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Abstract—We examine how fast the estimation error grows
with time when a mobile robot/vehicle estimates its location
from relative pose measurements without global position or
orientation sensors. We show that both bias and variance of
the position estimation error grows at most linearly with time
(or distance traversed) asymptotically. The bias growth rate is
crucially dependent on the trajectory of the robot. An exact
formula for the error bias is provided for a special case of a
periodic trajectory in 2-D. Experiments with a P3-DX wheeled
robot and Monte-Carlo simulations are provided to verify the
theoretical predictions.

I. I NTRODUCTION

Localization without GPS is a key capability for au-
tonomous robots, since there are many situations in which GPS
signals are either unavailable or only intermittently available.
These include operation in urban canyons and tunnels, inside
buildings, under water, and extra-planetary exploration.In such
a situation, localization with respect to an initial position is
typically performed using a combination of sensors that are
used to measure relative motion between two successive time
instants, and then chaining them together. Inertial sensors (gy-
roscopes and accelerometers), vision-based sensors (cameras,
LIDARs, etc) and joint encoders (in case of ground vehicles)
are examples of sensors that can be used to obtain such
measurements. Apart from robotic platforms, such localization
is also of relevance to human wearable systems [1], personal
navigation devices [2], and robot end-effector position estima-
tion [3].

When relative motion measurements obtained from sensors
are concatenated to form an estimate of the robot’s positionin
a global frame, errors in individual measurements accumulate.
Over long time horizons, the resulting location estimates may
become quite poor. A number of papers have examined the
question of how the error varies with time in such a situation.
Olson et. al. [4] states that without a global orientation sensor,
the error grows super-linearly with distance, and presents
experimental evidence. They also state that position estimation
error will grow asO(s3/2), wheres is the distance travelled.
Roumeliotiset. al. [5] examine the error growth in cooperative
localization with multiple robots moving in a 2-D plane, in
which each robot is equipped with an absolute orientation
sensor. They examine the 2-D scenario, in which each robot’s
motion is restricted to a 2-D plane and its pose is described
by a triple (x, y, θ), wherex, y are the X- and Y-coordinates
of the origin of the local coordinate frame of the robot in
the global frame andθ, the orientation, is the angle between
the X-axis of the local frame and the X-axis of the global

frame. It follows from the results in [5] that for the scenario
examined, the covariance of a robot’s position estimation error
grows linearly with time.

In this paper we examine the growth rate in the position
estimation error of a robot that cannot directly measure either
its global position or its global orientation. The robot is
equipped with sensors that allows it to measure the relative
pose (position and orientation) between its coordinate frames
at two successive time instants, but not sensors that can
measure its absolute pose with respect to a global coordinate
frame. That is, the robot may have sensors such as wheel
odometers and cameras, but does not have sensors such as
GPS and compasses. The absolute position has to be estimated
from the noisy relative pose measurements.

We show that in the general d-D case, (when the robot’s
pose is an element ofSE(d)) both the bias and variance in
the position estimation error grows at most linearly with time.
Thus, even without an absolute orientation sensor, the error
growth (both bias and variance) is at most linear. This is a
generalization of the result in [5] which assumed availability
of absolute orientation sensors and examined only the 2-D
scenario. Our results are in contrast to the superlinear growth
of error reported in [4].

The growth in the bias depends crucially on the type of
path the robot traverses. In particular, we show that if the robot
stays within a bounded region, then the bias in the error is also
bounded by a constant. We also provide a formula for the bias
of the position estimation error in the special case when the
robot moves in a periodic trajectory in 2-D. In the 2-D case
its pose is described by the triple (x, y, θ). This prediction
is verified numerically through Monte-Carlo simulations and
experiments conducted with a Pioneer P3-DX robot equipped
with a vision-based sensor and a wheel odometer.

The rest of the paper is organized as follows. Section I-A
discusses some related work. Section II precisely formulates
the problem under study, and Section III states the main
results. Most of the proofs are in the appendix at the end of
the paper. Simulation verification is presented in Section IV
and experimental verification is presented in Section V. The
paper ends with a discussion of the results in Section VI.

A. Related work

The papers by Smith and Cheesman [3], Su and Lee [6],
and Wang and Chirikjian [7] derived recursive expressions of
the covariance of the pose estimation error by assuming the
errors are small, so that a first order approximation of the



BCH (Baker-Campbell-Hausdorff) formula is valid. Recently,
Wang and Chirikjian [8] developed a recursive formula for
the covariance of the pose estimation error that retains the
second order terms in the BCH formula. These papers study
the covariance of a six-dimensional vector whose entries
describe the robot’s pose (they are the coefficients of the six-
dimensional basis ofSE(3)). However, they do not directly
examine the mean and covariance of the position estimation
error.

A related body of literature deals with state estimation of
systems whose states, as well as the noisy measurements, are
in SO(3) or SE(3) (see [9], [10] and references therein).
The problem of position estimation of a mobile robot with
noisy relative pose measurements between successive frames
- one that is central to this paper - falls into this category.
However, our aim is not to develop an estimation technique,
but to examine the growth of error in the position estimate
when successive noisy relative pose measurements are chained
together to obtain a global pose estimate.

II. PROBLEM STATEMENT

We measure time with a discrete indexk = 0, 1, . . . . Sen-
sors used for relative localization of robots yield an estimate
of the position and orientation of the robot at timek relative to
that in the previous time instant,k − 1. That is, they produce
an estimate of therelative pose between frames attached to
the robot at two successive time instants. Let Rk

k+1 be the
rotation between the local frames attached to the robot’s body
at timek andk+1. That is, if uk is a vector expressed in the
robot’s frame at timek and uk−1 is the same vector expressed
in the robot’s frame at timek − 1, then uk−1 = Rk−1

k uk .
We will refer to the frame that is attached to the robot at
time k as the “framek”. Similarly, let tk

i,j be the relative
translation from the framei to the framej, expressed in the
frame k. The rotation Rk−1

k ∈ SO(d) is usually expressed
as ad × d matrix for d ≥ 2, while tk

i,j is a vector inR
2

or R
3. Without loss of generality, the coordinate frame that

is attached to the robot’s body at the initial timek = 0 is
used as the global coordinate frame. We denote the rotation
from framek to the global reference frame (frame0) by R0

k .
Similarly, the translation from framek − 1 to k expressed in
the global reference frame is denoted byt0

k−1,k. The position
of the robot at timen is the vector t0

0,n.

A. Pose estimation from relative measurements

With relative pose sensors such as cameras, inertial sensors,
and wheel odometers, the measurements available at timek
are estimates of the relative translation fromk− 1 to framek
expressed in framek, i.e., of tk

k−1,k, and the rotation between
the framesk − 1 and k. i.e., of Rk−1

k . The translation from
k− 1 to k, for k ≥ 1, expressed in the global reference frame
is

t0
k−1,k = R0

k tk
k−1,k, where R0

k = R0
1 R1

2 . . . Rk−1

k .

