCUCR
 andi mpr,$f0 ; Mask Upper Bits
 ori mpr,0b00001010 ; Set ISC1:0 Sense Control
bits [3:0] -> Falling Edge for Int0
 ; Low level for Int1
(IR) -> ISR must fire as long as a
 ; bject is detected in
the rear.
 out MCUCR,mpr

 ldi mpr,0b11100000 ; Enable Interrupts 1-3
 out GICR,mpr

;---

; ************************ ---------------------------------------
; ***** Main Program ***** ---------------------------------------
; ************************ ---------------------------------------
mainloop:

 Page 29 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 ldi mpr,FwdSlow ; Set default forward
speed
 out OCR0,mpr
 ldi mpr,Straight ; Set default direction
 out OCR2,mpr
 ldi mpr,LookFWD ; Set default Sonar
Direction
 out OCR1AL,mpr

 sei

 call LEDs ; Update LEDs

 call Look ; For Debug
;
 sbrc Obsreg,0 ; If bit one is cleared from
LOOK subroutine,
 ; then no
obstacle found. Prgm will skip calling
 ; Obstacle
routine
 call Obstacle

 rjmp mainloop

; *********************** --
; ***** Subroutines ***** --
; *********************** --

;---
;-----Look--

Look:
; Start Error Rejection: Call ping 3 times to verify that an object is
in path
; before branching to obstcle routing
;Ping1:

 call Get_PING ; Get sonar data
 subi ECHO1L,MinDist ; object closer than MinDist
inches?
 brsh No_Obs ; ...no? Then branch is
same or higher
;Ping2:
; call Get_PING ; Get sonar data
; subi ECHO1L,MinDist ; object closer than MinDist
inches?
; brsh No_Obs ; ...no? Then branch is
same or higher
;Ping3:
; call Get_PING ; Get sonar data

 Page 30 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

; subi ECHO1L,MinDist ; object closer than MinDist
inches?
; brsh No_Obs ; ...no? Then branch is
same or higher

 ldi Obsreg,$1 ; Found an Obstacle
 rjmp End_look

No_Obs:
 clr Obsreg ; Didn't find an
obstacle

End_look:

 ret

; -----Get_PING---

Get_Ping:
.nolist
.include "ping.inc"
.list
;return instruction included in .inc file

;---
;-----Obstacle--

Obstacle:

 cli ; Disable interrupts
whil changing Output compare registers

 ldi mpr,Stop ; StopPWM
 out OCR0,mpr

 ldi mpr,LookLFT ; Rotate Sonar Left
 out OCR1AL,mpr

 sei ; Reset Interrupts

 call NoPingDelay ; Wait for servo to turn

 call Look

 sbrc Obsreg,0 ; If bit one is cleared from LOOK
subroutine,
 ; then no obstacle
found. Prgm will skip looking
 ; right and break out
 rjmp Right

 call Go_left ; ...else go left
 rjmp End_Obstacle ; Exit subroutine

 Page 31 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

Right:

 cli ; Disable interrupts
whil changing Output compare registers
 ldi mpr,LookRT ; Rotate Sonar right
 out OCR1AL,mpr

 sei ; Renable Interrupts

 call NoPingDelay ; Wait for servo to turn
 call NoPingDelay ; Must travel 180 degrees

 call Look

 sbrc Obsreg,0 ; If bit one is cleared from LOOK
subroutine,
 ; then no obstacle
found. Prgm will skip reversing
 ; and break out
 rjmp Reverse

 call Go_Right ; ...else turn right
 rjmp End_Obstacle ; Exit Subroutine

Reverse:
 cli ; Disable interrupts
whil changing Output compare registers

 ldi mpr,LookFWD ; Reset Sonar Forward
 out OCR1AL,mpr

 call NoPingDelay ; Wait for servo to turn

 ldi mpr,Straight ; Set direction clutch
neutral
 out OCR2,mpr

 ldi mpr,FwdSlow ; Set reverse speed 2
 out OCR0,mpr

 sei ; Reenable Interrupts

 call ReverseDelay

 cli ; Disable interrupts
whil changing Output compare registers

 ldi mpr,STOP ; Set Stop
 out OCR0,mpr

 sei ; Reenable Interrupts

 rjmp Obstacle ; Check left and right again for
options

 Page 32 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

End_Obstacle:
 ret

;---
;-----LEDs--

LEDs:

 ret

;---
;-----Go_Left---

Go_Left:
;jmp testz
 cli ; Disable interrupts
whil changing Output compare registers

 ldi mpr,LookFWD ; Reset Sonar Forward
 out OCR1AL,mpr

 ldi mpr,FullLFT ; Gradual Right turn (Set
Direction Clutch)
 out OCR2,mpr

 ldi mpr,FwdSlow ; Set H-Bridge PWM
 out OCR0,mpr

 sei ; Reenable Interrupts

 call TurnDelay ; Wait to complete 90Deg turn

 cli ; Disable interrupts
whil changing Output compare registers

 ldi mpr,Straight ; Go Straight (Set Direction
Clutch)
 out OCR2,mpr

 sei ; Reenable Interrupts

 ret

;---
;-----Go_Right--

Go_Right:

 cli ; Disable interrupts
whil changing Output compare registers

 ldi mpr,LookFWD ; Reset Sonar Forward
 out OCR1AL,mpr

 Page 33 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 ldi mpr,FullRT ; Gradual Right turn (Set
Direction Clutch)
 out OCR2,mpr

 ldi mpr,FwdSlow ; Set Servo PWM
 out OCR0,mpr

 sei ; Reenable Interrupts

 call TurnDelay ; Wait to complete 90Deg turn

 cli ; Disable interrupts
whil changing Output compare registers

 ldi mpr,Straight ; Go Straight (Set Direction
Clutch)
 out OCR2,mpr

 sei ; Reenable Interrupts

 ret

;---
;-----Crawl_Reverse--

Crawl_Reverse:

 cli ; Disable interrupts
whil changing Output compare registers

 ldi mpr,LookFWD ; Reset Sonar Forward
 out OCR1AL,mpr

 ldi mpr,Straight ; Set direction clutch
neutral
 out OCR2,mpr

 ldi mpr,FwdSlow ; Set Servo PWM
 out OCR0,mpr

 sei ; Reenable Interrupts

 call TurnDelay ; Keep going straight backwards

 cli ; Disable interrupts
whil changing Output compare registers

 ldi mpr,Stop ; Stop
 out OCR0,mpr

 sei ; Reenable Interrupts

 ret

;---
;-----Crawl_Forward--

 Page 34 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

Crawl_Forward:

 cli ; Disable interrupts
whil changing Output compare registers
 ldi mpr,LookFWD ; Reset Sonar Forward
 out OCR1AL,mpr

 ldi mpr,Straight ; Set direction clutch
neutral
 out OCR2,mpr

 ldi mpr,FwdSlow ; Set Servo Speed to slow
 out OCR0,mpr

 sei ; Reenable Interrupts

 call TurnDelay ; Keep going straight backwards

 cli ; Disable interrupts
whil changing Output compare registers

 ldi mpr,Stop ; Set H-Bridge PWM to stop
 out OCR0,mpr

 sei ; Reenable Interrupts

 ret

;---
;-----TurnDelay---

TurnDelay:

 ldi r24,low(Turntime)
 ldi r25,high(Turntime) ; Prepare register pair as
counter
 ldi mpr,$10

TurnLoop:
 sbiw r25:r24,1 ; Subtract 1 from register
pair
 brne Turnloop ; 3 cycles for these
instructions
 ; implements
.05328ms delay
 dec mpr
 brne turnloop

 ret
;---
;-----ReverseDelay--

ReverseDelay:

 ldi r24,low(Revtime)
 ldi r25,high(Revtime) ; Prepare register pair as counter

 Page 35 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

ReverseLoop:
 sbiw r25:r24,1 ; Subtract 1 from register
pair
 brne Reverseloop ; 3 cycles for these
instructions
 ; implements
.05328ms delay

 ret

;---
;-----NoPingDelay--
NoPingDelay:

 ldi r24,low(NoPing)
 ldi r25,high(NoPing) ; Prepare register pair as counter
 ldi mpr3,$9

