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Abstract

We examine how the estimation error grows with time when a mobile robot estimates its location from relative pose
measurements without global position or orientation sensors. We show that in both 2-D or 3-D space, both the bias
and variance of the position estimation error grows at most linearly with time (or distance traversed) asymptotically.
The bias is crucially dependent on the trajectory of the robot. Conclusions on the asymptotic growth rate of the bias
continue to hold even with unbiased measurements or error-free translation measurements. Exact formulas for the bias
and the variance of the position estimation error are provided for two specific 2-D trajectories- straight line and periodic.
Experiments with a P3-DX wheeled robot and Monte-Carlo simulations are provided to verify the theoretical predictions.
A method to reduce the bias is proposed based on the lessons learned.

Keywords: Localization, position estimation, error growth, autonomous vehicle, vision-based estimation, dead
reckoning error

1. Introduction

Localization without GPS is a key capability for au-
tonomous robots, since there are many situations in which
GPS signals are either unavailable or only intermittently
available. These include operation in urban canyons and
tunnels, inside buildings, under water, and extra-planetary
exploration. In such a situation, localization with respect
to an initial position is typically performed using a combi-
nation of sensors that are used to measure relative motion
between two successive time instants, and then chaining
them together. Inertial sensors (gyroscopes and accelerom-
eters), vision-based sensors (cameras, LIDARs, etc) and
joint encoders (in case of ground vehicles) are examples
of sensors that can be used to obtain such measurements.
Apart from robotic platforms, such localization is also of
relevance to human wearable systems [1], personal navi-
gation devices [2], and robot end-effector position estima-
tion [3].

In this paper we examine the growth rate in the position
estimation error of a robot that cannot directly measure
either its global position or its global orientation. Specif-
ically, we analyze the bias and the variance of the error.
The robot is equipped with sensors that allows it to mea-
sure the relative pose (position and orientation) between
its coordinate frames at two successive time instants, but
not sensors that can measure its absolute pose with respect
to a global coordinate frame. That is, the robot may have
sensors such as wheel odometers, IMUs, and cameras, but
does not have sensors such as GPS and compasses. The
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absolute position has to be estimated from the noisy rela-
tive pose measurements.

When relative pose measurements obtained from sen-
sors are concatenated to form an estimate of the robot’s
position in a global frame, errors in individual measure-
ments accumulate. Over long time horizons, the resulting
location estimates may become quite poor. Though this
is well recognized, a rigorous analysis of the asymptotic
growth rate seems to be lacking. Olson et. al. [4] states
that without a global orientation sensor, the error grows
super-linearly with distance, and presents experimental ev-
idence. They also state that position estimation error will
grow as O(s3/2), where s is the distance travelled. A num-
ber of papers have claimed, without proof, that the po-
sition estimation error grows super-linearly with distance
or time in the absence of an absolute orientation sensor
[5, 6, 7, 8, 9, 10]. It is also not clear what is meant by “er-
ror” in these references, whether it is the mean, variance
or some other measure. A parametric statistical model
of the 2-norm of the position estimation error is proposed
in [11], whose parameters have to be fitted from measured
error.

We show in this paper that the asymptotic growth rates
of both the bias the variance of the position estimation er-
ror are upper bounded by linear functions of time. Thus,
even without an absolute orientation sensor, the error
growth (both bias and variance) is at most linear. We
also show that the variance growth rate is lower bounded
by a linear function of time as well, if the variance of the
translation measurement is sufficiently large. Our analysis
also provides insight into the mechanism of error growth,
particularly its bias, that does not seem to have been rec-
ognized so far. In particular, we show that the expected
value of the robot’s position estimate converges to a point
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irrespective of whether the robot stays in a bounded re-
gion for all time or not. An outcome of this fact is that
the growth in the bias depends crucially on the type of
path the robot traverses even though the robot does not
have - and does not use - information about its trajec-
tory. The bias will be bounded or unbounded depending
only on whether the robot stays within a bounded region
or not. In addition, the asymptotic trends for the bias
hold even if the measurements of relative translation and
rotation are unbiased. In fact, they hold even if the rel-
ative translation measurements are completely error-free.
The bias in the translation measurements that arise from
vision-based sensors has been a topic of research [12, 13].
However, the fact that large position estimation bias may
occur even when all measurements are unbiased has not
been emphasized in the literature.

The results mentioned above, which are stated in The-
orem 1 of the paper, are for the general d-D case: the
robot’s pose is an element of SE(d), d ∈ {2, 3}. For
two special trajectories in 2-D, namely straight line and
periodic, we provide exact formulas for the bias and the
variance of the position estimation error. Analysis of the
2-D case is more tractable than the 3-D case since 2-D
rotation matrices commute. From the expressions we ob-
tain, we see that the bias and variance do indeed appear
to grow faster than linearly with time for small time inter-
vals. The linear asymptotic trend is visible only when time
is sufficiently large. These results are verified numerically
through Monte-Carlo simulations. We also provide exper-
imental verification of the periodic case through experi-
ments conducted with a Pioneer P3-DX robot equipped
with a vision-based sensor and a wheel odometer.

By establishing these bounds through rigorous analysis,
we clarify the misconceptions that are prevalent in the lit-
erature on the scaling laws of the error with time. Another
outcome of the analysis carried out here is a method for
reducing the bias in the position estimates. The method is
suggested naturally by the lessons learned during the anal-
ysis. Preliminary results are included in the paper; with
a more thorough investigation of the method planned for
the future.

Other applications of our results lie in collaborative lo-
calization of a group of robots. The collaborative localiza-
tion algorithms reported in [14, 15, 16, 17] fuse the mea-
surement of the change in pose of a robot between two time
instants, which we call inter-time relative measurements,
with the measurement of relative pose between two robots
taken at the second of these two time instants, which we
call inter-robot measurements. Figure 1 provides an illus-
tration of these two types of measurements. The results
of this paper, which are for a single robot, can be used
to determine appropriate weights on the inter-robot and
inter-time measurements in collaborative algorithms. An
inter-time measurement is in fact computed by concatenat-
ing a number of relative pose measurements obtained at
intermediate time instants. Since the autonomous robots
are deployed in obstacle rich environments, the time in-
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Figure 1: Motivating example: robots performing collaborative lo-
calization using inter-robot measurement when GPS is only inter-
mittently available. Inter-time measurements such as z1, z2 are com-
bined with inter-robot measurement z12, along with past estimates
of the robots’ positions. GPS measurements were last obtained by
robot 1 and 2 at time k − n and k − m, respectively. Appropriate
weights have to be assigned on the pose measurements z1, z2, z12

based on their variances before they are combined for cooperative
localization. When an accurate characterization of the robots’ on-
board sensors is not available, a good choice for the variances of the
measurements z1, z2 and z12 is n, m and 1. This choice is suggested
by the results in this paper, in particular, the result that the growth
of variance in self-localization is linear in time. Prior results in the
literature would lead to a choice of n3/2, m3/2 and 1.

terval between two successive inter-robot measurements
is likely to be long. The inter-time measurements there-
fore have much larger error than the inter-robot measure-
ments. As a result, the weights have to be chosen so that
highly noisy measurements are not weighted equally with
less noisy ones. Usually the weights are chosen to be in-
versely proportional to the variances. When the sensor
characteristics are not accurately known, knowledge of er-
ror variance growth over time can be used to determine ap-
propriate weights. For instance, since the variance growth
rate is linear in time, a reasonable estimate of the variance
of a inter-time measurement is equal to the time duration
of that measurement, while that on a inter-robot measure-
ment is one; see Figure 1 for an example. An additional
use of the asymptotic error growth rate for a single robot
is that it serves as a benchmark for collaborative local-
ization algorithms. A collaborative algorithm capable of
reducing the asymptotic trend of the error growth - over
a single robot case - would be of particular interest. An
algorithm that can reduce the error by a constant factor
but not its asymptotic trend, in contrast, is of less interest.
We believe the present study will be useful for this line of
research in the future.