Estimates are denoted by hats on top of the corresponding

symbol, and errors by tildes, so that R̂
k−1

k and t̂
k

k−1,k are

the noisy estimates of Rk−1

k and tk
k−1,k, respectively, and

the corresponding errors R̃
k−1

k and t̃
k

k−1,k are defined as

R̃
k−1

k := ( Rk−1

k )−1 R̂
k−1

k ,

t̃
k

k−1,k := t̂
k

k−,k − tk
k−1,k.

(1)

The mean and the covariance of the translation errors are de-
noted as:E[ t̃

k
k−1,k] =: bk andCov( t̃

k
k−1,k, t̃

k
k−1,k) =: Pk.

The absolute position of the robot at timek is determined
by adding the relative position measurements, after expressing
them all in the global coordinate frame. The measurement of
the translation from framek − 1 to k expressed in the global
reference frame, which is denoted bŷt

0

k−1,k, is

t̂
0

k−1,k := R̂
0

k t̂
k

k−1,k, (2)

where R̂
0

k is an estimate ofR0
k , which is computed from the

relative rotation estimates as

R̂
0

k =
k
∏

i=1

R̂
i−1

i . (3)

Finally, the estimate of the position at timen in the global
reference frame is obtained by adding the relative translation
estimates:

t̂
0

0,n :=
n
∑

k=1

t̂
0

k−1,k =
n
∑

k=1

(

R̂
0

k t̂
k

k−1,k

)

(4)

The error between the estimated position and the true position
at timen is

e(n) := t0
0,n − t̂

0

0,n. (5)

Our goal is to study how the mean and covariance of the
position estimation error e(n) scales with the time index n.

Remark 1: We wish to emphasize that the estimation error
resulting from the estimation method described above will
have the same asymptotic trend as that of a filtering technique
that uses a kinematic model of the robot motion. The reason
is that a kinematic model essentially produces an independent
noisy measurement of the relative pose. Thus, our investi-
gations are useful in analyzing asymptotic performance of a
wider class of estimation techniques. �

To address the issue of statistical dependencies among the
measurement errors, we establish a few conventions. A rotation
matrixR ∈ SO(d) can be represented by the exponential map:
R = eωs

, whereωs is the skew-symmetric matrix correspond-
ing to the vectorω ∈ R

d [11]. A random rotation matrixR
can therefore be specified by ad-dimensional random vector
ω. We say that two random rotation matricesR1 (= eω

s

1 ) and
R2 (= eω

s

2) are independent ifω1 and ω2 are independent
random vectors. Similarly, we say thatR1 and a random
vectort are independent ifω1 andt are independent random
vectors. In the first case every entry of the matrixR1 is
independent of every entry ofR2, and in the second case,
of every entry oft. In this paper, we useE[R] (for a random
rotation matrixR) to denote the matrix whosei, j-th entry is



E[(R)i,j ], i.e., the expected value of thei, j-th entry ofR. As
a result of this convention, ifR1 ∈ SO(d) is independent of
R2 ∈ SO(d) and of t ∈ R

3, thenE[R1R2] = E[R1] E[R2]
and E[R1t] = E[R1] E[t]. In the sequel,‖ · ‖q denotes the
(induced)q-norm of a (matrix) vector. When the subscript is
omitted, it denotes the (induced) 2-norm.

Remark 2: According to the convention used in this paper,
in general E[R] /∈ SO(d) even if R ∈ SO(d). It is
important that the notationE[R] is not to be understood as
the expectation of the random variableR with a distribution
defined overSO(d), in which case its expected value is also
an element ofSO(d). Even whenR and t are independent,
the equationE[Rt] = E[R] E[t] may not hold in general if
E[R] ∈ SO(d). �

We state the following assumptions for use in the rest of
the paper:

Assumption 1: 1) The relative orientation measurement
errors R̃

k

k+1 are i.i.d. with a non-degenerate distribution.
That is, if R is a random rotation matrix that has
the same distribution as each of the R̃

k

k+1 ’s, then the
distribution of R is not concentrated in one point in
SO(d).

2) The relative translation measurement errors
{ t̃

k

k−1,k}
∞
k=1

are uniformly absolutely integrable,
i.e., there existsβ > 0 so thatβk ≤ β < ∞ for all k
whereβk := E ‖ t̃

k

k−1,k‖.
Assumption 2: 1) There exist positive constantsτ , b, p,

p such that‖ tk
k−1,k‖ ≤ τ , ‖bk‖ ≤ b, and 0 < p ≤

Tr [Pk] ≤ p < ∞ for all k, whereTr [ · ] stands for
trace.

2) The relative translation measurement errors
{ t̃

k
k−1,k}

∞
k=1 is a sequence of an independent

random vectors.
3) The rotation and translation measurement errors̃R

j−1

j

and t̃
k

k−1,k are independent ifj 6= k, and possibly

dependent whenj = k, with E[ R̃
k−1

k t̃
k

k−1,k] =: ρk ∈
R

d. There exists a positive scalarρ such that‖ρk‖ ≤ ρ
for all k.

The assumption‖ tk
k−1,k‖ ≤ τ means that the speed of the

robot is upper bounded by a constant. Note that it isnot
assumed that the relative translation and rotation measurement
errors at a particular time instant are statistically independent.
In practice, they are likely to be dependent if there is overlap
between the sensor suite used to measure these two compo-
nents of the relative pose.

III. E RROR SCALING

For future we use, we definēR = E[R] andγ := R̄. Recall

that R has the same distribution as each of the R̃
k

k+1 ’s. It
should be noted that̄R /∈ SO(2), andγ < 1 (see Proposition 1
in the Appendix). The next theorem is the main result of the
paper.

Theorem 1: Under Assumption 1 and 2, we have
∣

∣‖ t0
0,n‖ − a

∣

∣ ≤ ‖E[e(n)]‖ = ‖ t0
0,n‖ + a, wherea is a pos-

itive constant independent ofn, andTr [Cov(e(n), e(n))] =

O(n). If p ≥ 2bτ + τ2 + 2
(τ + ρ/γ)(τ + b)

1 − γ
, whereb, ρ, τ are

as defined in Assumption 2, thenTr [Cov(e(n), e(n))] =
Θ(n). �

Remark 3: Theorem 1 implies that the bias of the position
estimation error grows with time asymptotically at the same
rate as the robot’s displacement. It follows that if the robot
moves with a constant speed and with a constant (absolute) ori-
entation, then its bias grows linearly with time:‖E[e(n)]‖ =
Θ(n). If the robot’s motion is confined to a bounded region
of the 2-D plane, the bias in its position estimation error stays
uniformly bounded by a constant:‖E[e(n)]‖ = O(1). The
variance growth rate is not dependent on the trajectory of
the robot. In addition, it follows from the theorem that both
bias and variance in the position estimation error grows at
most linearly with time. The same conclusion is true for error
growth with distance, if the speed of the robot is both upper
and lower bounded by two constants. These results are in
contrast to the prevalent belief in the literature [4] that the
error growth is superlinear in time when absolute position
measurements are unavailable. Some insight into this belief
can be gained by noting that this theorem gives no guarantee
on the growth rates over any finite time. Thus the growth
rates may appear superlinear when examined over shorter time
scales. Although we do not present here due to lack of space,
the error growth when the robot moves in a straight line do
appear to grow superlinearly with time for small values of
time indexn; the linear asymptotics become clear only for
very large values ofn (see [12] for details). �

The proof of Theorem 1 will require the following result,
whose proof is provided in the Appendix.