NoPIngLoop:
 sbiw r25:r24,1 ; Subtract 1 from register
pair
 brne NoPingloop ; 3 cycles for these
instructions
 ; implements
.05328ms delay
 dec mpr3
 brne nopingloop
;jmp TESTz
 ret

; ***************************** ----------------------------------
; ***** Interupt Handlers ***** ----------------------------------
; ***************************** ----------------------------------

; External Interupts
IntV0:
 reti

IntV1:
 ; ldi errorreg,$aa
 ; inc errorreg

 ; cpi errorreg,5 ; Check IR 5
times before acting
 ; brne endIntV1

 nop ; Execute
ISR intructions here
 ;cli
 ;issue stop
 ;call obstacle
 ;sei
 ; clr errorreg ; reset register
reti

 Page 36 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 IntV2: ;Hall Interrupt->Acquires target and moves arm
 ;*****---
-
 cli

 ; Magnet on here
 ; Start moving arm up
 sbi PORTD,MagOn
 call delay5s

 sbi PORTD,ArmDir ; Set PD0 to '1'-> Arm
Direction
 call delay1us
 cbi PORTD,Brake ; Set Brake bit to low PD0=0
DISENGAGE
 call delay1us
 ldi mpr,$AA ; Test value *Servo
neutral*(sonar)
 out OCR1BL,mpr ; Load OCR1AL with value for
1.5 ms pulse in a T=8.8ms

WaitForUp:
 sbis PINB,1 ; PB1= Rear stop switch
 rjmp WaitForUP

 call delay5s
 sbi PORTD,Brake ; Engage Brake
 call delay5s ; Delay to smooth arm
operation

 cbi PORTD,MagON ; Magnet off here
;
 cbi PORTD,ArmDir ; Change Directions
 call delay1us
;
 cbi PORTD,Brake ; Set Brake bit to low PD0=0
DISENGAGE
 call delay1us

 ldi mpr,$AA ; Start Arm Motor
 out OCR1BL,mpr

WaitForDown:

 sbic PINB,0 ; PB0=Front Arm Switch
 rjmp WaitForDown

 sbi PORTD,Brake ; Engage Brake
 call delay1us
 ldi mpr,$FF ; Stop Arm Brake + PWM
= 0-> Output transistor are off
 out OCR1BL,mpr

 sei

 reti

 Page 37 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

;*****--

TestZ:

 ldi mpr,$55
 com obsreg
 out portA,obsreg

here: rjmp here

;---
delay1us:
 ldi mpr,$ff
loopdelay1us:
 dec mpr
 brne loopdelay1us

 ret
;---
delay5s:

 ldi r24,$ff
 ldi r25,$ff
 ldi mpr,$9

delay5sLoop:
 sbiw r25:r24,1
 brne delay5sLoop
 dec mpr
 brne delay5sLoop
 ret
;--

 Page 38 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

;--
;Project Name: 323 16Bit PWM Test.asm
;Description: Test Single Channel PWM 16Bit Up/Down Counter
;Author: Max Koessick
;Date; July 26, 2003
;Revision: 1.0 Working 16Bit PWM
; 1.a Working Ext Interupts (2:0)
; 1.b Added 8 bit PWMs
; 1.c Added IR IRQ Error Checking Algorithm

;****NOTE****

;You must disable I-bit around OC register changes or an Interrupt may
fire

;System Calculations:
;--
;Use 3.69MHz clock
;Use Prescaler =/64 ->57.6kHz = T=~17uS
;8bit PWM Up/Down counts to $FF->17uS*FF=4.423ms = T(PWM)/2
;@1.0ms, 4.423-1.0/2=3.923ms
; solve(.003923=.000017x,x)->x=226=$E2 *Servo Left*
;@1.5ms, 4.423-1.5/2=3.673ms
; solve(.003673=.000017x,x)->x=212=$D4 *Servo Neutral*
;@2.0ms, 4.423-2.0/2=3.423ms
; solve(.003423=.000017x,x)->x=197=$C5 *Servo Right*

.nolist
.include "m323def.inc" ; Default Include file for ATMega128
.list ; Do not include the "m323def.inc"
in the .lst file

;Interrupt Service Vector Addresses

.org $0000
 rjmp RESET ; Reset Vector
.org INT0addr
 rjmp IntV0
.org INT1addr
 rjmp IntV1
.org INT2addr
 rjmp IntV2

;---
;Register Definitions
;---

.def mpr =r16 ; Temporary Register
.def mpr2 =r17
.def errorreg =r20
;Initialization

RESET:

 clr errorreg
;-----Setting Stackpointer--

 Page 39 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 ldi MPR,low(RAMEND) ; Set stackptr to ram
end
 out SPL,MPR
 ldi MPR, high(RAMEND)
 out SPH, MPR

;-----Set Port Directions---

 ldi mpr,0b11110000
 out DDRD,mpr ; Set PORTD to output

 ldi mpr,(1<<PB3)
 out DDRB,mpr ; Set PORTB to output

 ser mpr
 out DDRC,mpr
 out DDRA,mpr

;-----Enable 16Bit PWM (Sonar Servo) Counter in 8Bit Mode---------
 ldi mpr,0b11110001 ; Bit7:6 -> Inverted PWM
 ; Bit5:4 -> Disable
OC1B
 ; Bit3;2 -> FOC =n/a
 ; Bit1:0 -> 8Bit PWM
mode
 out TCCR1A,mpr

 ldi mpr,0b00000011 ; Bit7 -> Input Noise
Canceler Disabled
 ; Bit6 -> Input Capter
Edge Select n/a
 ; Bit5:4 -> Unsused
 ; Bit3 -> Clear on
Compare Match Disabled
 ; Bit2:0 -> Prescale =
/64
 out TCCR1B,mpr

;-----Enable 8 bit PWM (Dir and Speed) ---------------------------

 ldi mpr,0b01110011 ; Bit7 -> FOC2 force Output
Compare = n/a
 ; Bit6 -> PWM0 Enables
PWM output
 ; Bit5:4 -> Set on
match upcount, clear on match downcount (11)
 ; Bit3 -> CTC0 No clear
on match
 ; Bit2:0 -> Prescale =
/64
 out TCCR0,mpr ; Enable PWM0
 out TCCR2,mpr ; Enable PWM2
;------Enable External Interupts-----------------------------------

 in mpr,MCUCSR

 Page 40 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 andi mpr,0b10111111 ; Clear the INT2 Sense Control Bit
-> Falling Edge triggered
 out MCUCSR,mpr

 in mpr,MCUCR
 andi mpr,$f0 ; Mask Upper Bits
 ori mpr,0b00000010 ; Set ISC1:0 Sense Control
bits [3:0] -> Falling Edge for Int0
 ; Low level for Int1
(IR) -> ISR must fire as long as a
 ; object is detected in
the rear.
 out MCUCR,mpr

 ldi mpr,0b11100000 ; Enable Interrupts
 out GICR,mpr

;--

 ldi mpr,$ce ; Test value *Servo
Neutral*(Speed)
 out OCR0,mpr ; Load OCR0 with value for
1.0 ms pulse in a T=8.8ms

 ldi mpr,$a4 ; Test value *Servo
Neutral*(Direction)
 out OCR2,mpr ; Load OCR0 with value for
1.0 ms pulse in a T=8.8ms

 ldi mpr,$d9 ; Test value *Servo
neutral*(sonar)
 out OCR1AL,mpr ; Load OCR1AL with value for
1.5 ms pulse in a T=8.8ms
 ldi mpr,$ff ; Test value *Servo
neutral*(sonar)
 out OCR1BL,mpr ; Load OCR1AL with value for
1.5 ms pulse in a T=8.8ms