The rest of the paper is organized as follows. Section 1.1
discusses some related work. Section 2 precisely formu-
lates the problem under study, and Section 3 states the
main results. Most of the proofs are in the appendix at
the end of the paper. Simulation verification is presented
in Section 4 and experimental verification is presented in
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Section 5. A method to reduce the bias is position error
is given in section 6. The paper ends with a discussion of
the results in Section 7.

1.1. Related work

The papers by Smith and Cheesman [3], Su and Lee [18],
and Wang and Chirikjian [19] derived recursive expressions
for the covariance of the pose estimation error by assum-
ing the errors are small, so that a first order approximation
of the BCH (Baker-Campbell-Hausdorff) formula is valid.
Recently, Wang and Chirikjian [20] developed a recursive
formula for the covariance of the pose estimation error that
retains the second order terms in the BCH formula. The
paper [21] examines dead recking error’s probability den-
sity function for non-holonomic robots in 2-D. The work
that comes closest to ours in spirit is [11], which proposed
a parametric statistical model of the 2-norm of the position
estimation error. Some of the parameters have to be fit-
ted from measured error. However, the works mentioned
above do not analyze asymptotic behavior of the error’s
mean and variance.

A related body of literature deals with problem of devel-
oping state estimation techniques for systems whose states,
as well as the noisy measurements, are in SO(3) or SE(3)
(see [22, 23] and references therein). The problem of posi-
tion estimation of a mobile robot with noisy relative pose
measurements between successive frames - one that is cen-
tral to this paper - falls into this category. However, our
aim is not to develop an estimation technique, but to ex-
amine the growth of error in the position estimate when
successive noisy relative pose measurements are chained
together to obtain a global pose estimate.

2. Problem statement

We measure time with a discrete index k = 0, 1, . . . .
Sensors used for relative localization of autonomous vehi-
cles yield an estimate of the position and orientation of
the vehicle at time k relative to that in the previous time
instant, k − 1. That is, they produce an estimate of the
relative pose between frames attached to the robot at two
successive time instants. Let Rk

k+1 be the rotation be-
tween the local frames attached to the robot’s body at
time k and k + 1. That is, if uk is a vector expressed in
the vehicle’s frame at time k and uk−1 is the same vec-
tor expressed in the vehicle’s frame at time k − 1, then
uk−1 = Rk−1

k uk. This notation is adopted from [24]. We
will refer to the frame that is attached to the vehicle at
time k as the “frame k”. Similarly, let tk

i,j be the relative
translation from the frame i to the frame j, expressed in
the frame k. The rotation Rk−1

k ∈ SO(d) is usually ex-
pressed as a d × d matrix for d ∈ {2, 3}, while tk

i,j is a

vector in R
d. Without loss of generality, the coordinate

frame that is attached to the robot’s body at the initial
time k = 0 is used as the global coordinate frame. We
denote the rotation from frame k to the global coordinate

frame (frame 0) by R0
k. Similarly, the translation from

frame k − 1 to k expressed in the global coordinate frame
is denoted by t0k−1,k. The position of the robot at any

given time n is the vector t00,n.

With relative pose sensors such as cameras, inertial sen-
sors, and wheel odometers, the measurements available at
time k are estimates of the relative translation from k − 1
to frame k expressed in frame k, i.e., of tk

k−1,k, and the

rotation between the frames k − 1 and k. i.e., of Rk−1

k .
The translation from k − 1 to k, for k ≥ 1, expressed in
the global coordinate frame is

t0k−1,k = R0
k tk

k−1,k, where R0
k = R0

1 R1
2 . . .R

k−1

k .

An example of a robots path along with its correspond-
ing relative pose measurements can be seen in Figure 2.
Estimates are denoted by hats on top of the correspond-

ing symbols, and errors by tildes, so that R̂
k−1

k and t̂
k

k−1,k

are the noisy estimates of Rk−1

k and tk
k−1,k, and the cor-

responding errors R̃
k−1

k and t̃
k
k−1,k are defined as

R̃
k−1

k := (Rk−1

k )−1R̂
k−1

k ,

t̃
k

k−1,k := t̂
k

k−1,k − tk
k−1,k.

(1)

The absolute position of the robot at time k is determined
by adding the relative position measurements, after ex-
pressing them all in the global coordinate frame. The
measurement of the translation from frame k − 1 to k ex-
pressed in the global coordinate frame, which is denoted

by t̂
0

k−1,k, is

t̂
0

k−1,k := R̂
0

k t̂
k

k−1,k, (2)

where R̂
0

k is an estimate of R0
k, which is computed from

the relative rotation estimates as

R̂
0

k =

k
∏

i=1

R̂
i−1

i . (3)

Finally, the estimate of the position at time n in the global
coordinate frame 0 is obtained by adding the relative trans-
lation estimates after transforming them to frame 0:

t̂
0

0,n :=

n
∑

k=1

t̂
0

k−1,k. (4)

The error between the estimated position and the true
position at time n is

e(n) := t00,n − t̂
0

0,n. (5)

The goal of this paper is to study how the mean and co-
variance of the position estimation error e(n) scales with
the time index n. If the robot’s speed is upper and lower
bounded by two constants, then the asymptotic trends
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Figure 2: A figure to explain the notation: a robot’s path (shown
in dashed blue line) in 2-D and associated relative poses between
time instants. t0k−1,k is the translation between the frames k −

1 and k, expressed in the global frame 0, and tkk−1,k is the same

vector expressed in the local frame k. The matrix R
0

k is the rotation

between frame 0 and k, so that R
0

ktkk−1,k is the translation from

k − 1 to k expressed in the global frame 0.

with time are equivalent to those with distance travelled.
Therefore we only study scaling with the time index n.

The straight-forward dead-reckoning formula (4) may
not be used in practice. Typically a filtering-based al-
gorithm is used to fuse relative pose measurements with
the predictions of a model of the robot’s motion. There
are many variations possible in terms of assumed model,
states and input measurements; see [25] for a compari-
son among some of them. This renders examining the
mechanism of error propagation and establishing asymp-
totic growth rates of such algorithms intractable. There-
fore we adopt the simple dead-reckoning model that still
captures the essential features of localization from rela-
tive pose measurements. We wish to emphasize that the
estimation error resulting from the estimation method de-
scribed above will have the same asymptotic trend as that
of a filtering technique that uses a kinematic model of the
robot motion. The reason is that a kinematic model es-
sentially produces an independent noisy measurement of
the relative pose. Thus, our investigations are useful in
analyzing asymptotic performance of a wider class of esti-
mation techniques. One situation where our model is not
appropriate is when vision-based loop-closure is used to
augment localization [26]. We focus on situations where
loop closure is not applicable, e.g., an unmanned aerial
vehicle flying in an expansive environment so that it may
not come back to its earlier positions.

To state the assumptions on measurement error statis-
tics, we establish a few conventions. A rotation matrix
R ∈ SO(3), where the special orthogonal group SO(3) is
the set of 3×3 real orthogonal matrices with unit determi-
nant, can be represented by the exponential map: R = eωs

,
where ωs is the 3 × 3 skew-symmetric matrix correspond-
ing to the vector ω ∈ R

3 [27, Chapter 2]. A matrix in
SO(2) is uniquely specified by an angle θ ∈ [−π, π). A
random rotation matrix R ∈ SO(3) (resp. SO(2)) can

therefore be specified by a random vector ω ∈ R
3 (resp. a

scalar r.v. θ). We say that two random rotation matrices
R1,R2 ∈ SO(3) are independent if their corresponding ω1

and ω2 are independent random vectors. For SO(2), in-
dependence of rotations is defined as the independence of
the scalar random variables θ1, θ2 that uniquely determine
them. If R1 and R2 are independent, every entry of the
matrix R1 is independent of every entry of R2. Similarly,
we say that a rotation R1 ∈ SO(3) (resp., SO(2)) and a
random vector t ∈ R

3 (resp. R
2) are independent if ω1

(resp., θ) and t are independent. In this case, too, every
entry of t is independent of every entry of R.

