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The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates 
method (SN) requires extensive computational resources for large 3-D neutron and gamma transport 
applications due to the concurrent discretization of the angular, spatial, and energy domains. This 
paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation – 
Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the 
calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop 
Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, 
where the spatial and angular domains are allocated and processed on multi-processor computer 
architectures. As compared to traditional single-processor applications, this approach reduces the 
computational load as well as the memory requirement per processor, yielding an efficient solution 
methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air 
gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows:  Section 
1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the 
numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 
concludes this paper with final remarks and future work. 

1 Methodology 

1.1. Introduction 

The discrete ordinates method (SN) is a widely used methodology in the nuclear 
engineering field to obtain a numerical solution of the Linearized Boltzmann Equation 
for neutron and gamma radiation transport problems [1]. The numerical solution of the 
SN equations is achieved through the concurrent discretization of the phase space, i.e., 
spatial, angular, and energy domains. 

The discretization of the phase space leads to a large number of unknowns involved 
in the solution of the SN equations; hence the computational requirements, i.e., main 
memory required and floating point operations per second may grow beyond current 
computational capabilities of a typical single-processor workstation. For example, the 
solution of a full 3-D neutron transport problem for a typical 2-loop Pressurized Water 
Reactor (PWR), characterized by approximately 1.5 million spatial meshes, an S8 
quadrature set, a P3 expansion of the scattering kernel, and 47-neutron energy groups, 
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leads to a main memory requirement of approximately 45 GBytes for the whole problem. 
The significant computational resources required to solve the aforementioned problem, 
limit the application of single-processor workstations and associated computer codes. 

In order to overcome these difficulties, a set of new solution algorithms for the SN 
equations are designed to take advantage of multi-processor computing architectures, i.e., 
distributed memory architectures [2]. In this type of configuration, a number of 
physically independent workstations are linked together via a fast network connection, 
establishing what is generally referred to as a cluster computing environment. These 
computing platforms have found widespread applications in recent years especially in the 
fields of scientific computing and large scale numerical simulation. However, efficient 
algorithms need to be devised in order to take full advantage of the cluster environment. 
One approach to devise a parallel algorithm for the solution of the SN equations is to use 
a domain decomposition approach: the angular, spatial, and/or energy domains are 
partitioned into subsets which can be independently allocated and processed on  
multi-processor architectures [2]. Currently available 3-D parallel deterministic transport 
codes include PENTRANTM [2] and PARTISN [7]. 

Domain decomposition algorithms are the basis for a newly developed 3-D parallel 
radiation transport code: RAPTOR-M3G (RApid Parallel Transport Of Radiation – 
Multiple 3-D Geometries). The computer code is developed in Fortran 90 using the 
Message Passing Interface (MPI) parallel libraries [3]. The main characteristics of  
RAPTOR-M3G are summarized as follows: 

• Solution of the multi-group SN equations on 3-D Cartesian, i.e., RAPTOR-XYZ and 
cylindrical geometries, i.e., RAPTOR-RTZ [4] on non-uniform orthogonal 
structured meshes. 

• Availability of angular, spatial and hybrid angular/spatial domain decomposition 
algorithms. 

• Positive-definite weighted differencing schemes: Zero/Theta Weighted, and 
Directional Theta Weighted. 

• Automatic generation of level-symmetric quadrature sets up to order 20 [5]. 

• Parallel memory: used to partition the spatial and angular domains on multiple 
processors, therefore reducing the memory requirements per processor. 

• Parallel tasking: concurrent solution of the SN equations on multiple processors to 
reduce computational time as compared to single processor technology. 

• Parallel I/O: each processor locally accesses its storage devices to reduce I/O time. 

• Direct integration with BOT3P [6], an automated mesh generator, and GIP, a  
multi-group cross sections pre-processor. 
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1.2. Solution of the Discrete Ordinates SN Equations on Parallel Computing 
Architectures 

This section describes the discretization of the SN equations and the domain 
decomposition algorithms developed in RAPTOR-M3G. The spatial and angular 
discretization, as well as the angular domain decomposition algorithm described herein is 
specific for the 3D Cartesian XYZ version of the code. The formulation of the SN 
equations developed for RAPTOR-RTZ is different from RAPTOR-XYZ due to the 
presence of the scattering redistribution term. 