 ; Interrupts must be
disabled when changing output compare registers
sei

mainloop:
 ldi mpr,$ff
 out portc,mpr
 out porta,mpr

 rjmp mainloop

IntV0:
 reti

IntV1: ; IR Interrupt

 Page 41 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

; ldi errorreg,$aa
 inc errorreg

 cpi errorreg,5 ; Check IR 5 times
before acting
 brne endIntV1

 nop ; Execute ISR
intructions here
 ;cli
 ;issue stop
 ;call obstacle
 ;sei
 clr errorreg ; reset register

endIntV1:
 ;call delay
 reti

IntV2:

 ldi mpr,$aa
 com mpr
 out portc,mpr
 call delay
 reti

delay:

 ldi r24,$ff
 ldi r25,$ff
 ldi mpr,$06

here:
 sbiw r25:r24,1
 brne here
; dec mpr
 ;brne here

 ret

 Page 42 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

;**
; Ping.inc
; Max Koessick
; IMDL, Summer 2003
; Based on Atmel ATMega323 Datasheet

; Ping Sonar Routine. Actively seeks the closest object returned as
the low byte in Echo Register 3
;***MASTER TRANSMITTER*****

 ldi mpr,(1<<TWINT)|(1<<TWSTA)|(1<<TWEN)
 out TWCR,MPR ; Send START condition

WAIT1:
 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; the START condition has
been transmitted
 rjmp WAIT1

 in MPR,TWSR ; Check value of TWI
Status Register.
 cpi MPR,START ; If status different from
START go to ERROR
 breq NEXT1
; jmp ERROR1

;***SLAVE ADDRESS + Write***

NEXT1:
 ldi MPR,SLA+W ; Load SLA+W into TWDR
Register
 out TWDR,MPR

 ldi MPR,(1<<TWINT)|(1<<TWEN)
 out TWCR,MPR ; Clear TWINT bit in
TWCR to start transmission
 ; of address
WAIT2:
 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; SLA+W has been transmitted,
and ACK/NACK has
 rjmp WAIT2 ; been received

 in MPR,TWSR ; Check value of TWI
Status Register. If status
 cpi MPR,MT_SLA_ACK ; different from MT_SLA_ACK,
go to ERROR
 breq NEXT2
 jmp ERROR2

 Page 43 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

;***Send Command Register Address Byte***

NEXT2:
 ldi MPR,CommandReg ; Load data (Address Byte)
into TWDR
 out TWDR,MPR ; Register

 ldi MPR,(1<<TWINT)|(1<<TWEN)
 out TWCR,MPR ; Clear TWINT bit in TWCR to
start transmission
 ; of data
WAIT3:

 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; data has been transmitted,
and ACK/NACK has
 rjmp WAIT3 ; been received

 in MPR,TWSR ; Check value of TWI
Status Register. If status
 ; different from
MT_DATA_ACK, go to ERROR
 cpi MPR,MT_DATA_ACK
 breq NEXT4
 jmp ERROR3

;***Send Ranging Mode Byte***

NEXT4:
 ldi MPR,Inches ; Load data (Data Byte) into
TWDR
 ; Register
 out TWDR,MPR

 ldi MPR,(1<<TWINT)|(1<<TWEN)
 out TWCR,MPR ; Clear TWINT bit in TWCR to
start transmission
 ; of data
WAIT5:

 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; data has been transmitted,
and ACK/NACK has
 rjmp WAIT5 ; been received

 in MPR,TWSR ; Check value of TWI
Status Register. If status
 ; different from
MT_DATA_ACK, go to ERROR
 cpi MPR,MT_DATA_ACK
 breq NEXT5
 jmp ERROR5

NEXT5:

 Page 44 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

;*****Random READ Operation*****

;Send Start Condition
NEXT7:

 call Delay1 ; SRF08 must wait
bewteen reading and writing
 ldi MPR,(1<<TWINT)|(1<<TWSTA)|(1<<TWEN)
 out TWCR,MPR ; Send START condition
WAIT8:
 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; the START condition has
been transmitted
 rjmp WAIT8

 in MPR,TWSR ; Check value of TWI
Status Register. If status
 ; different from
START, go to ERROR
 cpi MPR,rep_START
 breq NEXT8
 jmp ERROR6

;***SLAVE ADDRESS + Write*** Setting Address for READ

NEXT8:

 ldi MPR,SLA+W ; Load SLA+W into TWDR
Register
 out TWDR,MPR

 ldi MPR,(1<<TWINT)|(1<<TWEN);
 out TWCR,MPR ; Clear TWINT bit in
TWCR to start transmission
 ; of address
WAIT9:
 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; SLA+W has been transmitted,
and ACK/NACK has
 rjmp WAIT9 ; been received

 in MPR,TWSR ; Check value of TWI
Status Register. If status
 ; different from
MT_SLA_ACK, go to ERROR
 cpi MPR,MT_SLA_ACK
 breq NEXT9

 jmp ERROR7

;***Send Echo Register 3 Address (low Byte)***Setting Address for READ

 Page 45 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

NEXT9:
 ldi MPR,EchoReg3 ; Load data (Address Byte)
into TWDR Register
 out TWDR,MPR

 ldi MPR,(1<<TWINT) | (1<<TWEN)
 out TWCR,MPR ; Clear TWINT bit in TWCR to
start transmission
 ; of data
WAIT10:

 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; data has been transmitted,
and ACK/NACK has
 rjmp WAIT10 ; been received

 in MPR,TWSR ; Check value of TWI
Status Register. If status
 ; different from
MT_DATA_ACK, go to ERROR
 cpi MPR,MT_DATA_ACK
 breq NEXT10
 jmp ERROR8

;Send Repeated Start Condition

NEXT10:

 ldi MPR,(1<<TWINT)|(1<<TWSTA)|(1<<TWEA)|(1<<TWEN)
 out TWCR,MPR ; Send REP_START
condition
WAIT11:
 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; the START condition has
been transmitted
 rjmp WAIT11

 in MPR,TWSR ; Check value of TWI
Status Register. If status
 ; different from
START, go to ERROR
 cpi MPR,rep_START
 breq NEXT11
 jmp ERRORa

;***SLAVE ADDRESS+READ***

NEXT11:
 ldi MPR,SLA+R ; Load SLA+R into TWDR
Register
 out TWDR,MPR

 ldi MPR,(1<<TWINT)|(1<<TWEN)
 out TWCR,MPR ; Clear TWINT bit in
TWCR to start transmission

 Page 46 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 ; of SLA+R,
enable TWI and generate an ACK, TWEA=1
WAIT12:
 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; SLA+R has been transmitted,
and ACK/NACK has
 rjmp WAIT12 ; been received

 in MPR,TWSR ; Check value of TWI
Status Register. If status
 ; different from
MR_SLA_ACK, go to ERROR
 cpi MPR,MR_SLA_ACK
 breq NEXT12
 jmp ERRORb

NEXT12:
;Get EchoRegister 3 data
 ldi MPR,(1<<TWINT)|(1<<TWEN)
 out TWCR,MPR ; Clear TWINT bit in
TWCR to start reception of
 ; data. Not
setting TWEA causes NACK to be
 ; returned after
reception of next data byte
 ; receive last
data byte. Signal this to Slave
 ; by returning
NACK
WAIT13:
 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; data has been received and
NACK returned
 rjmp WAIT13

 in MPR,TWSR ; Check value of TWI
Status Register. If status
 cpi MPR,MR_DATA_NACK ; different from MR_DATA_NACK, go
to ERROR
 breq NEXT13
 jmp ERRORc

NEXT13:

 in ECHO1L,TWDR ; Input received data
from TWDR.
 mov mpr3,ECHO1L ; Move ECHO1L Contents
to multipurpose register3
 ; to avoid
corruption
 com mpr3 ; Prepare for LED
output
 out PORTA,mpr3 ; Put Echo Results onto
LEDs (PortA)
 out portc,mpr3