Lemma 1: Under Assumption 1 and 2, we have

‖E[ t̂
0

0,n]‖ =O(1), E[( t̂
0

0,n)T t̂
0

0,n] =O(n).

Moreover, if p ≥ 2bτ + τ2 + 2
(τ + ρ/γ)(τ + b)

1 − γ
, then we

haveE[( t̂
0

0,n)T t̂
0

0,n] = Θ(n). �

Proof of Theorem 1: It follows from (5), by applying the
triangle inequality that

‖E[e(n)]‖ ≤ ‖ t0
0,n‖ + ‖E[ t̂

0

0,n]‖ (6)

‖E[e(n)]‖ ≥
∣

∣

∣‖ t0
0,n‖ − ‖E[ t̂

0

0,n]‖
∣

∣

∣ (7)

From Lemma 1, we have that‖E[ t̂
0

0,n]‖ is upper bounded by
a constant independent ofn. Calling this upper bounda, the
first statement follows immediately from (6) and (7).
To prove the second statement, note that

Tr [Cov(e(n), e(n))] = Tr
[

Cov( t̂
0

0,n, t̂
0

0,n)
]

= Tr
[

E[ t̂
0

0,n( t̂
0

0,n)T ] − E[ t̂
0

0,n] E[ t̂
0

0,n]T
]

= E[( t̂
0

0,n)T t̂
0

0,n] − ‖E[ t̂
0

0,n]‖2

Since‖E[ t̂
0

0,n]‖ = O(1), the second statement follows from
Lemma 1.



A. Special case(s) in 2-D

In this section we provide non-asymptotic results on the
error growth for the special case when the motion of the robot
is confined to a 2D plane and its trajectory is limited a certain
type(s). Note that in this “2-D scenario”,̂t

i

j,k, ti j,k ∈ R
2 and

Rij , R̂
i

j ∈ SO(2) for every i, j, k. Without loss of generality,
the robot’s motion is assumed to lie in the plane formed by
this reference frame’sx and y axes. The robot’s orientation
at timen can then be uniquely described by an angleθ0,n ∈
[−π, π), which describes rotation of its local frame about
the z-axis of the global frame. The relative rotation between
the framesk − 1 andk is uniquely determined by the angle
by which the framek − 1 has to be rotated in the counter
clockwise direction to reach framek, which we denote by
θk−1,k. Figure 1 shows an example. A noisy measurement of
the relative rotation, denoted bŷθk−1,k, is assumed available
at timek. The error in the relative rotation measurement is

θ̃k−1,k := θ̂k−1,k − θk−1,k. (8)

For future use, we definefR : [−π, π) → SO(2) as

fR(α) :=

(

cosα − sinα
sinα cosα

)

.

The matrix Rk−1

k that describes the relative rotation between
the framesk − 1 and k is therefore given by Rk−1

k =
fR(θk−1,k). It can be shown from the definition (1) that

R̃
k−1

k = fR(θ̃k−1,k). (9)

The estimate of the rotation Rk−1

k therefore is R̂
k−1

k =

fR(θ̂k−1,k).
We say the robot moves in aperiodic trajectory with period

p if the absolute orientation and position of the robot satisfies
the following conditions:θ0,k = θ0,k+p and t0

0,k = t0
0,k+p

for all k. The shape of the (closed) path along which the
robot moves can be arbitrary. In the statement of the theorem
presented next,η denotes the number of periods up to time
n, and q to denote the residual, i.e.,η(n) := ⌊n/p⌋ and
q := n − ηp. The proof of the result is provided in the
Appendix.

Theorem 2: Suppose a robot is moving inR2 whose tra-
jectory is periodic with periodp, and Assumption 1 holds.
Suppose that in addition, the distribution ofθ̃ is symmetric
around its meanE[θ̃], and the fist moments of the measurement
errors are periodic with periodp (so thatρk = ρk+p). In that
case,

E[e(n)] = t0
0,q − (I − (cR)p)

−1

× (I − (cR)ηp)w(p) − (cR)ηpw(q), (10)

where

c := E[cos
(

θ̃ − E[θ̃]
)

], R := fR(E[θ̃]), (11)

path

t0,1

t 0
,1

θ0,1

θ1,2

k0

k1

k2

Fig. 1. An example of a robot’s path (shown in blue) in 2-D and associated
relative poses between time instants.

andw(j) is given by

w(j) :=

j−1
∑

i=0

(cR)i
R0

i+1

(

cR ti+1

i,i+1
+ ρi

)

.

Note that|c| < 1 since the r.v.θ̃ is not concentrated at0
(see Proposition 1 in the Appendix). The spectral radius of
cR is strictly lower than unity sincec < 1 andR ∈ SO(2).
HenceI − cR is invertible and the right-hand side in (10) is
well defined.

The assumption of the momentsρk being periodic with
period p is motivated by the use of vision-based sensors to
measure relative poses. In that case the measurement error
statistics may depend on the scene the camera sees, which
will repeat itself everyp instants due to the periodic nature of
the robot’s motion. Note that i.i.d. errors are a special case of
errors with periodic statistics, so the result also holds ifall the
measurement errors are i.i.d. It follows from (10) that the bias
is O(1) (due to|c| < 1), which is consistent with Theorem 1.

We can also derive non-asymptotic expressions for the bias
and variance of the position estimation error when the robot
moves in a straight line; the interested reader is referred to [12]
for details.

The next result is on the position estimation error growth
rate when the robot moves in a straight line with constant
velocity and orientation. The proof of the result is in the
Appendix.