In this paper, we use E[R] (for a random rotation matrix
R) to denote the matrix whose i, j-th entry is E[(R)i,j ],
i.e., the expected value of the i, j-th entry of R. As a
result of this convention, if R1 ∈ SO(d) is independent of
R2 ∈ SO(d) and of t ∈ R

3, then E[R1R2] = E[R1] E[R2]
and E[R1t] = E[R1] E[t].

In the sequel, Tr [ · ] stands for trace of a matrix, and
‖ · ‖q denotes the (induced) q-norm of a (matrix) vector.
When the subscript is omitted, it denotes the (induced)
2-norm.

We state the following assumptions for use in the rest
of the paper.

Assumption 1. 1. The robot’s speed is uniformly
bounded. More specifically, there exists a constant
τ > 0 such that ‖tk

k−1,k‖ ≤ τ .

2. The translation measurement errors t̃
k

k−1,k form
a sequence of independent random vectors, with

mean bk := E[t̃
k
k−1,k] and covariance Pk :=

Cov(t̃
k
k−1,k, t̃

k
k−1,k) that are uniformly bounded. That

is, there exist scalar constants b, p, p such that 0 ≤
‖bk‖ ≤ b and 0 ≤ p ≤ Tr [Pk] ≤ p <∞ for all k.

3. The rotation measurement errors R̃
k

k+1 form a se-
quence of independent random matrices. The rotation

and translation measurement errors R̃
j−1

j and t̃
k

k−1,k

are mutually independent if j 6= k, and possibly depen-

dent when j = k, with E[R̃
k−1

k t̃
k
k−1,k] =: ρk ∈ R

d.
There exists a scalar ρ such that ‖ρk‖ ≤ ρ for all k.

4. The relative translation measurement errors
{t̃

k
k−1,k}

∞
k=1 are uniformly absolutely integrable,

i.e., there exists a scalar β so that βk ≤ β < ∞ for

all k where βk := E ‖t̃
k

k−1,k‖.

5. The rotation measurement errors R̃
k

k+1 are identically

distributed, so that each R̃
k

k+1 has the same distribu-

tion as that of some matrix R̃ ∈ SO(d), d ∈ {2, 3}.
Moreover, R̃ is not degenerate, i.e., its pdf (probabil-
ity distribution function) is not concentrated on a set
of measure zero.

Apart from the assumptions on independence of mea-
surement errors, the other assumptions, namely those on
the existence of the parameters τ, b, p, p, ρ, β, are trivially

4



satisfied in any practical scenario. Finiteness of the dis-
placement τ and bias norm b are easy to see; the parame-
ters p and p are simply the lower and upper bounds on the
eigenvalues of Pk. The d-dimensional vector ρk is a mea-
sure of the correlation between the translation and rotation
measurements, and the parameter ρ is an upper bound on
the magnitude of the correlation. We allow the relative
translation and rotation measurement errors at a particu-
lar time instant to statistically dependent, since this may
happen if there is overlap between the sensor suite used
to obtain these two measurements. The parameter β is
akin to an upper bound on the sum of bias and variance of
the translation measurement error. To see this, consider

not E[‖t̃
k

k−1,k‖], but E[‖t̃
k

k−1,k‖
2], which is the trace of the

second moment of translation measurement error t̃
k
k−1,k.

Since the second moment is the sum of covariance and first
moment, an upper bound on E[‖t̃

k
k−1,k‖

2] is also an upper
bound on sum of mean and variance (more precisely, on
‖bk‖

2 + Tr [Pk]) of the translation measurement error.

The following technical result is crucial for the main re-
sults of this paper and will be required for the subsequent
discussions. We therefore state it here; the proof is pro-
vided in the Appendix.

Proposition 1. Let R be a random rotation matrix with
distribution defined over SO(d), d ≥ 2 and let E[R] be the
d×d matrix whose i, j-th entry is the expected value of the
i,-th entry of R. We have ‖E[R]‖ ≤ 1, and the inequality
is strict if the distribution of R is not degenerate1. �

Due to its usefulness in later discussions, we define

R := E[R̃]. (6)

Recall that R̃ is a rotation matrix that has the same dis-

tribution as all the rotation errors R̃
k

k+1, k = 1, . . . . It
follows from Proposition 1 that under Assumption 1,

1 > γ := ‖R‖. (7)

According to the convention used in this paper, in gen-
eral E[R] /∈ SO(d) even if R ∈ SO(d). It is important that
the notation E[R] is not to be understood as the expecta-
tion of the random variable R with a distribution defined
over SO(d), which we denote by µR, so that µR ∈ SO(d).
We call µR the “Lie-group mean” of R. We call an esti-

mate R̂ of a true rotation R unbiased if µ
R̂

= R. A result

of the adopted convention is that for an unbiased estima-
tor R̂ of R, in general E[R̂] 6= R. The reason the quantity
E[R] is more useful for this paper than µR is that when R

and t are independent, E[Rt] = E[R] E[t] but in general
E[Rt] 6= µR E[t]. The bias in translation measurements
obtained from vision-based sensors has been the subject
of research [13, 12]. The bias in rotation measurement,

1Recall that we say the distribution of R is degenerate if its pdf
is 0 everywhere except possibly in a set of measure 0.

on the other hand, seem to have drawn limited attention.
In [12], the error in 3-D rotation is described in terms of
the corresponding Euler angles, and bias in rotation is also
defined in terms of the bias in the Euler angles. An alter-
nate definition of 3-D rotation error in terms of a 3-vector
(involving angle and axis of rotation) is used in [28], but
the question of its bias is not discussed.

3. Main results

3.1. General trajectories

Before stating the result, we recall the asymptotic
O,Ω,Θ notation. For two scalar-valued functions
f(n), g(n) taking non-negative integer arguments, the no-
tation f(n) = O(g(n)) means there exists a positive inte-
ger n1 and a positive constant c1 so that f(n) ≤ c1g(n)
for all n ≥ n1. The notation f(n) = Ω(g(n)) means
there exists a positive integer n2 and a positive constant
c2 so that f(n) ≥ c2g(n) for all n ≥ n2. The nota-
tion f(n) = Θ(g(n)) means both f(n) = Ω(g(n)) and
f(n) = O(g(n)) hold.

Theorem 1. Consider a robot moving in a 2-D or 3-D
Euclidean space that performs position estimation from rel-
ative pose measurements as described in Section 2. Un-
der Assumption 1, the following statements hold, where
τ, β, b, ρ, p, p are parameters defined in Assumption 1 and
γ is defined in (7).

1. The bias in the position estimation error satisfies
‖E[e(n)]‖ = O(n). In particular,

max

{

0, ‖t00,n‖ −
1 − γn

1 − γ
(γτ + β)

}

≤ ‖E[e(n)]‖ ≤ ‖t00,n‖ +
1 − γn

1 − γ
(γτ + β) . (8)

2. The position error covariance satisfies
Tr [Cov(e(n), e(n))] = O(n), with upper bound
given by

Tr [Cov(e(n), e(n))] ≤ α0

(

1 + γ

1 − γ
n

)

, (9)

where

α0 = max

{

(τ2 + 2τb+ p+ b2), (τ +
β

γ
)(τ + b)

}

.

(10)

If furthermore

p ≥ 2bτ + τ2 + 2
(τ + ρ/γ)(τ + b)

1 − γ
, (11)

then

Tr [Cov(e(n), e(n))] = Θ(n). �
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Before discussing the implications of the theorem, we
present a result in the form of a lemma that is useful in
that discussion, as well as in the proof of the theorem. The
proof of the lemma is provided in the Appendix.