 Page 47 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

;Issue Stop

 ldi MPR,(1<<TWINT)|(1<<TWSTO)|(1<<TWEN)
 out TWCR,MPR ; Send STOP signal

END_GET_PING:
 ret ; Return from
subrouting GET_PING

;***Error Detection Routine***
;Error will be presented as a or'ed pair of the step in which
; the program broke and the TWSR
ERROR1:
 ldi ErrorReg,$01
 rjmp output
ERROR2:
 ldi ErrorReg,$02
 rjmp output
ERROR3:
 ldi ErrorReg,$03
 rjmp output
ERROR4:
 ldi ErrorReg,$04
 rjmp output
ERROR5:
 ldi ErrorReg,$05
 rjmp output
ERROR6:
 ldi ErrorReg,$06
 rjmp output
ERROR7:
 ldi ErrorReg,$07
 rjmp output
ERROR8:
 ldi ErrorReg,$08
 RJMP output
ERROR9:
 ldi ErrorReg,$09
 RJMP output
ERRORa:
 ldi ErrorReg,$0A
 RJMP output
ERRORb:
 ldi ErrorReg,$0B
 RJMP output
ERRORc:
 ldi ErrorReg,$0c
 RJMP output
ERRORd:
 ldi ErrorReg,$0d
 RJMP output
Output:

; Load Contents of TWI Status Register and display on Port C (LEDs)

 Page 48 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 in MPR,TWSR ; Load the TWSR for
Error display
 or MPR,errorreg
 com MPR ; Change to
active low LEDs
; out PORTA,errorreg

 rjmp END_GET_PING

;---
; There must be delay loop between reading and writing to the SRF08
Delay1:

 push XH
 push XL
 push mpr

 ldi XH,$00
 ldi XL,$50
 ldi mpr,$03

loop4:
 sbiw XH:XL,1
 brne loop4
 dec mpr
 brne loop4

 pop mpr
 pop XL
 pop XH
 ret

 Page 49 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

; LCD_Init.inc

; Initializes LCD for Mega323
; Max Koessick
; IMDL, Summer 2003
; Based on information from www.mil.ufl.edu/4744

LCDInit:
 push mpr
;---
 call DELAY3ms ; Wait 15ms for
Initialization
 call DELAY3ms
 call DELAY3ms
 call DELAY3ms
 call DELAY3ms

;Set # Display lines, 8-bit mode and Font-------------------------

 ldi mpr,0b0000000
 out PORTE,mpr ; Activate command register

 ldi mpr,0b00110000
 out PORTB,mpr ; Function Set to 8-bit
operation

 ldi mpr,0b01000000 ; Activate LCD Enable
 out PORTE,mpr

 ldi mpr,0b00000000
 out PORTE,mpr ; Deactivate LCD Enable

 call delay4_1ms

 ldi mpr,0b01000000 ; Activate LCD Enable
 out PORTE,mpr

 ldi mpr,0b00000000
 out PORTE,mpr ; Deactivate LCD Enable

 call delay100us

 ldi mpr,0b01000000 ; Activate LCD Enable
 out PORTE,mpr

 ldi mpr,0b00000000
 out PORTE,mpr ; Deactivate LCD Enable

 call delay4_1ms

 ldi mpr,0b01000000 ; Activate LCD Enable
 out PORTE,mpr

 ldi mpr,0b00000000

 Page 50 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 out PORTE,mpr ; Deactivate LCD Enable
;Set Number of Lines and Pitch------------------------------------

 ldi mpr,0b0000000
 out PORTE,mpr ; Activate command register

 ldi mpr,0b00111000
 out PORTB,mpr ; Function Set to 2 lines and
5x8 pitch

 ldi mpr,0b01000000 ; Activate LCD Enable
 out PORTE,mpr

 ldi mpr,0b00000000
 out PORTE,mpr ; Deactivate LCD Enable

 call delay40us

;Display, Cursor, and Blink Off-----------------------------------

 ldi mpr,0b0000000
 out PORTE,mpr ; Activate command register

 ldi mpr,0b00001000
 out PORTB,mpr ; Turn them off!

 ldi mpr,0b01000000 ; Activate LCD Enable
 out PORTE,mpr

 ldi mpr,0b00000000
 out PORTE,mpr ; Deactivate LCD Enable

 call delay40us

;Clear Screen, Cursor Home-----------------------------------

 ldi mpr,0b0000000
 out PORTE,mpr ; Activate command register

 ldi mpr,0b00000001
 out PORTB,mpr ; Do it!

 ldi mpr,0b01000000 ; Activate LCD Enable
 out PORTE,mpr

 ldi mpr,0b00000000
 out PORTE,mpr ; Deactivate LCD Enable

 call delay1_64ms

;Inc Cursor Right, No shift-----------------------------------

 ldi mpr,0b0000000
 out PORTE,mpr ; Activate command register

 ldi mpr,0b00000110
 out PORTB,mpr ; Do It!

 Page 51 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 ldi mpr,0b01000000 ; Activate LCD Enable
 out PORTE,mpr

 ldi mpr,0b00000000
 out PORTE,mpr ; Deactivate LCD Enable

 call delay40us

;Display, Cursor, and Blink Off-----------------------------------

 ldi mpr,0b0000000
 out PORTE,mpr ; Activate command register

 ldi mpr,0b00001111
 out PORTB,mpr ; Turn them on!

 ldi mpr,0b01000000 ; Activate LCD Enable
 out PORTE,mpr

 ldi mpr,0b00000000
 out PORTE,mpr ; Deactivate LCD Enable

 call delay40us

 pop mpr
 ret
;---
DELAY3ms:

 push XL
 push XH ; Save registers in
Subroutine
 ldi XL,$FF
 ldi XH,$BB ; 0xBBFF=3.007ms @
16MHz
LOOP_3:
 sbiw XH:XL,1
 brne LOOP_3

 pop XH
 pop XL ; Restore Registers

 ret ; Return from subroutine
;---
DELAY4_1ms:

 push XL
 push XH ; Save registers in
Subroutine
 ldi XL,$FF
 ldi XH,$ff ; 0xFFFF=4.09ms @ 16MHz
LOOP4_1:
 sbiw XH:XL,1
 brne LOOP4_1

 pop XH

 Page 52 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 pop XL ; Restore Registers

 ret ; Return from subroutine
;---
DELAY40us:

 push XL
 push XH ; Save registers in
Subroutine
 ldi XL,$8F
 ldi XH,$02 ; 0x028f=40.9us @ 16MHz
LOOP40:
 sbiw XH:XL,1
 brne LOOP40

 pop XH
 pop XL ; Restore Registers

 ret ; Return from subroutine

;---

DELAY100us:

 push XL
 push XH ; Save registers in
Subroutine
 ldi XL,$4F
 ldi XH,$06 ; 0x064F=100.9us @
16MHz
LOOP100us:
 sbiw XH:XL,1
 brne LOOP100us

 pop XH
 pop XL ; Restore Registers

 ret ; Return from subroutine

;---

DELAY1_64ms:

 push XL
 push XH ; Save registers in
Subroutine
 ldi XL,$FF
 ldi XH,$66 ; 0x66FF=1.64ms @ 16MHz
LOOP1_64ms:
 sbiw XH:XL,1
 brne LOOP1_64ms

 pop XH
 pop XL ; Restore Registers

 ret ; Return from subroutine

 Page 53 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

;---
; Name: MicroChip323.asm
; Description: ATMega323 Two Wire Interface (IC2) Test Program
; Interfaces Microchip 24AA256K Memory to IC2 Bus

; Author: Max Koessick
; Class: EEL5666C, Intelligent Machine Design Lab
; Date: June 28, 2003
; Revision 1.a
; Changes to Date:
; 7/2/03 First Revision
; 7/6/03 Working
;---

.nolist ; Do not include
in .lst file
.include "m323def.inc" ; Standard ATMega323 Include
File
.include "TWI.inc" ; Two Wire Interface
Error code definitions
.list
; Interrupt service vectors