Theorem 3: Consider a robot that moves on a 2-D plane
in such a manner that for allk, θk−1,k = 0 and tk

k−1,k =
r ∈ R

2, for some vectorr. Suppose that in addition to
Assumptions 1 and 2, the distribution ofθ̃ is symmetric around
its meanE[θ̃], { t̃

k

k−1,k}
∞
k=1

is wide sense stationary with
b = bk, P = Pk, and ρk = ρ for all k. In that case, we
have

E[e(n)] = n r − (I − cR)
−1

(I − (cR)n) (cRr + ρ)

Tr [Cov(e(n), e(n))] = ψn+ ω(n),
(13)

where

c := E[cos
(

θ̃ − E[θ̃]
)

], R := fR(E[θ̃]), (14)



ψ = 2crT (I − cR)
−1

Rr + Tr
[

P + bbT
]

+ (2bT + rT )(I − cR)−1ρ (12)

ω(n) = rT (I − cR)−2
(

I − 4cR + 2(cR)2 + 2(cR)n+1
)

r − 2bT (I − cR)−2 (I − (cR)n)ρ

+ bT (I − cR)−1 [I − (cR)n] r − rT (I − cR)−2 [I − (cR)n] ρ − ‖
[

(I − cR)−1(I − (cR)n)(cRr + ρ)
]

‖2
2

and the scalarsψ, ω(n) are given in (12). �

IV. SIMULATION VERIFICATION

In this section we empirically estimate the mean and co-
variance of the estimation error by conducting a Monte-Carlo
simulation. When then compare the estimated mean with the
theoretical predictions. We only consider the 2-D scenario
with periodic trajectory so that the empirical result can be
compared with the prediction of Theorem 2. All simulations
are conducted in MATLABc©.

A. Straight-line trajectory

For the straight line case, we simulate a robot moving
in a straight line on a plane with a constant velocity of
[0.2263, 0.2263]T m/s and constant orientation. Two types
of simulations are conducted. In the first type, which we
call simulated data, noisy measurements of the rotation, i.e.,
θ̂k−1,k are generated as a Laplace distributed random variable
using a pseudo-random number generator. Noisy measure-
ments of the translations, i.e.,̂t

k

k−1,k were generated from
noisy measurements of translation direction, which we call
ζk

k−1,k, and translation magnitude, which we calldk ∈ R
+,

as t̂
k

k−1,k = d̂kζ̂k−1,k t̂
k

k−1,k = d̂k ζ̂
k

k−1,k , whered̂k and

ζ̂
k

k−1,k are noisy estimates ofdk and ζk
k−1,k, respectively.

Note that ζk
k−1,k is a 2-vector with unit norm. This is to

simulate relative pose measurement with a monocular camera
and IMU/wheel odometry. The camera provides only relative
rotation and direction of translation, while the magnitudeof
translation is measured by another sensor, such as wheel
encoders or inertial sensors.

In the second type of simulations, which we denote by
simulated camera, the vision-based relative pose estimation
sensor is simulated in a more realistic fashion by generating
synthetic image data, from which relative rotation and direc-
tion of translation are estimated. The magnitude of translation
measurements are generated as in the “simulated data” case.

Simulated data: At each time stepk, a measurement of
the relative orientation is constructed numerically asθ̂k−1,k =
0 + θ̃k−1,k, where the orientation error̃θk−1,k is chosen to
be a 0-mean Laplace distributed r.v. Recall that a Laplace
distribution with µ mean and variance2λ2 has the pdf

f(θ̃) =
1

2λ
e−|θ̃−µ|/λ. The value ofλ chosen is3.6 × 10−3,

which best fits the orientation measurement error statistics
generated by the synthetic monocular camera-based relative
pose sensor, which is described in the sequel. The noisy

measurement of translation direction̂ζ
k

k−1,k generated as

ζ̂
k

k−1,k =

(

cos φ̃k−1,k − sin φ̃k−1,k

sin φ̃k−1,k cos φ̃k−1,k

)

ζk
k−1,k

where φ̃k−1,k is a zero-mean Laplace random variable with
variance 3.07 × 10−2 3.07 × 10−2 rad2 , and ζk

k−1,k =
1√
2
[1, 1]T is the true translation direction. The magnitude

of the translation isdk = 6.4 × 10−2 m and its noisy
measurement is generated asd̂k = dk + d̃k, where d̃k is a
zero-mean Gaussian random variable with mean0 variance
8.5467×10−5 m2. These numbers are chosen to be consistent
with those seen in an experiment with a wheeled robot
described later in Section V. The values of the parameters
that are needed to compute the predictions by Theorem 3,
are determined by the choice of the measurement noise statis-
tics, which turn out to beb = [−0.6842,−0.6842]× 10−3 m,
Tr [P] = 1.2479 × 10−4 m2, andc = 1 − 1.2873× 10−5.

The mean and covariance of the position estimation error
at every time instant are empirically estimated by averaging
over 76,600 Monte-Carlo simulations. Figure 2 presents the
estimated mean and covariances, and the values predicted by
Theorem 3. We see from the figure that the prediction from
Theorem 3 matches estimates from Monte-Carlo simulations
quite closely even for the large time intervals used in the
simulations.

Simulated camera: We now simulate the scenario in
which relative pose measurements are obtained by a calibrated
monocular Prosilica EC 1020 camera and wheel odometers
found on a Pioneer P3-DX. To simulate an estimate of the
camera ego-motion between consecutive time steps, suppose
betweenk and k + 1, a set of50 3-D points are randomly
generated in the volume visible to the camera at time step
k, with their coordinates represented in the reference frame
attached to the camera at time stepk. The points are then
acted on by the true transformation fromk to k + 1 to find
the corresponding coordinates in the reference frame attached
to the camera at time stepk+1, discarding any points falling
outside the volume visible to the camera at that time step.
Using a calibration matrix corresponding to the Prosilica EC
1020 camera, the points are projected into their corresponding
image plane. This forms a set of correspondences analogous
to the feature points extracted from actual image pairs. Each
feature point is now corrupted by uniform noise with support
lying in a 2×2 pixel square about the point. A RANSAC [13]
assisted normalized 8-point algorithm [14] is used to estimate
the rotationR̂ and translation direction̂ζ between the two time
steps from these point correspondences. The axis of rotation
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Fig. 2. 2-D scenario, straight line trajectory: Comparisonof Theorem 3’s
predictions (“Theoretical” ) of bias and variance in position estimation error
with those estimated from Monte-Carlo simulations (“Empirical”), for the
“simulated data” case.

was then aligned with the normal to the plane of motion and
the component of the translation vector in that direction was
dropped to insure the motion estimates remained in the plane.
The magnitude of translation̂d is generated as in theSimu-
lated Data case. The values of the parameters that are needed
to compute the predictions by Theorem 3 are estimated from
Monte-Carlo experiments, in which the relative pose between
two frames with a known pose is measured from synthetic
image data, and by averaging over appropriate functions. The
values are found to beb = [−0.5767,−0.5904]× 10−5 m,
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Fig. 3. 2-D scenario, straight line trajectory: Comparisonof Theorem 3’s
predictions (“Theoretical” ) of bias and variance in position estimation error
with those estimated from Monte-Carlo simulations (“Synthetic”), for the
“simulated camera” case.