The phase space of the SN equations is discretized, i.e., space, angle, energy; hence, 
the resulting set of linear algebraic equations is suitable for solution on a digital 
computer. The energy domain is discretized using the multigroup approach into a number 
of discrete intervals, i.e., g=1…G, starting with the highest energy particles (g=1), and 
ending with the lowest (g=G). The transport equation in the multigroup approximation is 
formulated in Eq. (1). 
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The angular domain is discretized by considering a finite set of directions and by 
applying an appropriate quadrature integration scheme. Each discrete direction can be 
visualized as a point on the surface of a unit sphere with an associated surface area which 
mathematically corresponds to the weight of the quadrature scheme. The combination of 
the discrete directions and the corresponding weights is referred to as quadrature set. In 
general, quadrature sets must satisfy a number of conditions in order to be accurate and 
mathematically determined; several approaches have been proposed in the past, e.g., 
level-symmetric quadrature set (LQn), Legendre polynomial based quadrature sets [8]. 
The quadrature sets developed in RAPTOR-M3G are based on the LQn method. 

The spatial variable can be discretized with several techniques, e.g., finite difference, 
finite elements. The formulation developed in RAPTOR-M3G is based on the finite 
difference approach; the spatial domain is partitioned into computational cells, e.g., fine 
meshes, where the cross sections are assumed constant within each cell. In 3D Carstesian 
geometry, the angular flux at the cell-center location is evaluated using Eq. (2). 

 

kji
gmkji

m

gmkji

m

gmkji

m

zin
gmkji

m
yin

gmkji

m
xin

gmkji

m
kji

gmkji

zcybxa

zcybxa
q

,,
,,,,,,,,,,,,

,
,,,,

,
,,,,

,
,,,,

,,

,,,,

σ
ξημ

ψ
ξ

ψ
η

ψ
μ

ψ
+

Δ
+

Δ
+

Δ

Δ
+

Δ
+

Δ
+

=  (2) 

In Eq. (2), the angle and energy dependence are denoted by the indices m and g, 
respectively. The term qi,j,k represents the sum of the scattering, fission and external 
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sources at cell-center. The weights ai,j,k,m,g, bi,j,k,m,g, and ci,j,k,m,g are restricted to vary within 
a range between 0.5 and 1.0; RAPTOR-M3G utilizes the Theta-Weighted (TW),  
Zero-Weighted (ZW), or the adaptive Directional Theta Weighted (DTW) differencing 
schemes to calculate the weights during the transport sweep [9]. 

The SN equations are solved marching through each direction starting from the 
boundary of the problem domain; this solution process is also referred to as transport 
sweep. The angular flux defined at center-cell locations is evaluated starting from 
boundary conditions or from the boundary angular flux previously calculated in adjacent 
cells. The cell-center angular flux is calculated using Eq. (2). The angular flux exiting the 
computational cell is calculated using additional relationships referred to as the 
“differencing schemes”. 

The transport sweep is performed within an iterative process which is termed source 
iteration, also known as fixed point iteration, or Richardson iteration. This process is 
continued until an appropriate convergence criterion is satisfied, i.e., the relative error on 
the scalar flux in any norm between two iterations is below a certain cutoff value [10]. 
For radiation shielding calculations this value is generally set to 1.0e-3 or 1.0e-4. 

The parallel algorithms developed in RAPTOR-M3G are based on the 
decomposition of the angular and/or spatial domains on a network of processors. 
RAPTOR-M3G creates a virtual topology based on a number of processors allocated to 
the angular and spatial domains, specified as Pa and Ps  respectively. The total number of 
processors required for any decomposition is Pn = Pa · Ps. Based on this information, the 
network of processors is mapped on the spatial and angular domains creating a virtual 
topology which associates each processor to its local sub-domain. 