.org $0000
 rjmp Reset ; Reset vector

;---
; Register defines for main loop
;---

.def mpr =r16 ; defines multipurpose
register
.def mpr2 =r17 ; multipurpose register 2
.def ECHOL =r18
.def ECHOH =r19
.def ErrorReg=r20
.def mpr3 =r21

; Equate statements
.equ W = 0 ; Write Bit
.equ R = 1 ; Read Bit
.equ SLA = $A0 ; Slave Address of 24AA256
.equ Addr = $ff ; Random address
.equ AddrHigh = $00 ; SRF08 Command Register
.equ Data = $ef
;---
; Reset vector
;---

Reset:
;-----Setting Stackpointer--
 ldi MPR,low(RAMEND) ; Set stackptr to ram
end
 out SPL,MPR
 ldi MPR, high(RAMEND)

 Page 54 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 out SPH, MPR

;-----Set Port Directions---
 ser mpr ; Set TEMP to $FF
to...
 out DDRB,mpr
;---

 clr ErrorReg ; For Debug purposes

; Set TWIBitRate for fclk=3.69Mhz

 ldi mpr,11
 ;100Khz=3.69MHz/(16+2*12) See Datasheet Pg202
 out TWBR,mpr

; Initialize TWCR Register

 ldi MPR,(1<<TWEN);
 out TWCR,MPR ; Initialize TW Control
Register

 ldi mpr,$01
 out TWAR,mpr

 sei ; set interrupts
active

;***MASTER TRANSMITTER*****

 ldi MPR,(1<<TWINT)|(1<<TWSTA)|(1<<TWEN)
 out TWCR,MPR ; Send START condition

WAIT1:
 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; the START condition has
been transmitted
 rjmp WAIT1

 in MPR,TWSR ; Check value of TWI
Status Register.
 cpi MPR,START ; If status different from
START go to ERROR
 breq NEXT1
 jmp ERROR1

;***SLAVE ADDRESS + Write***

NEXT1:
 ldi MPR,SLA+W ; Load SLA+W into TWDR
Register
 out TWDR,MPR

 Page 55 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 ldi MPR,(1<<TWINT)|(1<<TWEN)
 out TWCR,MPR ; Clear TWINT bit in
TWCR to start transmission
 ; of address
WAIT2:
 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; SLA+W has been transmitted,
and ACK/NACK has
 rjmp WAIT2 ; been received

 in MPR,TWSR ; Check value of TWI
Status Register. If status
 cpi MPR,MT_SLA_ACK ; different from MT_SLA_ACK,
go to ERROR
 breq NEXT2
 jmp ERROR2

;***Send Address Byte***

NEXT2:

 ldi MPR,Addr ; Load data (Address Byte)
into TWDR
 out TWDR,MPR ; Register

 ldi MPR,(1<<TWINT)|(1<<TWEN)
 out TWCR,MPR ; Clear TWINT bit in TWCR to
start transmission
 ; of data
WAIT3:

 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; data has been transmitted,
and ACK/NACK has
 rjmp WAIT3 ; been received

 in MPR,TWSR ; Check value of TWI
Status Register. If status
 cpi MPR,MT_DATA_ACK ; different from MT_DATA_ACK,
go to ERROR
 breq NEXT4
 jmp ERROR3

;***Send Data Byte***

NEXT4:
 ldi MPR,Data ; Load data (Data Byte) into
TWDR
 out TWDR,MPR ; Register

 ldi MPR,(1<<TWINT)|(1<<TWEN)
 out TWCR,MPR ; Clear TWINT bit in TWCR to
start transmission
 ; of data
WAIT5:

 Page 56 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; data has been transmitted,
and ACK/NACK has
 rjmp WAIT5 ; been received

 in MPR,TWSR ; Check value of TWI
Status Register. If status
 ; different from
MT_DATA_ACK, go to ERROR
 cpi MPR,MT_DATA_ACK
 breq NEXT5
 jmp ERROR5
;Send Stop Condition-24AA256 Writes to memory after Stop condition
NEXT5:
 ldi mpr,(1<<TWINT)|(1<<TWSTO)|(1<<TWEN)
 out TWCR,mpr

check:
 in mpr,TWCR
 andi mpr,0b00010000
 brne check

; call delay65ms

;*****Random READ Operation*****

;Send Start Condition
NEXT7:
 ldi MPR,(1<<TWINT)|(1<<TWSTA)|(1<<TWEN)
 out TWCR,MPR ; Send START condition
WAIT8:
 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; the START condition has
been transmitted
 rjmp WAIT8

 in MPR,TWSR ; Check value of TWI
Status Register. If status
 ; different from
START, go to ERROR
 cpi MPR,START
 breq NEXT8
 JMP ERROR6

;***SLAVE ADDRESS + Write*** Setting Address for READ

NEXT8:

 ldi MPR,SLA+W ; Load SLA+W into TWDR
Register
 out TWDR,MPR

 ldi MPR,(1<<TWINT)|(1<<TWEN);

 Page 57 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 out TWCR,MPR ; Clear TWINT bit in
TWCR to start transmission
 ; of address
WAIT9:
 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; SLA+W has been transmitted,
and ACK/NACK has
 rjmp WAIT9 ; been received

 in MPR,TWSR ; Check value of TWI
Status Register. If status
 cpi MPR,MT_SLA_ACK ; different from MT_SLA_ACK,
go to ERROR
 breq NEXT9
 jmp ERROR7

;***Send Address High Byte***Setting Address for READ

NEXT9:
 ldi MPR,Addr ; Load data (Address Byte)
into TWDR
 out TWDR,MPR ; Register

 ldi MPR,(1<<TWINT)|(1<<TWEN)
 out TWCR,MPR ; Clear TWINT bit in TWCR to
start transmission
 ; of data
WAIT10:
 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; data has been transmitted,
and ACK/NACK has
 rjmp WAIT10 ; been received

 in MPR,TWSR ; Check value of TWI
Status Register. If status
 cpi MPR,MT_DATA_ACK ; different from MT_DATA_ACK, go to
ERROR
 breq NEXT10
 jmp ERROR8

;***Send Repeated Start Condition***
NEXT10:
 ldi MPR,(1<<TWINT)|(1<<TWSTA)|(1<<TWEN)
 out TWCR,MPR ; Send REP_START
condition

WAIT11:
 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; the START condition has
been transmitted
 rjmp WAIT11

 Page 58 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 in MPR,TWSR ; Check value of TWI
Status Register. If status
 cpi MPR,rep_START ; different from START, go to
ERROR
 breq NEXT11
 JMP ERRORa

;***SLAVE ADDRESS+READ*** (Random Read)

NEXT11:
 ldi MPR,SLA+R ; Load SLA+W into TWDR
Register
 out TWDR,MPR

 ldi MPR,(1<<TWINT)|(1<<TWEN)
 out TWCR,MPR ; Clear TWINT bit in
TWCR to start transmission
 ; of SLA+R,
enable TWI and generate an ACK, TWEA=1
WAIT12:
 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; SLA+R has been transmitted,
and ACK/NACK has
 rjmp WAIT12 ; been received

 in MPR,TWSR ; Check value of TWI
Status Register. If status
 cpi MPR,MR_SLA_ACK ; different from MR_SLA_ACK,
go to ERROR
 breq NEXT12
 jmp ERRORb

NEXT12:
;Get last data Byte
 ldi MPR,(1<<TWINT)|(1<<TWEN)
 out TWCR,MPR ; Clear TWINT bit in
TWCR to start reception of
 ; data. Not
setting TWEA causes NACK to be
 ; returned after
reception of next data byte
 ; receive last
data byte. Signal this to Slave
 ; by returning
NACK
WAIT13:
 in MPR,TWCR ; Wait for TWINT Flag
set. This indicates that
 sbrs MPR,TWINT ; data has been received and
NACK returned
 rjmp WAIT13

 in MPR,TWSR ; Check value of TWI
Status Register. If status
 cpi MPR,MR_DATA_NACK ; different from MR_DATA_NACK, go
to ERROR