Tr [P] = 1.6382 × 10−4 m2, andc = 1 − 2.1462× 10−5.
Figure 3 compares the predictions of bias and variance by

Theorem 3 to those estimated from1000 Monte-Carlo sim-
ulations. The number of Monte-Carlo simulations is smaller
in the synthetic data case due to the prohibitively high cost
of conducting these simulations. We see from Figure 3 that
Theorem 3 accurately predicts the position estimation error
computed from synthetic image data. The prediction toward
the end of the simulation time is not as accurate as in the
simulated data case, which is due to the smaller number of
Monte-Carlo trials.

B. Periodic trajectory

For the periodic case, we simulate a robot moving on a
circle with circumference of4.11 m for approximately 5.5
hours, sampling the robot’s relative pose every 0.2 seconds.
The speed of the robot is approximately0.32 m/ sec, so that
it traverses the circle about47 times before completing one
period. This yields a periodic trajectory with periodp = 3020.
The trajectory is chosen to be close to that encountered in
an experiments with a Pioneer P3-DX robot, which will be
described in Section V.

For this simulation, noisy measurements of the rotation, i.e.,
θ̂k−1,k are generated as a Laplace distributed random variable
using a pseudo-random number generator. Noisy measure-
ments of the translations, i.e.,̂t

k

k−1,k were generated from
noisy measurements of translation direction, which we call
ζk

k−1,k, and translation magnitude, which we calldk ∈ R
+,



as t̂
k

k−1,k = d̂k ζ̂
k

k−1,k , where d̂k and ζ̂
k

k−1,k are noisy
estimates ofdk and ζk

k−1,k, respectively. Note thatζk
k−1,k

is a 2-vector with unit norm. This is to simulate relative
pose measurement with a monocular camera and IMU/wheel
odometry. The camera provides only relative rotation and
direction of translation, while the magnitude of translation is
measured by another sensor, such as wheel encoders or inertial
sensors.

At each time stepk, a measurement of the relative orienta-
tion is constructed numerically aŝθk−1,k =6.8×10−5+θ̃k−1,k,
where the orientation error̃θk−1,k is chosen to be a0-mean
Laplace distributed r.v. Recall that a Laplace distribution with

µ mean and variance2λ2 has the pdff(θ̃) =
1

2λ
e−|θ̃−µ|/λ.

The value ofλ chosen is3.6× 10−3. The noisy measurement

of translation direction ζ̂
k

k−1,k generated as

ζ̂
k

k−1,k = fR(φ̃k−1,k) ζk
k−1,k

where φ̃k−1,k is a zero-mean Laplace random variable with
variance3.07 × 10−2 rad2 , and ζk

k−1,k = − [0.049, 0.999]
T

is the true translation direction. The magnitude of the trans-
lation is dk = 6.4 × 10−2 m and its noisy measurement
is generated aŝdk = dk + d̃k, where d̃k is a zero-mean
Gaussian random variable with mean0 variance8.5467×10−5

m2. These numbers are again chosen to be consistent with
the experiment described in Section V. The values of the
parameters that are needed to compute the predictions by
Theorem 2, are determined by the choice of the measurement
noise statistics and are equal toc = 1 − 1.29 × 10−5 and
ρk = [0.047, 0.97]T × 10−3.

The mean and covariance of the position estimation error
at every time instant are empirically estimated by averaging
over 29,970 Monte-Carlo simulations. Figure 4 compares the
predicted values from Theorem 2 with empirical estimates
from the 29, 970 Monte-Carlo simulations. We see that the
bias is quite accurately predicted by Theorem 2. The linear
trend in variance observed from Monte Carlo simulations is
consistent with prediction of Theorem 2.

V. EXPERIMENTAL VERIFICATION

In this section we report results of experiments conducted
with a wheeled Pioneer P3-DX robot that is equipped with
a calibrated monocular Prosilica EC 1020 camera and wheel
odometers. The images captured by the camera are used to
estimate the relative rotation and direction of translation. The
distance travelled estimated by the wheel odometers is fused
with the direction of translation estimated from the camera
to estimate the translation vector. The relative pose of the
camera is measured every0.2 seconds. An overhead camera is
used to measure the true 2-D pose of the robot. Due to space
constraints of the indoor test set-up, the trajectory of therobot
was chosen to be an approximately circular one with radius
0.65 m and one rotation taking approximately 13 seconds (see
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Fig. 4. 2-D scenario, periodic motion: Comparison of Theorem 2’s predic-
tions with estimates from Monte-Carlo simulations (“Empirical”). The legend
“Theoretical” in (a) refers to the prediction from (10) in Theorem 2.

Figure 5). The robot’s trajectory is approximately periodic
with periodp = 3020 (i.e., 604 seconds).

A. Test set-up

Figure 6(b) shows a schematic of the experimental set-up.
The global coordinate frame is defined to coincide with the
coordinate frame attached to an overhead camera viewing the
plane of motion. That is, the origin of the global coordinate
axes corresponds to the camera’s focal point. The overhead
camera is used to obtain the true pose of the robot. The robot’s
local coordinate frame was defined by a cube affixed to the top
of the box. A grid consisting of six dots was placed atop the
cube with a known geometry (see Figure 6(a)), which allows
reconstruction of the full 3-D pose of the robot from the single
monocular camera. Although some error between the true pose
of the robot and that estimated from the overhead camera is
inevitable, this error did not have any cumulative effect over
time. Therefore we call the pose estimated from the overhead
camera the “ground truth”.

A KLT tracker [15] was used to track feature points
across pairs of images, and a RANSAC-assisted normalized
8-point algorithm was used to estimate the relative rotation
and direction of translation between every successive pairs
of images. All estimation was performed off-line. Even with
RANSAC, outliers in point-correspondences can cause large
errors in the relative pose estimates. An ad-hoc “filter” was
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Fig. 6. Schematic of the test set-up.

implemented to reduce the effect of such errors as follows.
If the estimated relative pose from the camera was deemed
infeasible (which was determined by the known motion of the
robot), the relative rotation and relative translation direction
estimated in the previous time step was used as the estimate for
the current time step. The relative translation between twotime
instants was estimated from the relative translation direction
and the estimate of its magnitude, the latter being obtained
from a wheel odometer. The relative poses so obtained were
chained together to obtain an estimate of the global position
and orientation of the robot at every time step, as described
in Section II-A.