The angular domain is partitioned on an octant basis, where the processors specified 
on the angular domain, are sequentially assigned to the local octants. The local number of 
octants allocated per processor is given by Eq. (3). 
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The transport sweep is locally performed on Nloct octants on Pa processors; an MPI 
communicator for the angular domain is used to synchronize the angular flux among 
processors and to account for reflective boundary conditions. 

The spatial domain is partitioned along the z-axis by sequentially assigning the Ps 
processors to a number of x-y planes. The total number of fine meshes along the z-axis, 
i.e., km, is partitioned on Ps processors; a mapping array, i.e., kmloc, is used to assign the 
x-y planes to the Ps processors. The number of x-y planes assigned to the Ps processors is 
arbitrary; however, the condition in Eq. (4) needs to be satisfied in order to define a 
spatial decomposition that is topologically consistent with the problem geometry. 
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The flexibility to map the processors on the spatial domain to an arbitrary number of x-y 
planes is dictated by the fact that the number of z-planes may not be exactly divisible by 
the number of processors on the spatial domain. In this case, a spatial decomposition 
strategy could not be applied. However, note that an uneven partitioning of the x-y 
planes on the sP  processors leads to a computational load imbalance of the processors. A 
hybrid angular/spatial decomposition is the combination of the two algorithms presented 
above. Section 3 will describe the advantages of using hybrid domain decompositions. 

2 Results 

2.1 Full 3-D Transport Model of a 2-loop Commercial PWR Reactor 

A 3-D transport model of a 2-loop commercial Pressurized Water Reactor (PWR) is 
presented in this section. The reactor is characterized by a 12 ft core, thermal shield 
design, and a 3" reactor cavity air gap. The model geometry and the mesh discretization 
are generated using the BOT3P code, version 5.2. The model extends from 0.0 cm to 
245.0 cm along the x-, and y-axis, and from -200.0 cm to 200.0 cm along the z-axis. The 
model geometry includes a core-water mixture, core shroud, core barrel, thermal shield, 
Reactor Pressure Vessel (RPV) including stainless-steel liner, and the reflective 
insulation. The upper and lower internals regions above and below the reactor core are 
modeled using a steel-water mixture. 

A uniform mesh is applied throughout the model; a mesh size of 2.0x2.0x4.0 cm is 
specified along the x-, y- and z-axes, respectively, yielding a total of 1,464,100 meshes. 
Figure 1 shows the geometry and material distribution of the 3D model and a 2-D section 
of the model on the x-y plane at z=0.0 cm. 

 

 

 
Figure 1. Geometry and material distribution of the 2-loop PWR 3D transport model. 
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The cross sections for the material mixtures in the transport model are processed using 
the BUGLE-96 cross sections library [11] and the GIP computer code, part of the 
DOORS package [12]. An S8 level symmetric quadrature set and a P3 spherical 
harmonics expansion of the scattering kernel is used for the transport calculations. 

A system of passive neutron detectors is installed in the reactor cavity air gap 
between the reflective insulation and the pressure vessel. The dosimetry system provides 
accurate information relative to the fast neutron exposure over the beltline region of the 
reactor vessel. Pure metal foils are installed in the reactor cavity, encased in an aluminum 
shell, which minimizes distortions of the fast neutron spectrum, effectively yielding a 
free-field measurement. Note that because of this reason, the neutron dosimeters installed 
in the reactor cavity air gap are not explicitly defined in the transport model. The 
measured reactions listed in Table 1 are compared with the responses calculated by 
RAPTOR-M3G. 
 

Table 1. Neutron reactions measured by the dosimetry system. 

Material Reaction 
Copper 63Cu(n,α)60Co 
Iron 54Fe(n,p)54Mn 
Nickel 58Ni(n,p)58Co 
Uranium 238U(n,f)137Cs 
Neptunium 237Np(n,f)137Cs 

 
The reactions listed in Table 1 are measured using Cadmium shielded metal foils; 
therefore, the thermal component of the neutron spectrum is suppressed. 