 Page 59 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 breq NEXT13
 jmp ERRORc

NEXT13:
 in ECHOL,TWDR ; Input received data
from TWDR.
 com ECHOL ; Invert to put onto
LEDs
 out PORTB,ECHOL
;Issue Stop

 ldi MPR,(1<<TWINT)|(1<<TWSTO)|(1<<TWEN)
 out TWCR,MPR ; Send STOP signal

MAINLOOP:

 rjmp mainloop

ERROR1:
 ldi ErrorReg,$01
 rjmp output
ERROR2:
 ldi ErrorReg,$02
 rjmp output
ERROR3:
 ldi ErrorReg,$03
 rjmp output
ERROR4:
 ldi ErrorReg,$04
 rjmp output
ERROR5:
 ldi ErrorReg,$05
 rjmp output
ERROR6:
 ldi ErrorReg,$06
 rjmp output
ERROR7:
 ldi ErrorReg,$07
 rjmp output
ERROR8:
 ldi ErrorReg,$08
 RJMP output
ERROR9:
 ldi ErrorReg,$09
 RJMP output
ERRORa:
 ldi ErrorReg,$0A
 RJMP output
ERRORb:
 ldi ErrorReg,$0B
 RJMP output
ERRORc:
 ldi ErrorReg,$0c
 RJMP output
ERRORd:
 ldi ErrorReg,$0d
 RJMP output

 Page 60 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

Output:

; Load Contents of TWI Status Register and display on Port C (LEDs)

 in mpr2,TWCR ; Load the TWSR for
Error display
 or mpr2,errorreg
 com mpr2 ; Change to active low
LEDs
 out PORTB,mpr2
LOOP1:
 rjmp loop1
; *** 65ms delay while Sonar process data
;---
Delay65ms:

 push XH
 push XL
 push mpr2

 ldi XH,$ff
 ldi XL,$00
 ldi mpr2,$00

loop:
 sbiw XH:XL,1
 brne loop

 pop mpr2

 pop XL
 pop XH

 ret

Test:
 ldi mpr3,$aa
 out PORTB,mpr3
loop2:
 rjmp loop2
 ret

test2:
 in mpr3,twsr
 com mpr3
 out PORTB,mpr3
loop3:
 rjmp loop3

 Page 61 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

;---
; Name: Starting Wait Loop.asm
; Description: Implements Starting Loop for Robot Demo.
; Wait until either PinE6 or PinE7 is pressed
before
; program sequence starts

; Author: Max Koessick
; Class: EEL5666C, Intelligent Machine Design Lab
; Date: July 8, 2003
; Revision 1.a (completed and 100% Functional)

; PE6 and PE7 are connected to normally closed switches.
; Internal Pullups are enabled and a high true signal is wanted
; Program stays in wait loop until PE6 or PE7 goes high
; Signaling that a bump switch has been tapped
;---

.nolist
.include "m323def.inc"
.list

; Interrupt service vectors

.org $0000
 rjmp Reset ; Reset vector

;---
; Register defines for main loop
;---

.def mpr =r16 ; defines multipurpose
register

;---
; Reset vector
;---

Reset:
;-----Setting Stackpointer--
 ldi MPR,low(RAMEND) ; Set stackptr to ram
end
 out SPL,MPR
 ldi MPR, high(RAMEND)
 out SPH, MPR

;-----Set Port Directions---
 ldi mpr,0b11110011 ; Set PE6 and PE7 to
input
 out DDRD,mpr
 ldi mpr,(1<<PD2)|(1<<PD3)
 out PortD,mpr ; Set Pullups on Input

 ser mpr
 out DDRA,mpr ; for testing
 out PortA,mpr ; lights off
;---

 Page 62 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

WaitToStart:
 in mpr,PIND ; read Port E
 andi mpr,$80 ; mask lower bits
 sbrc mpr,7 ; skip if bit in register set
 rjmp Start ; ...if not, break out
 in mpr,PIND ; read Port E
 andi mpr,$40 ; mask bit 6
 sbrc mpr,6 ; skip if bit in register set

 rjmp Start ; ...if not, break out
 rjmp WaitToStart ; keep waiting

Start:
 clr mpr
 out PortA,mpr ; Turn LEDs on

Mainloop:
 rjmp mainloop

 Page 63 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 ;--
;Project Name: 323 Arm and Magnet.asm
;Description: Test H-Bridge control of arm and Main motor plus
; Power FET/Magnet ops
;Author: Max Koessick
;Date; July 26, 2003
;Revision: 1.0 Working 16Bit PWM
; 1.a Working Ext Interupts (2:0)
; 1.b Added 8 bit PWMs
; 1.c Fixed Intermittent IRQ firing
; 1.d Final Version
; Arm working correctly
; 1) Turn On Magnet
; 2) Raises Arm until feedback switch
is pressed
; 3) Delay
; 4) Turn Off Magnet
; 6) Lower Arm Until Fedback switch
is pressed
;--
;Use 3.69MHz clock
;Use Prescaler =/64 ->57.6kHz = T=~17uS
;8bit PWM Up/Down counts to $FF->17uS*FF=4.423ms = T(PWM)/2
;@1.0ms, 4.423-1.0/2=3.923ms
; solve(.003923=.000017x,x)->x=226=$E2 *Servo Left*
;@1.5ms, 4.423-1.5/2=3.673ms
; solve(.003673=.000017x,x)->x=212=$D4 *Servo Neutral*
;@2.0ms, 4.423-2.0/2=3.423ms
; solve(.003423=.000017x,x)->x=197=$C5 *Servo Right*

.nolist
.include "m323def.inc" ; Default Include file for ATMega128
.list ; Do not include the "m323def.inc"
in the .lst file

;Interrupt Service Vector Addresses

.org $0000
 rjmp RESET ; Reset Vector
.org INT0addr
 rjmp IntV0
.org INT1addr
 rjmp IntV1
.org INT2addr
 rjmp IntV2

;---
;Register Definitions
;---

.def mpr =r16 ; Temporary Register
.def oldsd =r17 ; Old Speed Register
.def newspd =r18 ; New Speed Register
.def mpr2 =r19

 Page 64 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

.equ brake = 1
.equ ArmDir = 0
.equ MagOn = 6
;Initialization

RESET:

;-----Setting Stackpointer--
 ldi MPR,low(RAMEND) ; Set stackptr to ram
end
 out SPL,MPR
 ldi MPR, high(RAMEND)
 out SPH, MPR

;-----Set Port Directions---

 ldi mpr,0b11110011 ; Set PD2 and PD3 to input
 out DDRD,mpr ; Set PORTD to output

 ldi mpr,0b11111000
 out DDRB,mpr ; Set PORTB to output
 ldi mpr,(1<<PB0)|(1<<PB1)
 out PORTB,mpr ; Enable Internal pull up for
PB0,PB1

 ser mpr
 out DDRC,mpr
 out DDRA,mpr
 out PORTC,mpr
 out PORTA,mpr ; LEDs off

;-----Enable 16Bit PWM (Sonar Servo -A) and Arm Motor (OCR1B) Counter
in 8Bit Mode---------

 ldi mpr,0b11110001 ; Bit7:6 -> Inverted PWM
 ; Bit5:4 -> Disable
OC1B
 ; Bit3;2 -> FOC =n/a
 ; Bit1:0 -> 8Bit PWM
mode
 out TCCR1A,mpr

 ldi mpr,0b00000011 ; Bit7 -> Input Noise
Canceler Disabled
 ; Bit6 -> Input Capter
Edge Select n/a
 ; Bit5:4 -> Unsused
 ; Bit3 -> Clear on
Compare Match Disabled
 ; Bit2:0 -> Prescale =
/64
 out TCCR1B,mpr

 Page 65 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 sbi PORTD,Brake ; Set Brake bit to low PD0=0