B. Test results

The position estimation error at each time step is computed
by comparing the ground truth with the robot’s position
estimated from relative pose measurements. The bias and
variance in the position estimation error at any given time
step are determined by averaging over 17 experiments, where
each experiment consists of the robot following its path for
1000 seconds (5000 time steps). The experimentally obtained
bias and variance of position estimation error are shown
in Figures 7(a) and 7(b). We see that the experimentally
obtained results - especially the bias – closely follow those
seen in simulations (cf. Figure 4(a),4(b)), which in turn are
accurately predicted from the analysis. The experimentally
obtained bias stays bounded, as Theorem 1 predicts. The
variance also shows an on-average linear growth with time,
which is consistent with Theorem 1. This provides additional
confidence in our theoretical results. In addition, we note
that while the theoretical predictions are for a dead-reckoning
type position estimation algorithm, the algorithm used in the
experiments was more akin to a kinematic-model based filter.
Still the theoretical predictions match the experimental results
rather well. This is expected, as discussed in Remark 1.

The discrepancies between the experimentally obtained bias
and variance values and those obtained from simulations are
due to the fact that our experiments and simulations differ
in a number of ways. First, the experimental values are
computed by averaging over only 17 experiments, whereas
the simulation estimates are computed from at least 1000
Monte-Carlo simulations. The reason for this smaller number
of experimental trials is the difficulty and time needed in
performing these experiments. The smaller number of trials
that were averaged over produced less accurate estimates.
Second, the characteristics of the camera error could not be
modeled in any of our simulations.

VI. D ISCUSSION AND SUMMARY

We examined the growth of error in position estimation
from noisy relative pose measurements. We showed that both
the bias and variance grows at most linearly with time or
distance travelled. Although not presented here due to lack
of space, when the robot loves in a straight line, both the bias
and variance look super-linear for small values of time index
n [12]. Only when the timen is sufficiently large that the linear
asymptotic trend withn become clearly visible. This may be
the reason for the super-linear error growth rate observed in
certain experiments [4]. The precise growth rate depends on
the trajectory of the robot. Exact formulas for the error growth
rates are obtained for a special trajectory. Simulations, and
experiments with a wheeled robot, were used to verify the
results.

The results are established under the assumption that the
errors in the relative orientation and position measurements
are i.i.d. The results will still hold, though the analysis
will be more involved, with the weaker assumption that
‖E[R̃k]‖ ≤ γ < 1 for some positive constantγ, instead
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Fig. 7. Bias and variance of position estimation error for a P3-DX robot
(5000 time steps= 16.67 minutes).

of the rotation errorsR̃k being identically distributed. The
independence assumption was made to simplify the analysis.
Experimental results closely match the theoretical predictions
made, indicating the results may not be sensitive to this
assumption. We emphasize that the rotation and translation
measurement errors are not assumed to be small for any of
the results.

The error growth trends are ultimately due to the fact
that ‖E[Rk]‖ < 1, which causes the position estimates to
converge to a point by causing a geometric decay, on average,
of the magnitude of the relative translation estimate when
expressed in the global coordinate. In principle, knowledge
of the measurement error statistics can be used to compensate
for this decay. This is a subject of ongoing work.
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APPENDIX

The following technical results will be needed for the
remaining proofs.

Proposition 1: Let R be a random rotation matrix with
distribution defined overSO(d), d ≥ 2 and E[R] is a d × d
matrix whosei, j-th entry is the expected value of thei,-th
entry ofR. We have‖E[R]‖ ≤ 1, and the inequality is strict
if the distribution ofR is not degenerate (meaning it is not
concentrated at one point). �

Proof of Proposition 1: Let y be ad-dimensional random
vector. SinceCov(y,y) = E[yyT ] − E[y] E[y]T , we have
upon taking the trace of both sides

‖E[y]‖2 = E[‖y‖2] − Tr [Cov(y,y)] ≤ E[‖y‖2],

since Tr [Cov(y,y)] ≥ 0. Moreover equality in the above
inequality holds if and only if the variance of each of the
components ofy is 0, that isy is a constant vector a.s. We
now apply this result to the random vectory := Rx, wherex
is a deterministicd-dimensional vector whileR is a random
rotation matrix. Sincey is degenerate if only ifR is, we have

‖E[R]x‖2 < E[‖Rx‖2] = E[‖x‖2]

since rotation doesn’t change the2-norm of a vector. This
proves that‖E[R]‖ < 1 as long asR is not degenerate.

Proposition 2: If Xi is a sequence of random vectors such
that E[XT

i Xj] ≤ α0γ
|i−j|, where |γ| < 1 and α0 is an

arbitrary constant, thenE[(
∑n

i=1
Xi)

T (
∑n

i=1
Xi)] = O(n).

If in addition α0γ
|i−j| ≤ E[XT

i Xj ] for i 6= j and0 < β0 ≤



E[XT
i Xi], whereα0, β0 are constants such thatβ0 > 2

|α0|
1−|γ| ,

thenE[(
∑n

i=1
Xi)

T (
∑n

i=1
Xi)] = Θ(n).

Proof of Proposition 2: Expanding the sum, we obtain

E[(

n
∑

i=1

Xi)
T (

n
∑

i=1

Xi)] =

n
∑

i=1

Ti, (15)

where

Ti :=

n
∑

j=1

E[XT
i Xj]. (16)

It follows from (16) and the hypothesis that

Ti ≤ α0(γ
i−1 + γi−2 + · · · + γ + 1 + γ + · · · + γn−i)

= α0(−1 +

i−1
∑

k=0

γk +

n−i
∑

k=0

γk) ≤ α0(−1 +

∞
∑

k=0

|γ|k +

∞
∑

k=0

|γ|k)

= α0(−1 +
1

1 − |γ|
+

1

1 − |γ|
) = α0

1 + |γ|

1 − |γ|
,

where the second inequality follows from|γ| < 1. This
shows thatTi = O(1). It now follows from (15) that
E[(
∑n

i=1
Xi)

T (
∑n

i=1
Xi)] = O(n). This proves the first

statement.

When the additional hypothesis holds, we have

Ti ≥ α0(γ
i−1 + γi−2 + · · · + γ) + β0 + α0(γ + · · · + γn−i)

≥ −2|α0|

∞
∑

k=0

|γ|k + β0 = β0 − 2
|α0|

1 − |γ|
=: ℓ0 > 0

It follows from (15) thatE[(
∑n

i=1
Xi)

T (
∑n

i=1
Xi)] ≥ nℓ0 =

Ω(n). Combining the asymptotic lower and upper bounds, we
get E[(

∑n
i=1

Xi)
T (
∑n

i=1
Xi)] = Θ(n).