Lemma 1. Under Assumptions 1, the first and second
moment of the position estimate satisfies

‖E[t̂
0

0,n]‖ ≤
1 − γn

1 − γ
(γτ + β), E[‖t̂

0

0,n‖
2] ≤ α0

1 + γ

1 − γ
n,

where α0 is defined in (10). Moreover, if condition (11) is

satisfied, then we have E[‖t̂
0

0,n‖
2] = Θ(n). �

3.2. Discussion on Theorem 1 and its proof

Theorem 1, and in particular the upper bound in (8),
shows that if the robot’s motion is confined to a bounded
region, then the bias in the position estimation error stays
uniformly bounded by a constant: ‖E[e(n)]‖ = O(1). If
the robot moves with a constant speed and with a constant
(absolute) orientation, then its position grows linearly with
time. In this case the theorem tells us that the bias grows
linearly with time: ‖E[e(n)]‖ = Θ(n), since now both
the upper and lower bounds are asymptotically linear in
time. This implies that the asymptotic trend of the bias
is crucially dependent on the robot’s displacement.

This dependency of the bias on the robot’s trajectory
comes from the fact that that the estimated position is
always bounded in mean, even if the robot is moving out
to infinity, which follows from Lemma 1. To obtain an
intuitive understanding of Lemma 1, we first note that the
estimated position is simply the sum of the translations
after transforming them to the common global coordinate
frame 0; see (4). Taking expectation on both sides of (4),
we obtain

E[t̂
0

0,n] = E[t̂
0

0,1] + E[t̂
0

1,2] + · · · + E[t̂
0

n−1,n]. (12)

The kth term in the sum above, assuming rotation and
translation measurements are independent, is

E[t̂
0

k−1,k]=E

[(

k−1
∏

0

R̂
i

i+1

)

t̂
k

k−1,k

]

=

(

k−1
∏

0

E[R̂
i

i+1]

)

E[t̂
k

k−1,k]

=

(

k−1
∏

0

(

Ri
i+1R

)

)

E[t̂
k

k−1,k].

The magnitude of this term is of order γk, since it involves
k products of R, each of which has a norm equal to γ.
Since γ < 1 (see (7)), the sum (12) is bounded for all n.
The expected value of the position estimate therefore con-
verges to a point. Notice that the bounds (8) on the bias
does not depend on the error in the translation measure-
ments. The conclusions drawn above remain the same even
if the rotation and translation measurements are unbiased,
i.e., µR̃ = I, bk = 0, and in fact, even if the translation

measurements are completely error free, t̃
k
k−1,k = 0.

The discussion above can be summarised into the fol-
lowing conclusions about the bias:

(i) For large time index n, the main contributions to the
bias in the position estimate are the displacement
of the robot and the errors in the relative rotation
measurements.

(ii) The asymptotic scaling of the bias does not change
even when the translation and rotation measure-
ments are unbiased, and in fact even if translation
measurements are completely error-free.

The first conclusion is well known, and is hardly surprising.
However, conclusion (ii) does not seem to be recognized in
the literature.

The variance growth rate does not seem to be sensi-
tive to the trajectory of the robot. Furthermore, unlike
the bias, the variance can grow without bound when the
robot’s trajectory is confined to a bounded region. We’ll
see evidence of this later in simulations and experiments
reported in Sections 4 and 5. We believe that the suffi-
cient condition (11) is conservative, and is an artifact of
our proof technique. The condition (11) is usually not
satisfied in practice since it requires a very large transla-
tion measurement error. Yet the position estimation error
variance seems to be Θ(n) in simulations and experiments
reported in Section 5.2.

The results of the theorem are in contrast to the preva-
lent belief in the literature that the error growth is su-
perlinear in time if absolute orientation measurements are
not available [4, 5, 6, 7, 8, 9, 10]. The theorem shows
that even without absolute orientation sensors, localiza-
tion error - or more precisely its bias and variance - grows
at most linearly with time. We believe that the belief
about superlinear growth came about from the fact that
experiments/simulations were not conducted long enough
to draw reasonable conclusion about asymptotic trends.
Through the root cause is the geometric decay due to γ,
since γ is usually quite close to 1, there is an initial period
where the error grows sharply until the geometric decay
kicks in and the linear trend becomes obvious. More in-
sight into this phenomenon will be obtained later in Sec-
tion 3.3 that discusses 2D trajectories (see in particular
Theorem 2).

The proof of Theorem 1, presented next, follows from
Lemma 1 in a straightforward manner.

Proof of Theorem 1. It follows from (5), by applying the
triangle inequality that

‖E[e(n)]‖ ≤ ‖t00,n‖ + ‖E[t̂
0

0,n]‖ (13)

‖E[e(n)]‖ ≥ max
{

0, ‖t00,n‖ − ‖E[t̂
0

0,n]‖
}

(14)

From Lemma 1, we have that ‖E[t̂
0

0,n]‖ is upper bounded
and so the first statement follows immediately from (13)
and (14).
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To prove the second statement, note that

Tr [Cov(e(n), e(n))] = Tr
[

Cov(t̂
0

0,n, t̂
0

0,n)
]

= Tr
[

E[t̂
0

0,n(t̂
0

0,n)T ] − E[t̂
0

0,n] E[t̂
0

0,n]T
]

= E[(t̂
0

0,n)T t̂
0

0,n] − ‖E[t̂
0

0,n]‖2

≤ E[(t̂
0

0,n)T t̂
0

0,n].

Since ‖E[t̂
0

0,n]‖ = O(1), the second statement follows from
Lemma 1.

3.3. Special 2-D trajectories

In this section we provide non-asymptotic results on the
error growth for the special case when the motion of the
robot is confined to a 2D plane and its trajectory is limited

a certain type(s). In the 2-D scenario t̂
i

j,k, t
i
j,k ∈ R

2 and

Ri
j , R̂

i

j ∈ SO(2) for every i, j, k. The x and y axes of a
Cartesian coordinate frame that lies on this plane and is
attached to the robot’s body at the initial time k = 0 is
used as the global coordinate frame. In the 2-D scenario,
the robot’s orientation at time n can be uniquely described
by an angle θ0,n ∈ [−π, π), which describes rotation of
its local frame about the z-axis of the global frame. The
relative rotation between the frames k−1 and k is uniquely
determined by the angle by which the frame k−1 has to be
rotated in the counter clockwise direction to reach frame
k, which we denote by θk−1,k. Figure 2 shows an example.
A noisy measurement of the relative rotation, denoted by
θ̂k−1,k, is assumed available at time k. The error in the
relative rotation measurement is

θ̃k−1,k := θ̂k−1,k − θk−1,k. (16)

For future use, we define fR : [−π, π) → SO(2) as

fR(α) :=

(

cosα − sinα
sinα cosα

)

.

The matrix Rk−1

k that describes the relative rotation be-

tween the frames k−1 and k is therefore given by Rk−1

k =
fR(θk−1,k). It can be shown from the definition (1) that

R̃
k−1

k = fR(θ̃k−1,k). (17)

The estimate of the rotation Rk−1

k therefore is R̂
k−1

k =

fR(θ̂k−1,k).

The first result, which is stated below, is on the position
estimation error growth rate when the robot moves in a
straight line with constant velocity and orientation. The
proof of the theorem is in the Appendix.

Theorem 2. Consider a robot that moves on a 2-D plane
in a straight line with a constant orientation. Formally,
for all k, θk−1,k = 0 and tk

k−1,k = r ∈ R
2, for some vector

r. In addition to Assumption 1, assume that the relative

orientation error θ̃ has a pdf that is symmetric around its

mean E[θ̃], the translation measurement errors t̃
k
k−1,k, k =

1, . . . are wide sense stationary with bk = b, Pk = P, and
ρk = ρ for all k. In that case, we have

E[e(n)] = n r− (I − cR)
−1

(I − (cR)n) (cRr + ρ) ,

Tr [Cov(e(n), e(n))] = ψn+ ω(n),
(18)

where

c := E[cos
(

θ̃ − E[θ̃]
)

], R := fR(E[θ̃]), (19)

and the scalars ψ, ω(n) are given in (15). �

Since the r.v. θ̃ is not degenerate by Assumption 1, we
have that |c| < 1. The spectral radius of cR is strictly
lower than unity since |c| < 1 and R ∈ SO(2). Hence
I − cR is invertible and ψ, ω(n) in (15) are well defined.