;-----Enable 8 bit PWM (Dir and Speed) ---------------------------

; ldi mpr,$d4 ; Test value *Servo
Neutral*
; out OCR0,mpr ; Load OCR0 with value for
1.0 ms pulse in a T=8.8ms
; out OCR2,mpr ; Sets servos to neutral at
program startup

 ldi mpr,0b01110011 ; Bit7 -> FOC2 force Output
Compare = n/a
 ; Bit6 -> PWM0 Enables
PWM output
 ; Bit5:4 -> Set on
match upcount, clear on match downcount (11)
 ; Bit3 -> CTC0 No clear
on match
 ; Bit2:0 -> Prescale =
/64
 out TCCR0,mpr ; Enable PWM0
 out TCCR2,mpr ; Enable PWM2
;------Enable External Interupts-----------------------------------

 in mpr,MCUCSR
 andi mpr,0b10111111 ; Clear the INT2 Sense Control Bit
-> Falling Edge triggered
 out MCUCSR,mpr

 in mpr,MCUCR
 andi mpr,$f0 ; Mask Upper Bits
 ori mpr,0b00000010 ; Set ISC1:0 Sense Control
bits [3:0] -> Falling Edge for Int0
 ; Low level for Int1
(IR) -> ISR must fire as long as a
 ; object is detected in
the rear.
 out MCUCR,mpr

 ldi mpr,0b11100000 ; Enable Interrupts
 out GICR,mpr

;--

mainloop:

;******* when this code is a subroutine, clear the I-bit here ******

; cli

; Magnet on here
; Start moving arm up

 Page 66 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 sbi PORTD,MagOn
 call delay5s

 sbi PORTD,ArmDir ; Set PD0 to '1'-> Arm
Direction
 call delay1us
 cbi PORTD,Brake ; Set Brake bit to low PD0=0
DISENGAGE
 call delay1us
 ldi mpr,$aa ; Test value *Servo
neutral*(sonar)
 out OCR1BL,mpr ; Load OCR1AL with value for
1.5 ms pulse in a T=8.8ms

WaitForUp:
 sbis PINB,1 ; PB1= Rear stop switch
 rjmp WaitForUP

; call delay5s
 sbi PORTD,Brake ; Engage Brake
 call delay5s ; Delay to smooth arm
operation

 cbi PORTD,MagON ; Magnet off here
;
 cbi PORTD,ArmDir ; Change Directions
 call delay1us
;
 cbi PORTD,Brake ; Set Brake bit to low PD0=0
DISENGAGE
 call delay1us

; ldi mpr,$AA ; Start Arm Motor
; out OCR1BL,mpr

WaitForDown:

 sbic PINB,0 ; PB0=Front Arm Switch
 rjmp WaitForDown

 sbi PORTD,Brake ; Engage Brake
 call delay1us
 ldi mpr,$FF ; Stop Arm Brake + PWM
= 0-> Output transistor are off
 out OCR1BL,mpr

 sei ; Reenable I-Bit

mloop:
;Exit subroutine here
 rjmp mloop

IntV0:

 reti

IntV1:

 Page 67 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

 reti

IntV2:
 reti

;-----------------------------
delay1us:
 ldi mpr,$ff
loopdelay1us:
 dec mpr
 brne loopdelay1us

 ret
;-----------------------------
delay5s:

 ldi r24,$ff
 ldi r25,$00
; ldi mpr,$3

delay5sLoop:
 sbiw r25:r24,1
 brne delay5sLoop
; dec mpr
; brne delay5sLoop
 ret
;-----------------------------DISENGAGE
Test:

 LDI MPR,$aA
 OUT PORTa,MPR

 rjmp end
end:
 ret

 Page 68 of 88

Mr. Tool, Final Report Appendix B: EEL5666, IMDL
 Circuit Schematics

Appendix B.1 GP2D12 Digital Conversion 1

 Page 69 of 88

Mr. Tool, Final Report Appendix A: Source Code EEL 5666C, IMDL

Appendix B.2 Main Daughter Board 1

Appendix B.2 Main Daughter Board 2

 Page 70 of 88

Mr. Tool, Final Report Appendix B: EEL5666, IMDL
 Circuit Schematics

Appendix B.2 Main Daughter Board 3

 Page 71 of 88

Mr. Tool, Final Report Appendix B: EEL5666, IMDL
 Circuit Schematics

Appendix B.3 LMD18200 Motor Driver 1

 Page 72 of 88

Mr. Tool, Final Report Appendix C: Flowcharts EEL 5666C, IMDL

Main

Start

Speed = Fwd2

Direction = Straight

Set Sonar Array Forward

Ping for Obstacles
(Call Ping)

 Page 73 of 88

Mr. Tool, Final Report Appendix C: Flowcharts EEL 5666C, IMDL

Ping

Start

Ping Sonar

NObject?

Y
Ping Sonar

NObject?

Y
Ping Sonar

NObject?

Y
Go to ‘Obstacle Avoid’

Behavior

End

 Page 74 of 88

Mr. Tool, Final Report Appendix C: Flowcharts EEL 5666C, IMDL

Obstacle
Detected

Begin

All Stop

Sonar Array Left

Ping

Y Go Left Clear?

N

Sonar Array Right

Ping

Y Go Right Clear?

N
Slow reverse 1

second

End

 Page 75 of 88

Mr. Tool, Final Report Appendix C: Flowcharts EEL 5666C, IMDL

Go Left (or Right)

Begin Begin

Set Direction Servo = Set Direction Servo =
Slip Left (or Right) Slip Left (or Right)

Forward speed = 2

Turn Delay

Set Direction Servo =
Straight

End

 Page 76 of 88

Mr. Tool, Final Report Appendix C: Flowcharts EEL 5666C, IMDL

Possible Target Interrupt Request

Begin Begin

Stop Stop

NN Reverse Reverse Hall? Hall?

Y

Magnet On Magnet On Call Obstacle Call Obstacle

Reverse Speed
= 2

Reverse Speed
= 2

Wait .5 Sec Wait .5 Sec

Forward Speed
= 2

Forward Speed
= 2

Wait .5 Sec Wait .5 Sec

Hall? Hall?
N Start Arm Start Arm Y

 Page 77 of 88

Mr. Tool, Final Report Appendix C: Flowcharts EEL 5666C, IMDL

Arm

Start

Winch On Fwd

Arm
Switch?

Winch Off

Magnet Off

Winch On Rev

Wait 3 seconds

Winch Off

End

 Page 78 of 88

Mr. Tool, Final Report Appendix C: Flowcharts EEL 5666C, IMDL

(Graph Courtesy of Solenoid City)

 Page 79 of 88

Mr. Tool, Final Report Appendix D EEL 5666C, IMDL

 Special Sensor Report: Daventech SRF08

Introduction

Sensor Synopsis
The Daventech SRF08 ultrasonic range finder (sonar array) uses a pulse
(‘ping’) of sound to determine the range of up to 17 targets in an
area. The SRF08 emits a ping and then waits for the first echo to
return. This process takes approximately 65ms to complete.

The sonar array communicates with the host microprocessor via the Inter
Integrated Circuit Bus (I2C) developed by Phillips for communicating
within consumer electronics. Atmel uses this standard in the form of
the Two Wire Interface (TWI).

Project Overview
ShopBot is an autonomous vehicle that will navigate a garage floor. It
will pick up any tools that it finds, i.e. sockets, etc . . . The
robot will wander the floor in a random pattern until it comes in
contact with a target. It uses a combination of IR and a Hall Effect
proximity sensor to determine target validity. A valid target is
simply a ferrous object.

Sensor Integration and Purpose
The SRF08’s main purpose in the world of ShopBot is obstacle avoidance
from forward, left and right directions.

Under forward movement, the sonar will constantly ping until it detects
an object that is less than 36” away. This alert will cause ShopBot to
slow down. If it is a tool, it will pass under the sonar as ShopBot
advances. However, if this is a wall, the target will keep registering
as an obstacle and at 9”, ShopBot will change directions.