2.2 Comparison of measured dosimetry responses versus RAPTOR-M3G 
predictions 

This section presents the comparison between the measured dosimetry responses and the 
corresponding predictions obtained with RAPTOR-M3G. The IRDF-2002 dosimetry 
library [13] is used to generate the calculated dosimetry responses for the neutron 
reactions listed in Table 1. The measured responses are obtained at four azimuthal 
locations, i.e., 0˚, 15˚, 30˚, and 45˚, at core mid-plane, in the reactor cavity air gap. Since 
2-loop PWR reactors are characterized by peak fast neutron fluence at the 0˚ position, 
due to close proximity of the nuclear fuel with the RPV, additional measurement are 
obtained at this location. Specifically at 0˚, measurements are obtained axially at the top 
and bottom of active core. 

Note that initially the calculated dosimetry responses were found to consistently  
over-predict the measured data. Further investigation revealed that the RPV thickness 
used in the transport model was smaller than what has been measured during the  
In-Service Inspection (ISI) of the RPV, confirming our initial findings. The new RPV 
thickness was introduced into the transport model, and the accuracy of the calculated 
dosimetry data was improved on the average by ~8%. Figure 2 presents the measured vs. 
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calculated (M/C) ratios of the dosimetry data calculated using the DTW adaptive 
differencing scheme.  

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 2. M/C ratios obtained with the DTW adaptive differencing scheme for different materials. 

 
As shown if Figure 2 the M/C ratios are consistently located within a 10% range at each 
location and for every dosimetry material. The over-prediction at the 30˚ and 45˚ 
azimuthal positions could be reduced by using a non-uniform mesh refinement at these 
locations, where the curvature of the system becomes more relevant. The average M/C 
ratio over all dosimetry locations is 0.96. 

Figures 3a through 3c present the M/C values obtained with the ISI-corrected RPV 
thickness and compare them to the value obtained without the thickness correction. The 
comparison is presented for all the dosimetry specimens located at the 0˚ azimuthal 
location. 
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Figure 3a. Comparison of M/C ratios at 0˚ core top 
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Figure 3b. Comparison of M/C ratios at 0˚ core mid-
plane location 

 
Note that the corrected RPV thickness using the ISI measurements improves the accuracy 
of the calculated responses at every dosimetry location. Similar results are obtained also 
at 15˚, 30˚, and 45˚ azimuthal locations. 
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Figure 3c. Comparison of M/C ratios at 0˚ core bottom location 

 
Table 2. Measured and calculated reactions (DPS/NUCLEUS) rates 
obtained with the DTW differencing scheme. 

 Core Bottom Capsule 0˚ Core Mid-Plane Capsule 0˚ 
Reaction Measured Calculated M/C Measured Calculated M/C 

63Cu(n,α)60Co 3.83E-19 4.01E-19 0.96 1.07E-18 1.03E-18 1.04 
54Fe(n,p)54Mn 3.60E-17 3.69E-17 0.98 9.41E-17 9.61E-17 0.98 
58Ni(n,p)58Co 5.26E-17 5.32E-17 0.99 1.38E-16 1.39E-16 0.99 

238U(n,f)137Cs 2.18E-16 2.23E-16 0.98 5.54E-16 5.86E-16 0.94 
237Np(n,f)137Cs 3.41E-15 3.67E-15 0.93 8.48E-15 9.85E-15 0.86 

 Core Top Capsule 0˚  Core Mid-Plane Capsule 15˚ 
Reaction Measured Calculated M/C Measured Calculated M/C 

63Cu(n,α)60Co 3.86E-19 3.95E-19 0.98 9.86E-19 9.20E-19 1.07 
54Fe(n,p)54Mn 3.37E-17 3.63E-17 0.93 8.45E-17 8.40E-17 1.01 
58Ni(n,p)58Co 5.36E-17 5.24E-17 1.02 1.22E-16 1.21E-16 1.01 

238U(n,f)137Cs 2.19E-16 2.19E-16 1.00 5.05E-16 5.03E-16 1.00 
237Np(n,f)137Cs 3.43E-15 3.62E-15 0.95 8.16E-15 8.42E-15 0.97 

 Core Mid-Plane Capsule 30˚ Core Mid-Plane Capsule 45˚ 
Reaction Measured Calculated M/C Measured Calculated M/C 