Proof of Lemma 1: It follows from (4) that

E[ t̂
0

0,n] =

n
∑

k=1

E[ t̂
0

k,k+1] (17)

From (2)-(3), and using commutativity of 2-D rotation matri-
ces, we get

t̂
0

k,k+1 = R0
k+1 R̃

0

1 . . . R̃
k

k+1

(

tk+1

k,k+1
+ t̃

k+1

k,k+1

)

⇒ E[ t̂
0

k,k+1] = R0
k+1

(

R̄k+1 tk+1

k,k+1
+ R̄k ρk+1

)

where the second equality follows from the assumption that
the orientation measurement errors are i.i.d. Since a rotation
does not change the2-norm of a vector,

‖E[ t̂
0

k,k+1]‖ = ‖
(

R̄k+1 tk+1

k,k+1
+ R̄kρk

)

‖

≤ ‖R̄k‖
(

‖R̄‖‖ tk+1

k,k+1
‖ + ‖ρk+1‖

)

where the inequality follows from applying triangle inequality
and using sub-multiplicative property of induced norms. Since
‖R̄k‖ ≤ ‖R̄‖k, we obtain upon using Proposition 1 and the
definition γ = ‖R̄‖ that ‖E[ t̂

0

k,k+1]‖ ≤ γka, wherea :=

supk(‖R̄‖‖ tk+1

k,k+1
‖ + ‖ρk+1‖) ≤ γτ + β. Note that0 <

γ < 1. Applying triangle inequality to (17), we get

‖E[ t̂
0

0,n]‖ ≤
n−1
∑

k=0

‖E[ t̂
0

k,k+1]‖ ≤ a
n−1
∑

k=0

γk ≤ a
1

1 − γ
,

since0 < γ < 1. This proves the result about the mean.
The proof for the second moment result relies on Proposi-
tion 2. Fori ≤ j,

( t̂
0

i,i+1)
T t̂

0

j,j+1 = ( t̂
i+1

i,i+1 R̂
0

i+1 )T R̂
0

j+1 t̂
j+1

j,j+1

= ( t̂
i+1

i,i+1)
T R̂

i+1

j+1 t̂
j+1

j,j+1

= V1 + V2 + V3 + V4,

where

V1 :=( ti+1

i,i+1)
T R̂

i+1

j+1 t
j+1

j,j+1

V2 :=( t̃
i+1

i,i+1)
T R̂

i+1

j+1 t
j+1

j,j+1

V3 :=( ti+1

i,i+1)
T R̂

i+1

j+1 t̃
j+1

j,j+1

V4 :=( t̃
i+1

i,i+1)
T R̂

i+1

j+1 t̃
j+1

j,j+1.

We now evaluate the expected values of these four terms.
By using the Independence of the orientation measurement
errors and commutativity of 2-D rotation matrices, we get
E[ R̂

i+1

j+1 ] = Ri+1

j+1 R̄j−i. Therefore,

E[V1] = ( ti+1

i,i+1)
T Ri+1

j+1 R̄j−i t
j+1

j,j+1

⇒ |E[V1]| ≤ ‖ ti+1

i,i+1‖‖R̄
j−i t

j+1

j,j+1‖

≤ ‖R̄j−i‖‖ ti+1

i,i+1‖‖ t
j+1

j,j+1‖ ≤ γj−iτ2,

where the first inequality uses the fact that Ri+1

j+1 , being a
rotation matrix, does not change the2-norm. ForV2, since

t̃
i+1

i,i+1 is statistically dependent only on R̃
i+1

i and not on

R̃
i+2

i+1 , . . . , R̃
j+1

j , it is also independent of R̂
i+1

j+1 . Hence,

E[V2] = bT
i Ri+1

j+1 R̄j−i t
j+1

j,j+1

⇒ |E[V2]| ≤ γj−i bτ

Similarly, we have, for(i < j),

E[V3] = ( ti i+1,i+1)
T Ri+1

j+1 R̄j−i−1 ρj+1

⇒ |E[V3]| ≤ γj−i 1

γ
τρ.

and for i = j, |E[V3]| ≤ τb. For V4, wheni < j, we have

V4 = ( t̃
i+1

i,i+1)
T Ri+1

j+1 R̃
i+1

i+2 . . . R̃
j

j+1 t̃
j+1

j,j+1,

and using Assumption 2 about t̃
j+1

j,j+1’s, we obtain

E[V4] = bT
i Ri+1

j+1 R̄j−i−1ρj+1

⇒ |E[V4]| ≤ γj−i 1

γ
bρ.

For i = j, we haveV4 = ( t̃
j+1

j,j+1)
T t̃

j+1

j,j+1, which im-
pliesE[V4] = Tr [Pj+1]+bT

j+1bj+1, by definition. Therefore,

0 < p ≤ E[V4] ≤ p+ b2. (i = j).



Combining all four terms, we get,

α0γ
j−i ≤E[( t̂

0

i,i+1)
T t̂

0

j,j+1] ≤ α0γ
j−i, (i < j)

β0 ≤E[( t̂
0

i,i+1)
T t̂

0

i,i+1] ≤ β0,

whereα0 := −(τ2+τb+ 1

γ τρ+
1

γ bρ), α0 := τ2+τb+ 1

γ τρ+
1

γ bρ, andβ0 := p− (τ2 +2τb), β0 := τ2 +2τb+p+ b2. Note
that in caseβ0 is negative, it is a poor lower lower bound

since ( t̂
0

i,i+1)
T t̂

0

i,i+1 > 0. Repeating these arguments for
i ≥ j and combining, we find that

α0γ
|i−j| ≤ E[( t̂

0

i,i+1)
T t̂

0

j,j+1] ≤ α0γ
|i−j|. (i 6= j)

max{0, β0} ≤ E[( t̂
0

i,i+1)
T t̂

0

i,i+1] ≤ α0.

where α0 := max{α0, β0}. Now call Xi := t̂
0

i,i+1,

so that t̂
0

0,n =
∑n−1

i=0
Xi. Hence, E[( t̂

0

0,n)T t̂
0

0,n] =

E[(
∑n−1

i=0
Xi)

T (
∑n−1

j=0
Xj)]. It now follows from Proposi-

tion 2 that E[( t̂
0

0,n)T t̂
0

0,n] is O(n), and is Θ(n) if β0 >

2
|α0|
1−γ . Since|α0| = τ2 + τb + τρ, the conditionβ0 > 2

|α0|
1−γ

is equivalent top > 2bτ + τ2 + 2
(τ + ρ/γ)(τ + b)

1 − γ
, which

proves the result.