SRF08
45°

6”
Tool

Wall
10”

Original Wall Detection = 36”

Figure 1. Tool/Wall Detection Scheme

 Page 80 of 88

Mr. Tool, Final Report Appendix D EEL 5666C, IMDL

 Special Sensor Report: Daventech SRF08
Figure 2 is an illustration provided by Daventech. The beam diffusion
illustrates that at 1 foot range, there is approximately a 45° spread.
This is used to calculate the distance at which an average 1” tall tool
will slip ‘underneath the radar.’

Figure 2. SRF08 Beam Pattern

The SRF08 is 6” above ground. Therefore, using the Pythagorean Theorem
(with the hypotenuse = 1’), the third leg of the triangle that
constitutes the ground plane would be approximately 10” (refer to
Figure 1).

Lastly, since this is a tank with one discrete drive motor, it can only
turn by stopping one set of tracks. It cannot rotate in place.
Therefore, object detection is necessary to either left or right
directions when a change in heading is required. To meet this
requirement, the SRF08 is mounted on a servo that can rotate ±90° to
aid in side obstacle detection.

 Figure 3. SRF08 Mounting Location

 Page 81 of 88

Mr. Tool, Final Report Appendix D EEL 5666C, IMDL

 Special Sensor Report: Daventech SRF08

Testing

The first obstacle to overcome in implementation was the mastering of
the I2C bus. This was realized in assembly code. Due to sensor
mounting location, there are several echo rejection criteria that must
be met (see Figure 3).

Forward Looking
In forward looking scenarios, the SRF08 tended to pick up echoes from
the robot platform itself. To prove this, an experiment was set up
where the first object detected would be forced. Further, the platform
was put on the edge of a chair and aimed at a wall. This way, the
first object detected could be predicted with reasonable certainty.

Any reading closer than 6” would be rejected as the part of the
platform. Specifically, the front bumper and arm are within the 45°
beam diffusion. Figure 4 depicts the experiment. With nothing above
or below, it is reasonable that the first objects detected will be the
platform and then the wall, in that order. By rejecting the first echo
register (the closest object), a reading of 24” was returned in the
next echo register. Actual distance was approximately 24’.

Figure 4. Forward Looking Sonar Ping Experiment

Side Looking
A similar experiment was setup to test side looking effectiveness.
This time, however, both possible surfaces of corruption (top of
platform and side of processor housing) are parallel to the sound waves
and shouldn’t theoretically interfere. However, this was not the case.

When turning to the side, the servo could not turn parallel both angles
each time. Moreover, readings were returned that would be from objects
under 1-2”. Therefore, again, the first readings were thrown out.

 Page 82 of 88

Mr. Tool, Final Report Appendix D EEL 5666C, IMDL

 Special Sensor Report: Daventech SRF08

Figure 5. Side Ping Experiment

Figure 6. Rotated Sonar Array

Software Examples are found in the previous software
section

Mr. Tool was originally called ‘ShopBot.’

 Page 83 of 88

Mr. Tool, Final Report Appendix E EEL 5666C, IMDL

 Special Sensor Report: Electromagnet

Description
Solenoid City’s E-20-100 is a light duty electromagnet. In Mr. Tool,
it is used to grasp ferrous tools and move them into a basket.
Implementation is fairly simple in that the only circuitry needed is a
TTL switch that can handle the high current needed to activate the
electromagnet. Figure 1 depicts a drawing the magnet. A 10-32 thread
is provided in the top for mounting purposes.

Figure 17. Solenoid City's E Series Electromagnet (Courtesy Solenoid City)

Advantages and Disadvantages
In a nutshell, this is the easiest way to pick up a ferrous object.
Solenoid City’s simple magnet is much easier to implement that any sort
of robotic hand or grabber. This one advantage far outweighs the two
disadvantages of weight and power consumption.

The E-20-100 is very robust at 5.3 ounces. The robot platform that
incorporates this particular model must be capable of moving it.
Moreover, plywood platforms would be questionable. The second
disadvantage is power consumption. From Figure 2, at a typical 4-12V
robot platform, the magnet consumes from typically .5A at 4 Watts to
1.5A at 12 Watts (assuming an average 8V system). Therefore, power
supplies and switches must be chosen to accommodate this demand.

 Page 84 of 88

Mr. Tool, Final Report Appendix E EEL 5666C, IMDL

 Special Sensor Report: Electromagnet

Figure 18. Power Consumption vs. Holding Force (Courtesy Solenoid City)

Interface

Figure 3 shows the typical interface. As stated earlier, a high power
capacity switch is needed to control the current to the magnet. In
this case, a Fairchild HUF76107 Power FET was chosen because of its
high handling capacity. It is capable of loads up to 20A and 30V.
These criteria exceed the needs of the electromagnet.

The gate is activated by standard TTL signals, therefore making the
design positive logic. The FET can be directly connected any port pin
on a microprocessor that supply TTL levels on output ports. When the
gate is driven high, the Power FET supplies ground closing the circuit
and energizing the magnet’s core.

The 120kΩ pull down resistor is added to ensure an off state in the
event of a floating input.

 Page 85 of 88

Mr. Tool, Final Report Appendix E EEL 5666C, IMDL

 Special Sensor Report: Electromagnet

Figure 19. Interface Circuit

Availability and Cost

The E-20-100 can be easily purchased online through
www.solenoidcity.com for a price of $35 plus shipping. Other magnets
are available to fit most applications.

Sources:

“E

-20-100.pdf” Datasheet, www.solenoidcity.com

 Page 86 of 88

http://www.solenoidcity.com/
http://www.solenoidcity.com/

Mr. Tool, Final Report Appendix F EEL 5666C, IMDL

 Special Sensor Report: Hall Sensor

Description
The GS100701’s primary purpose is high speed gear sensing. Normal
applications include automotive applications and machinery speed
sensing. However, this hall type sensor can also be used to detect
metal objects that are within close proximity to the head. In Mr.
Tool, it is used to accept/reject ferrous targets.

This model is a sinking interface, i.e. negative logic.

The sensor contains internal integrated circuitry that is basically an
open collector bipolar junction transistor. The BJT supplies ground on
the signal output wire when a ferrous (gear) target is sensed. The
only external circuitry that is needed is a pull-up resistor that is
determined by input voltage. The GS100701 can operate on voltages from
5 to 24 VDC.

Figure 20. GS100701 Gear Tooth Sensor (Courtesy Cherry Sensor)

Advantages and Disadvantages
Advantages include easy integration into any existing design. All that
is required is a simple pull up resistor. Table 1 describes possible
resistor values

 Volts dc 5 9 12 15 24

Ohms 470 820 1.2K 1.5K 2.2K

Table 1. Resistor Values

The main disadvantage is in the metal detection application. Any metal
has to be close (<5 mm) before a logic one is output on the signal wire

Interface

Figure 2 shows the typical interface. No other external circuitry is
needed.

 Page 87 of 88

Mr. Tool, Final Report Appendix F EEL 5666C, IMDL

 Special Sensor Report: Hall Sensor

Normal software approach would include polling or the use of external
interrupts. Mr. Tool uses the previous, so no relevant software is
available. Once an object is detected using an alternate means
(IR/Photo Transistor), the GS100701 is used to determine whether the
object is ferrous or not.

Figure 2. Interface Circuit

Availability and Cost

The GS100701 can be easily acquired online through www.cherrycorp.com
as a free sample. If not, the cost is approximately $32 and it is
available from major distributors like Digikey and Newark.

Sources:

“C

herry GS Sensors.pdf” Datasheet, www.cherrycorp.com

 Page 88 of 88

http://www.solenoidcity.com/
http://www.solenoidcity.com/

	Introduction
	Sensor Synopsis
	Project Overview
	Sensor Integration and Purpose

	Testing
	Forward Looking
	Side Looking

	Description
	Advantages and Disadvantages
	Interface
	�
	Availability and Cost
	Description
	Advantages and Disadvantages
	Interface

	�
	Availability and Cost