63Cu(n,α)60Co 7.45E-19 8.17E-19 0.91 7.15E-19 7.47E-19 0.96 
54Fe(n,p)54Mn 6.53E-17 7.15E-17 0.91 5.48E-17 6.44E-17 0.85 
58Ni(n,p)58Co 9.04E-17 1.02E-16 0.89 8.08E-17 9.17E-17 0.88 

238U(n,f)137Cs 3.72E-16 4.10E-16 0.91 3.29E-16 3.63E-16 0.91 
237Np(n,f)137Cs 6.10E-15 6.61E-15 0.92 5.18E-15 5.82E-15 0.89 

 
Table 2 presents the measured and calculated reaction rates at each dosimetry location, as 
well as the M/C ratio using the RPV thickness corrected with ISI measurements. The 
average M/C ratio for the reactions listed in Table 2 across all the dosimetry locations is 
0.96. 
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3 RAPTOR-M3G Parallel Performance Analysis 

The transport calculations discussed in the previous sections are performed with 
RAPTOR-M3G running on a 20 processors computer cluster, i.e., EAGLE-1. The cluster 
is composed of 5 nodes with 2 dual-core dual-processor AMD Opteron 64-bit 
architecture. The cluster total memory, i.e., RAM, available amounts to 40 GByte; the 
network interconnection is characterized by 1 GBit/s bandwidth. With this hardware 
configuration, RAPTOR-M3G completed the full 3D transport calculation for the 2-loop 
PWR in approximately 106 minutes on 20 processors. No significant differences in 
performance have been observed using the DTW, TW, or ZW differencing schemes. 

Moreover, a simple test problem has been set up to analyze the parallel performance 
of the code. The test problem consists of 50x50x50 cm box with a uniform distributed 
fixed source, discretized with a 1 cm uniform mesh. An S8 quadrature set and P0 isotropic 
scattering are used, along with a one energy group cross section set. 

The wall-clock time, speed-up, and parallel efficiency are used to evaluate the 
parallel performance of RAPTOR-M3G. Speed-up and parallel efficiency are defined in 
Eq. 5 and 6, respectively. 

 p

s
p T

TS =
 (5) 

 p

p
p N

S
=η

 (6) 

where, Ts and Tp are the wall-clock times required by the single-processor and  
multi-processor calculations, respectively. Np is the number of processors utilized to 
achieve the wall-clock time Tp. Figure 4 shows a comparison of the speed-up obtained up 
to 20 processors using different decomposition strategies. 
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Figure 4. Comparison of RAPTOR-M3G speed-up obtained with different domain decomposition strategies 
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The speed-up obtained with the space decomposition is progressively reduced as the 
number of processors is increased. This behavior is due to a finer computational 
granularity per processor; as the space domain is decomposed into smaller sub-domains, 
the number of operation per processor is reduced while the inter-processor 
communication time is increased; therefore leading to a reduced performance. The 
network data transfer among the nodes is generally the limiting factor on distributed 
memory architectures. The larger number of iteration required to converge the problem 
further contributes to reduce the performance of the space decomposition strategy. 

However, the hybrid decomposition where the angular and spatial domains are 
concurrently partitioned yields better results. This behavior is due to the coarser 
computational granularity induced by this decomposition; also for the hybrid 
decomposition, the number of iterations required to converge the problem does not 
increase as much as the space decomposition. 

4 Conclusions 

A new parallel 3-D radiation transport code has been developed with domain 
decomposition algorithms, namely RAPTOR-M3G. The code is proven to be accurate 
and efficient for the solution of radiation transport problems on large and realistic models 
of commercial nuclear reactors. 

Calculated fast neutron reactions in the reactor cavity air gap of a 2-loop PWR agree 
with measurements on the average by 97%. The solution of the transport problem is 
obtained in approximately 106 minutes on a 20-processors computer cluster using a 
hybrid angular/space domain decomposition strategy. 

In the future, we are planning to apply the code to typical radiation transport 
benchmark problems and to more PWR and BWR reactors. Additional research work 
will also be performed on new iterative schemes to improve on the efficiency of the 
source iteration method. 
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