An immediate corollary of Theorem 2 is that for straight
line motion, both the bias and the variance of the position
estimation error grow asymptotically linearly with time.
This follows from the expressions for the bias and the vari-
ance upon using the fact that c < 1. However, due to
the presence of the cn terms, the growth looks superlinear
for intermediate values of the time index n. Simulations
described in Section 4.2 verify this statement; see in par-
ticular Figure 5 and 6. The linear trend becomes visible
only when large values of the time index n are considered.
This may be one of the reasons that the error is believed
to grow super-linearly with time in the literature.

The next case is a periodic trajectory in 2-D. We say
the robot moves in a periodic trajectory with period p if the
absolute orientation and position of the robot satisfies the
following conditions: θ0,k = θ0,k+p and t00,k = t00,k+p for all
k. The shape of the (closed) path along which the robot
moves can be arbitrary. In the statement of the theorem,
η denotes the number of periods up to time n, and q to
denote the residual, i.e., η(n) := ⌊n/p⌋ and q := n− ηp.

Theorem 3. Consider a robot moving in R
2 whose tra-

jectory is periodic with period p. In addition to Assump-
tion 1.1-Assumption 1.4, assume that the first and second
moments of the measurement errors are periodic with pe-
riod p (so that bk = bk+p, ρk = ρk+p and Pk = Pk+p).
In that case,

E[e(n)] = t00,q − (I − (cR)p)
−1

× (I − (cR)ηp)w(p) − (cR)ηpw(q), (20)

where w(j) is given by

w(j) :=

j−1
∑

i=0

(cR)
i
R0

i+1

(

cR ti+1
i,i+1 + ρi

)

,

where c,R are as defined in Theorem 2.
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ψ = 2crT (I − cR)
−1

Rr + Tr
[

P + bbT
]

+ (2bT + rT )(I − cR)−1ρ (15)

ω(n) = rT (I − cR)−2
(

I − 4cR + 2(cR)2 + 2(cR)n+1
)

r− 2bT (I − cR)−2 (I − (cR)n)ρ

+ bT (I − cR)−1 [I − (cR)n] r − rT (I − cR)−2 [I − (cR)n] ρ − ‖
[

(I − cR)−1(I − (cR)n)(cRr + ρ)
]

‖2
2

The proof of the theorem is provided in the Appendix.
The assumption of the moments ρk etc. being periodic
with period p is motivated by the use of vision-based sen-
sors to measure relative poses. In that case the measure-
ment error statistics may depend on the scene the camera
sees, which will repeat itself every p instants due to the
periodic nature of the robot’s motion. Note that i.i.d. er-
rors are a special case of errors with periodic statistics, so
the result also holds if all the measurement errors are i.i.d.

It can be shown in a straightforward manner from (20)
that the bias is O(1), by using the fact that |c| < 1. This
is consistent with Theorem 1 since the robot stays in a
bounded region for all time when following a periodic tra-
jectory.

4. Simulation verification

In this section we empirically estimate the mean and
covariance of the estimation error by conducting Monte-
Carlo simulations and compare them with the theoretical
predictions. In section 4.1 we simulate a robot moving
along a randomly generated 3-D path and compare the
results with the upper and lower bounds predicted in The-
orem 1. In sections 4.2 and 4.3 we present simulations for
the 2-D scenario with straight line and periodic trajectories
so that empirical results can be compared with predictions
of Theorem 2 and 3. Here the robot is simulated moving
along either the straight line or periodic trajectory at a
speed of 0.32 m/s for about 5.5 hours, traveling a distance
of 6400 meters. In all three simulations, measurements of
the robot’s relative pose were taken every 0.2 seconds. All
simulations are conducted in MATLAB c©. To the extent
possible, the parameters used in the simulations are the
same as those in the experiments.

4.1. 3-D Simulation

For the 3-D case we simulate a robot moving along a
path that is shown in Figure 3. The robot traverses this
path from the starting point to the left and moving to
the right. Measurement errors are generated as follows.

The error in rotation (R̃
k−1

k ) is introduced by applying a
random unit-quaternion at each time step drawn indepen-
dently from a Von Mises-Fisher distribution with concen-
tration parameter k = 10000. The reader is referred to [29]
for details on Von Mises-Fisher distribution. The errors in
relative translation at each time step (t̃

k

k−1,k) are drawn
from a zero-mean normal random variable with covariance

matrix (2.5×10−5) I3×3. The corresponding constants nec-
essary to compute the upper bounds in Theorem 1 are ob-
tained from randomly generated measurements to simulate
a sensor characterization test and found to be γ = 0.9997,
τ = 0.1295 m, b = 0 m, β = 0.008 m, p = 7.45 × 10−5 m2,

and p = 7.55 × 10−5 m2

Figure 4 compares the empirically estimated bias and
variance with the upper bounds given by Theorem 1. The
empirical estimates are obtained from 4500 Monte Carlo
simulations. As predicted by the theorem, the bias in the
position estimate grows without bound since the robot’s
position is growing (in norm) without bound. We see that
the bounds predicted by the theorem are of the same order
of magnitude as values obtained empirically. However, the
bounds for the variance are rather loose.

4.2. Straight-line 2-D trajectory

For the straight line case, we simulate a robot moving
in a straight line on a plane with a constant velocity of
[0.2263, 0.2263]T m/s and constant orientation. Two types
of simulations are conducted.

In the first type, which we call simulated data, noisy
measurements of the rotation, i.e., θ̂k−1,k are generated
as a Laplace distributed random variable using a pseudo-
random number generator. The reason for choosing a
Laplace distribution, over, say a Gaussian, is the following.
We obtained a large sample of 2D orientation estimates
from images taken with a machine-vision camera and per-
formed hypothesis testing for three distributions: Lapla-
cian, Gaussian and Fisher Von-Mises. Only the Laplace
distribution passed the test. We refrain from giving de-
tails of the hypothesis testing here; they can be obtained
from the authors upon request. Noisy measurements of the

translations, i.e., t̂
k

k−1,k were generated from noisy mea-

surements of translation direction, which we call ζk
k−1,k,

and translation magnitude, which we call dk ∈ R
+, as

t̂
k

k−1,k = d̂k ζ̂
k

k−1,k, where d̂k and ζ̂
k

k−1,k are noisy esti-

mates of dk and ζk
k−1,k, respectively. Note that ζk

k−1,k is
a 2-vector with unit norm. This is done to simulate rela-
tive pose measurement with IMU/wheel odometry and a
monocular camera without scale information. The camera
provides relative translation direction but not the mag-
nitude of translation, which is measured by IMUs/wheel
encoders.

In the second type of simulations, which we call by sim-
ulated camera, the vision-based relative pose estimation
sensor is simulated in a more realistic fashion by gener-
ating synthetic image data, from which relative rotation
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Figure 3: The 3-D path used for the simulation in section 4.1. The
red dot indicates the robots initial location, while the red circle in-
dicates the robots final location.
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Figure 4: 3-D scenario: Comparison of Theorem 1’s predictions
(“Upper Bound” and “Lower Bound”) of bounds on the bias and vari-
ance in position estimation error with those estimated from Monte-
Carlo simulations (“Empirical”).

and direction of translation are estimated. The magni-
tude of translation measurements are generated as in the
“simulated data” case.