Proof of Theorem 2: Define a new random variable,
δθ̃k−1,k := θ̃k−1,k − E[θ̃k−1,k]. The sequence{δθ̃k−1,k}

∞
k=0

are then i.i.d. and the marginal density ofδθ̃k−1,k is symmetric
about the origin for eachk. We define the corresponding
rotation matricesR̃

i

j δ := fR(δθ̃i,j). Utilizing the commutative
property of rotations in 2-D, we have the following relation

R̃
i

j =
(

Rj−i
)

R̃
i

j δ (18)

To examine the bias, we first re-write the position estimate
t̂

0

0,n as

t̂
0

0,n =

n
∑

i=0

t̂
0

i,i+1 =

η−1
∑

k=0

(

p
∑

m=1

t̂
0

kp+m−1,kp+m

)

+

q
∑

j=1

t̂
0

ηp+j−1,ηp+j ,

(19)

where the first term is sum is over all time steps up to the
end of the last (η-th) period and the second term for the time
steps after that. For any0 ≤ m < p, we have

t̂
0

kp+m−1,kp+m = R̂
0

kp+m t̂
kp+m

kp+m−1,kp+m

= R0
m R̃

0

kp+m ( tm
m−1,m + t̃

kp+m
kp+m−1,kp+m),

where apart fromR̂ = RR̃, we have used the periodic
nature of the trajectory that leads to R0

kp+m = R0
m and

t
kp+m

kp+m−1,kp+m = tm
m−1,m. Taking expectation and

using (18), we obtain

E[ t̂
0

kp+m−1,kp+m] = R0
m (cR)kp+m−1(cR tm

m−1,m + ρm)

This expression is used to evaluateE[ t0
0,n] by taking expec-

tation of the right hand side of (19). After grouping terms, we
obtain

E[ t0
0,n] =

(

η−1
∑

k=0

(cR)kpω(p)

)

+ (cR)ηpω(q) (20)

Finally, noting that the periodic motions implies

t0
0,n = t0

0,ηp+q = t0
0,q (21)

and utilizing (5) we have

E[e(n)] = t0
0,q −

η−1
∑

k=0

(cR)kpw(p) − (cR)ηpw(q).

By replacing the summation we arrive at (10).
Proof of Theorem 3: Define a new random variable,

δθ̃k−1,k := θ̃k−1,k − E[θ̃k−1,k]. Then {δθ̃k−1,k}
∞
k=0 is an

i.i.d. sequence and the marginal density ofδθ̃k−1,k is sym-
metric about0. We define the corresponding rotation matrices
R̃

i

j δ := fR(δθ̃i,j). Utilizing the commutative property of 2-D

rotation matrices, we havẽR
i

j =
(

Rj−i
)

R̃
i

j δ. It then follows
from (5) that

e(n) = nr− t̂
0

0,n

and from (4), (3), and (2) that

t̂
0

0,n =

n
∑

k=1

(

k
∏

i=1

R R̃
i−1

i δ

)

(

r + t̃
k

k−1,k

)

,

where we have used the fact that R̂
i−1

i = Ri−1

i R̃
i−1

i =

R R̃
i−1

i δ since Ri−1

i = I due to the nature of the trajectory.
We define two new random variables

fn :=
n
∑

k=1

(

k
∏

i=1

R R̃
i−1

i δ

)

r

gn :=

n
∑

k=1

(

k
∏

i=1

R R̃
i−1

i δ

)

t̃
k

k−1,k,

so that

t̂
0

0,n = fn + gn. (22)

By the i.i.d. assumption on the sequence{θ̃k−1,k}k, the

sequence{ R̃
k−1

k δ}k is also i.i.d., so that

E[ R̃
i

j δ] = E[
k
∏

k=i+1

R̃
k−1

k δ] =

j
∏

k=i−1

E[ R̃
k−1

k δ] = cj−iI, (23)

where we have used the fact thatE[sin δθ̃i−1,i] = 0, which
follows from assumption that the distribution ofθ̃ is symmetric
around0. It is then straightforward to show that

E[fn] =
n
∑

k=1

(cR)k r = (I − cR)−1 (I − (cR)n) cRr

E[gn] =

n−1
∑

k=0

(cR)k ρ = (I − cR)
−1

(I − (cR)n)ρ



The expected valuee(n) is now

E[e(n)] = n r− (I − cR)−1 (I − (cR)n) (cRr + ρ) (24)

which proves the first equality in (13).
For the variance, it follows from (22) that

Tr [Cov(e(n), e(n))] = Tr
[

Cov( t̂
0

0,n, t̂
0

0,n)
]

= E[fT
n fn] + E[gT

ngn] + 2 E[fT
n gn]

− E[ t̂
0

0,n]T E[ t̂
0

0,n]. (25)

E[fT
n fn] = rT E







n
∑

i=1





i
∏

j=1

R R̃
j−1

j δ





T
n
∑

k=1

(

k
∏

ℓ=1

R R̃
ℓ−1

ℓ δ

)






r

= rT
[ (

I + cRT + · · · + (cRT )n−1
)

+
(

cR + I + cRT + · · · + (cRT )n−2

)

· · · +
(

(cR)n−1 + · · · + I
)

]

r

where we have used the independence of the sequence
{ R̃

k−1

k δ}k and the fact that R̃
k−1

k δ R̃
k−1 T

k δ = I = RRT . The
expression above simplifies to

E[fT
n fn] = rT

[

nI + 2

n−1
∑

k=1

(n− k) (cR)
k

]

r = rT (I − cR)
−2

×
(

I + 2(n− 2)cR − 2(n− 1) (cR)2 + 2 (cR)n+1
)

r.

To examineE[gT
ngn], we express the product asgT

ngn =
∑n

k=1
Tk where

Tk = t̃
k T

k−1,k

(

R̃
k−1 T

k δ R̃
k−2 T

k−1 δ . . . R̃
0 T

1 δ

)

(Rk)T

×
(

R R̃
0

1 δ t̃
1

0,1 + · · · + Rn R̃
0

1 δ . . . R̃
k−1

k δ t̃
k

k−1,k

)

.

Taking expectation and using the assumptions on the noise
correlations, we get fork > 1,

E[Tk] = Tr
[

P + bbT
]

+ bT ((cR)k−2 + (cR)k−3 + · · · + I

+ I + (cR) + (cR)2 + · · · + (cR)n−1−k)ρ,

and fork = 1, E[Tk] = Tr
[

P + bbT
]

+bT (I+cR+(cR)2+
· · · + (cR)n−1−k)ρ. Repeating this for all theTk ’s we get:

E[gT
n gn] = nTr

[

P + bbT
]

+bT

[

2
n−2
∑

k=0

(n− k − 1) (cR)k

]

ρ

= nTr
[

P + bbT
]

+ bT (I − cR)
−2

×

[2(n− 1)I − 2ncR + 2 (cR)
n
] ρ.

Similar tedious calculations lead to the following

E[fT
n gn] =

[

n−1
∑

k=0

bT (cR)k +

n−2
∑

k=0

(n− k − 1)ρT (cRT )k

]

r

= bT (I − cR)
−2
[

I − cR − (cR)
n

+ (cR)
n+1
]

r

+ rT (I − cR)
−2

[(n− 1)I − ncR + (cR)n] ρ.

Plugging all of this back in (25), we get
Tr [Cov (e(n), e(n))] = ψn + ω(n), where ψ, ω(n) are
given in (12). This proves the second equality in (13).