Simulated data: At each time step k, a measurement
of the relative orientation is constructed numerically as
θ̂k−1,k = 0 + θ̃k−1,k, where the orientation error θ̃k−1,k

is chosen to be a 0-mean Laplace distributed r.v. Recall
that a Laplace distribution with µ mean and variance 2λ2

has the pdf f(θ̃) =
1

2λ
e−|θ̃−µ|/λ. The value of λ chosen

is 3.6 × 10−3, which best fits the orientation measure-
ment error statistics generated by the synthetic monocular
camera-based relative pose sensor that is used in the ex-
periments described in the sequel. The noisy measurement

of translation direction ζ̂
k

k−1,k generated as

ζ̂
k

k−1,k =

(

cos φ̃k−1,k − sin φ̃k−1,k

sin φ̃k−1,k cos φ̃k−1,k

)

ζk
k−1,k

where φ̃k−1,k is a zero-mean Laplace random variable with

variance 3.07 × 10−2 rad2 , and ζ
k
k−1,k = 1√

2
[1, 1]T is the

true translation direction. The magnitude of the transla-
tion is dk = 6.4 × 10−2 m and its noisy measurement is
generated as d̂k = dk + d̃k, where d̃k is a zero-mean Gaus-
sian random variable with mean 0 variance 8.5467× 10−5

m2. These numbers are chosen to be consistent with those
seen in an experiment with a wheeled robot described later
in Section 5. The parameters b, c,P,ρ that are needed to
compute the predictions by Theorem 2, are estimated by a
simulated sensor characterization test, i.e., by appropriate
averaging of randomly generated data. They turn out to
be b = [−0.6842,−0.6842]× 10−3 m, c = 1−1.2873×10−5,
Tr [P] = 1.2479× 10−4 m2, and ρ = cb.

The mean and covariance of the position estimation er-
ror at every time instant are empirically estimated by av-
eraging over 76,600 Monte-Carlo simulations. Figure 5
presents the estimated mean and covariances, and the val-
ues predicted by Theorem 2. We see from the figure that
the prediction from Theorem 2 matches estimates from
Monte-Carlo simulations quite closely even for the large
time intervals used in the simulations.

Simulated camera: We now simulate the scenario in
which relative pose measurements are obtained by a cal-
ibrated monocular Prosilica EC 1020 camera and wheel
odometers found on a Pioneer P3-DX. To simulate an es-
timate of the camera ego-motion between consecutive time
steps, suppose between k and k+ 1, a set of 50 3-D points
are randomly generated in the volume visible to the cam-
era at time step k, with their coordinates represented in
the coordinate frame attached to the camera at time step
k. The points are then acted on by the true transformation
from k to k + 1 to find the corresponding coordinates in
the coordinate frame attached to the camera at time step
k+1, discarding any points falling outside the volume vis-
ible to the camera at that time step. Using a calibration
matrix corresponding to the Prosilica EC 1020 camera,
the points are projected into their corresponding image
plane. This forms a set of correspondences analogous to
the feature points extracted from actual image pairs. Each
feature point is now corrupted by uniform noise with sup-
port lying in a 2 × 2 pixel square about the point. A
RANSAC [30] assisted normalized 8-point algorithm [31]
is used to estimate the rotation R̂ and translation direction
ζ̂ between the two time steps from these point correspon-
dences. The axis of rotation was then aligned with the nor-
mal to the plane of motion and the component of the trans-
lation vector in that direction was dropped to insure the
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Figure 5: 2-D scenario, straight line trajectory: Comparison of The-
orem 2’s predictions (“Theoretical” ) of bias and variance in position
estimation error with those obtained from Monte-Carlo simulations
(“Empirical”), for the “simulated data” case.

motion estimates remained in the plane. The magnitude
of translation d̂ is generated as in the Simulated Data

case. The values of the parameters that are needed to
compute the predictions by Theorem 2 are estimated from
a simulated sensor characterization test like before. The
values are found to be b = [−0.5767,−0.5904]× 10−5 m,
Tr [P] = 1.6382× 10−4 m2, and c = 1 − 2.1462× 10−5.

Figure 6 compares the predictions of bias and variance
by Theorem 2 to those estimated from 1000 Monte-Carlo
simulations. The number of Monte-Carlo simulations is
smaller in the synthetic data case due to the prohibitively
high cost of conducting these simulations. We see from
Figure 6 that Theorem 2 accurately predicts the position
estimation error computed from synthetic image data. The
prediction toward the end of the simulation time is not as
accurate as in the simulated data case, which is due to the
smaller number of Monte-Carlo trials.

4.3. Periodic trajectory

We now simulate a robot moving on a circle with cir-
cumference of 4.11 m so that its trajectory is periodic with
period p = 3020. The speed of the robot is approximately
0.32 m/s, so that it traverses the circle about 47 times
before completing one period. The trajectory is chosen
to be close to that encountered in an experiments with
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Figure 6: 2-D scenario, straight line trajectory: Comparison of The-
orem 2’s predictions (“Theoretical” ) of bias and variance in position
estimation error with those obtained from Monte-Carlo simulations
(“Synthetic”), for the “simulated camera” case.

a Pioneer P3-DX robot, which will be described in Sec-
tion 5. Noisy relative pose measurements are generated as
in the Simulated Data case in straight line motion. Ori-
entation measurement errors are Laplace distributed (with
mean E[θ̃] = 6.8 × 10−5 m and parameter λ = 3.6×10−3 )
while translation measurement errors are generated in the
same manner, and with the same distributions as in the
Simulated Data case in straight line motion; with the
new true values given by ζ

k
k−1,k = − [0.049, 0.999]

T
and

dk = 0.064 m.
Figure 7 shows the empirical estimates of bias and

variance from 29, 970 Monte-Carlo simulations. It also
presents the bias predicted from Theorem 3. We see from
Figure 7(a) that the bias is quite accurately predicted by
Theorem 3. The high frequency oscillation corresponds to
the time it takes for the robot to traverse the circle once.
The lower frequency oscillation corresponds to the period
of the trajectory. The variance seems to grow linearly with
time, as one can see from Figure 7(b), but a formula is not
available in the periodic case for comparison.

5. Experimental verification

In this section we report results of experiments con-
ducted with a wheeled Pioneer P3-DX robot that is
equipped with a calibrated monocular Prosilica EC 1020
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Figure 7: 2-D scenario, periodic motion: Comparison of Theorem 3’s
predictions with estimates from Monte-Carlo simulations (“Empir-
ical”). The legend “Theoretical” in (a) refers to the prediction
from (20) in Theorem 3.

camera and wheel odometers. The images captured by the
camera are used to estimate the relative rotation and di-
rection of translation. The distance travelled estimated by
the wheel odometers is fused with the direction of transla-
tion estimated from the camera to estimate the translation
vector. The relative pose of the camera is measured every
0.2 seconds. An overhead camera is used to measure the
true 2-D pose of the robot. Due to space constraints of the
indoor test set-up, the trajectory of the robot was chosen
to be an approximately circular one with radius 0.65 m and
one rotation taking approximately 13 seconds (see Figure
8). Although the robot’s trajectory is not truly periodic;
it is approximately periodic with period p = 3020 (i.e., 604
seconds).

5.1. Test set-up

Figure 9(b) shows a schematic of the experimental set-
up. The global coordinate frame is defined to coincide
with the coordinate frame attached to an overhead cam-
era viewing the plane of motion. That is, the origin of the
global coordinate axes corresponds to the camera’s focal
point. The overhead camera is used to obtain the true
pose of the robot. The robot’s local coordinate frame was
defined by a cube affixed to the top of the box. A grid con-
sisting of six dots was placed atop the cube with a known

(a)

k1

k2
k3

k4
k5
k6

(b)

Figure 8: (a)The robot used in the experiments, and (b) a few snap-
shots from the overhead camera showing the trajectory.

geometry (see Figure 9(a)), which allows reconstruction
of the full 3-D pose of the robot from the single monoc-
ular camera. Although some error between the true pose
of the robot and that estimated from the overhead camera
is inevitable, this error did not have any cumulative effect
over time. Therefore the pose estimated from the overhead
camera is taken as the ground truth.

A KLT tracker [32] was used to track feature points
across pairs of images, and a RANSAC-assisted normal-
ized 8-point algorithm was used to estimate the relative
rotation and direction of translation between every succes-
sive pairs of images. All estimation was performed off-line.
Even with RANSAC, outliers in point-correspondences can
cause large errors in the relative pose estimates. An ad-hoc
“filter” was implemented to reduce the effect of such errors
as follows. If the estimated relative pose from the cam-
era was deemed infeasible (which was determined by the
known motion of the robot), the relative rotation and rel-
ative translation direction estimated in the previous time
step was used as the estimate for the current time step.
The relative translation between two time instants was
estimated from the relative translation direction and the
estimate of its magnitude, the latter being obtained from
a wheel odometer. The relative poses so obtained were
chained together to obtain an estimate of the global po-
sition and orientation of the robot at every time step, as
described in Section 2.

5.2. Test results

The position estimation error at each time step is com-
puted by comparing the ground truth with the robot’s
position estimated from relative pose measurements. The
bias and variance in the position estimation error at any
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Figure 9: Schematic of the test set-up.
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Figure 10: Experimental results: bias and variance of position esti-
mation error for a P3-DX robot (5000 time steps = 16.67 minutes).

given time step are determined by averaging over 17 ex-
periments, where each experiment consists of the robot
moving on its path for 1000 seconds (5000 time steps).
The experimentally obtained bias and variance of position
estimation error are shown in Figures 10(a) and 10(b).

We see from the figures that the experimentally obtained
results - especially the bias – closely resemble those seen
in simulations (cf. Figure 7(a),7(b)), which in turn are ac-

curately predicted from the analysis. The experimentally
obtained bias stays bounded, as Theorem 3 predicts. The
variance also shows an on-average linear growth with time,
which is consistent with Theorem 1. The experiment pro-
vides additional confidence in our theoretical results. In
addition, we note that while the theoretical predictions are
for a dead-reckoning type position estimation algorithm,
the algorithm used in the experiments was more akin to
a kinematic-model based filter. Still the theoretical pre-
dictions match the experimental results rather well. This
is expected since - as argued earlier - the analysis is ap-
plicable to broader class of estimation algorithms; see the
discussion in Section 2 after Eq. (5).

There are nevertheless some discrepancies between the
experimentally obtained bias and variance values and
those obtained from simulations, as can be seen compar-
ing Figure 7(a) with Figure 10(a) and Figure 7(b) with
Figure 10(b). These are due to the differences between
the experiments and simulations. First, the experimental
bias and variances values are computed by averaging over
only 17 experiments, whereas the simulation estimates are
computed from at least 1000 Monte-Carlo simulations, in
some cases many more. The reason for this smaller num-
ber of experimental trials is the difficulty and time needed
in performing these experiments. The smaller number of
trials that were averaged over produced less accurate es-
timates. Second, the characteristics of the camera error
could not be modeled in any of our simulations. Third, it
is not possible to ensure a truly periodic trajectory in a
real experiment. The “high-frequency” oscillations in the
experimental bias and variance plots are at 7.8× 10−2 Hz,
which correspond to the average time the robot takes to
traverse the circle once. These are seen in the simulations
as well; see in particular the inset in Figure 7(a). How-
ever, these oscillations are not particularly visible in the
variance, one has to magnify the curve in Figure 7(b) con-
siderably to see them. We believe the noticeable difference
in case of the variance comes from the very small number
of runs that we averaged over.

6. Reducing the bias

We now discuss a possible way to reduce the bias in the
position estimate by using the lessons learned from the
analysis that led to Theorem 1. First of all we note that

computing E[t̂
0

k−1,k] requires knowledge of true relative ro-
tations and translations, and therefore the bias cannot be
eliminated by simply computing it and subtracting it from

the estimated translation t̂
0

k−1,k at every k. Instead the
proposed method consist of modifying the raw measure-

ments R̂
k−1

k , t̂
k

k−1,k into the so-called modified measure-

ments (R̂
k−1

k )modif , (t̂
k

k−1,k)modif , that are defined below,
and then using them in the position estimation.

(R̂
k−1

k )modif := R̂
k−1

k (R)−1 (t̂
k

k−1,k)modif := t̂
k

k−1,k − b,
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Figure 11: A randomly generated path in 2D used to test the bias-
reduction method.

where

b := E[t̃
k

k−1,k], k ≥ 1. (21)

We are assuming that the translation measurements are
stationary in mean so that b is a constant. The modified
measurements can be computed from the raw measure-
ments and knowledge of R,b, which can be determined
from an analysis of sensor noise characteristic. For in-
stance, the question of estimating b for vision-based sen-
sors is examined in [13, 12]. The position at time k is now
computed as before, but with the new corrected measure-

ments in place of the raw sensor measurements t̂
k

k−1,k and

R̂
k−1

k . Specifically,

(R̂
0

k)modif :=

k
∏

i=1

(R̂
i−1

i )modif

(t̂
0

k−1,k)modif := (R̂
0

k)modif (t̂
k

k−1,k)modif ,

and finally, (t̂
0

0,n)modif =
n
∑

k=1

(t̂
0

k−1,k)modif .

The rationale for this proposal comes from the follow-
ing relationships that can be shown from straightforward
calculations:

E[(R̂
k−1

k )modif ] = Rk−1

k (22)

E[(R̂
k−1

k )modif (t̂
k

k−1,k)modif ] = Rk−1

k tk
k−1,k, (23)

where the second relation (23) holds if the raw rotation and

translation measurements R̂
k−1

k , t̂
k

k−1,k are uncorrelated.
The modification of the raw measurements eliminates the
geometric decay of the length of the relative translation
measurements after being transformed to frame 0. As dis-
cussed in Section 3.2, this decay was the main cause of the

bias growth. If R̂
k−1

k , t̂
k

k−1,k are correlated but the motion
is limited to a 2-D space, a slightly different method can
be used that ensures that (22),(23) hold. The details are
not provided in the interest of space.
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Figure 12: Performance of the bias-reduction method, for the path
shown in Figure 11. The legend “With Adjustment” refers to the es-
timates obtained with the bias-reduction method of Section 6. The
bias is reduced to almost zero with the proposed method. All quanti-
ties are estimated from more than a million Monte-Carlo simulations.

The proposed method was tested with the help of simu-
lations to determine its effectiveness. The following types
of trajectories in 2-D were used in the simulations: (i)
straight line (ii) circular, (iii) random walk in a city-like
grid, and (iv) a randomly generated smooth path. The
performance was seen to be similar in all cases; so we only
present the details for the last case. The path our robot
traversed in the experiment is shown in Figure 11. Noise
in the sensor measurements was simulated by adding i.i.d.
Gaussian random vectors with mean [0.05, 0.02]T m and
covariance matrix 0.05I to the relative translation mea-
surements at each time step. The angle describing the
relative rotation between each time step was corrupted
by adding i.i.d. Gaussian random variables with mean
6.8 × 10−3 and variance 2.6 × 10−3. The sensor charac-
teristics R and b needed for the correction were deter-
mined a-priori; their values are R = 0.9987fR(6.8×10−3),
b = [0.05, 0.02]T . The estimates of the bias and variance
in the position estimates were obtained from more than
a million Monte-Carlo simulations. The comparison be-
tween the bias with the method described in Section 6
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and that for the baseline case (no modification) is shown
in Figure 12(a). The comparison of the variances is shown
in Figure 12(b).

We see from the simulations that the proposed method
significantly reduces the bias. The resulting variance is the
same or smaller, for small values of time. For large values
of time, the resulting variance is larger than that achieved
if measurements were not modified. This is expected since
the modifications introduce additional uncertainty. In par-
ticular, the modified rotation measurements are no longer
elements of SO(d). A similar trend is seen for all other
trajectories tested: the bias is significantly reduced for all
time, while the variance is either smaller or almost the
same for small values of time but is larger for large values
time.

7. Summary

We examined the growth of error in position estimates
obtained from noisy relative pose measurements. We
showed that in both 2-D and 3-D, the bias and the vari-
ance of the position estimation error grows at most linearly
with time or distance travelled. The precise growth rate
of the bias depends on the trajectory of the robot. Specif-
ically, if the robot stays in a bounded region, the bias is
upper bounded by a constant for all time. It was proved
that the variance growth rate is also lower bounded by lin-
ear function of time if the translation measurement errors
are large enough. Exact formulas for the error bias and
variance were obtained for two special 2-D trajectories,
straight line and periodic. Extensive Monte-Carlo simula-
tions, and experiments with a wheeled robot, were used to
verify the results.

The results of this paper show that localization error
growth rate is not superlinear with time or distance even
without absolute orientation sensors. In addition, it turns
out that the asymptotic growth rate of the bias does not
change even if all the measurements are unbiased or even
if the translation measurements are completely error free.
The bias growth is principally due to the fact that the
expected value of the estimated position converges to a
point, irrespective of how the robot is moving. This occurs
since γ, the norm of the expected rotation error, is strictly
less than unity. As a result, the magnitude of the measured
translation, once the measurement is transformed to the
global coordinate frame, decays geometrically with time.

One of the assumptions made for the analysis was that
the measurements collected at two distinct time instants
are statistically independent. Though this may not hold in
practice, the results obtained from experiments and simu-
lations with synthetic image data are consistent with the
theoretical predictions. This shows that the analysis is not
sensitive to the the assumptions of independence. The suf-
ficient condition (11) for the variance to be asymptotically
linear in time is not satisfied in the simulations and the
experiment. However, the empirically estimated variance
from simulations and experiment seems to grow linearly

with time. This indicates that the sufficient condition is
conservative. Determining a necessary condition for vari-
ance growth to be linear is an open question.

A method to reduce the bias growth rate was suggested
by the lessons learned in the analysis of error growth. Sim-
ulations showed that the proposed method reduces the bias
significantly for all time, while having negligible effect on
the variance for small values of time. Thus the method
can be potentially used to improve localization accuracy
for short periods of time. There are several issues that still
need to be addressed. The method was observed to make
the variance worse for large time. So an important research
question is to determine the time period up to which the
method can be used. The method requires knowledge of
sensor characteristics. Its robustness to imprecise knowl-
edge of sensor characteristics, and to time variations in
those characteristics, also needs to be studied. Another
line of research is to incorporate the proposed bias reduc-
tion method within a filtering-type position estimation al-
gorithm.
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Appendix

Proof of Proposition 1. Let y be a d-dimensional random
vector. Since Cov(y,y) = E[yyT ] − E[y] E[y]T , we have
upon taking the trace of both sides

‖E[y]‖2 = E[‖y‖2] − Tr [Cov(y,y)] ≤ E[‖y‖2],

since Tr [Cov(y,y)] ≥ 0. Moreover equality in the above
inequality holds if and only if the variance of each of the
components of y is 0, that is, y is degenerate. We now
apply this result to the random vector y := Rx, where x is
a deterministic d-dimensional vector while R is a random
rotation matrix:

‖E[R]x‖2 ≤ E[‖Rx‖2] = E[‖x‖2] = ‖x‖2, (24)

where the first equality is due to the fact that rotation
doesn’t change the 2-norm of a vector, and the second
equality is due to x being deterministic. This proves that
‖E[R]‖ ≤ 1. Since y is degenerate if only if R is, the
inequality in (24) is strict if R is non-degenerate. This
proves the result.

The following additional technical result is needed for
the proof of Lemma 1.

Proposition 2. If Xi is a sequence of random vectors
such that E[XT

i Xj ] ≤ α0η
|i−j|, where |η| < 1 and α0 is

an arbitrary constant, then

E[(

n
∑

i=1

Xi)
T (

n
∑

i=1

Xi)] ≤ α0

1 + η

1 − η
n.

If in addition α0η
|i−j| ≤ E[XT

i Xj ] for i 6= j and 0 <
β0 ≤ E[XT

i Xi], where α0, β0 are constants such that β0 >

2
|α0|
1−|η| , then E[(

∑n
i=1

Xi)
T (
∑n

i=1
Xi)] = Θ(n).

Proof of Proposition 2. Expanding the sum, we obtain

E[(
n
∑

i=1

Xi)
T (

n
∑

i=1

Xi)] =
n
∑

i=1

Ti, (25)

where

Ti :=
n
∑

j=1

E[XT
i Xj]. (26)
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It follows from (26) and the hypothesis that

Ti ≤ α0(η
i−1 + ηi−2 + · · · + η + 1 + η + · · · + ηn−i)

= α0(−1 +

i−1
∑

k=0

ηk +

n−i
∑

k=0

ηk) ≤ α0(−1 +

∞
∑

k=0

|η|k +

∞
∑

k=0

|η|k)

= α0(−1 +
1

1 − |η|
+

1

1 − |η|
) = α0

1 + |η|

1 − |η|
,

where the second inequality follows from |η| < 1. The
upper bound now follows from (25). This proves the first
statement.

When the additional hypothesis holds, we have

Ti ≥ α0(η
i−1 + ηi−2 + · · · + η) + β0 + α0(η + · · · + ηn−i)

≥ −2|α0|

∞
∑

k=0

|η|k + β0 = β0 − 2
|α0|

1 − |η|
=: ℓ0 > 0

It follows from (25) that E[(
∑n

i=1
Xi)

T (
∑n

i=1
Xi)] ≥ nℓ0 =

Ω(n). Combining the asymptotic lower and upper bounds,
we get E[(

∑n
i=1

Xi)
T (
∑n

i=1
Xi)] = Θ(n).

Proof of Lemma 1. It follows from (4) that

E[t̂
0

0,n] =

n
∑

k=1

E[t̂
0

k,k+1] (27)

From (2)-(3) we get

t̂
0

k,k+1 = R0
1 R̃

0

1 . . .R
k
k+1 R̃

k

k+1

(

tk+1

k,k+1
+ t̃

k+1

k,k+1

)

⇒ E[t̂
0

k,k+1] = R0
k R . . .R

k
k+1

(

R tk+1

k,k+1
+ ρk+1

)

where the second equality follows from the assumption
that the orientation measurement errors are i.i.d. Since
a rotation does not change the 2-norm of a vector,

‖E[t̂
0

k,k+1]‖ ≤ ‖R
k
‖
(

‖R‖ ‖tk+1

k,k+1
‖ + ‖ρk+1‖

)

where the inequality follows from applying triangle in-
equality and using sub-multiplicative property of induced

norms. Since ‖R
k
‖ ≤ ‖R‖k, we obtain upon using Propo-

sition 1 and the definition γ = ‖R‖ that

‖E[t̂
0

k,k+1]‖ ≤ γka,

where a := supk(‖R‖‖tk+1

k,k+1
‖+‖ρk+1‖) ≤ γτ +β. Apply-

ing triangle inequality to (27), we get

‖E[t̂
0

0,n]‖ ≤

n−1
∑

k=0

‖E[t̂
0

k,k+1]‖ ≤ a

n−1
∑

k=0

γk ≤ a
1 − γn

1 − γ
,

since 0 < γ < 1. This proves the result about the mean.

The proof for the second moment result proceeds by first

showing that E[(t̂
0

j,j+1)
T t̂

0

i,i+1] satisfies the hypothesis of

Proposition 2 and then applying the proposition. We note
that for i ≤ j,

(t̂
0

i,i+1)
T t̂

0

j,j+1 = (t̂
i+1

i,i+1R̂
0

i+1)
T R̂

0

j+1 t̂
j+1

j,j+1

= (t̂
i+1

i,i+1)
T R̂

i+1

j+1 t̂
j+1

j,j+1

= V1 + V2 + V3 + V4,

where

V1 :=(ti+1

i,i+1
)T R̂

i+1

j+1 t
j+1

j,j+1

V2 :=(t̃
i+1

i,i+1)
T R̂

i+1

j+1 t
j+1

j,j+1

V3 :=(ti+1

i,i+1
)T R̂

i+1

j+1 t̃
j+1

j,j+1

V4 :=(t̃
i+1

i,i+1)
T R̂

i+1

j+1 t̃
j+1

j,j+1.

We now evaluate the expected values of these four terms.
By using the Independence of the orientation measurement
errors and, we get

E[V1] = (ti+1
i,i+1)

T Ri+1
i+2R . . .R

j
j+1R t

j+1

j,j+1

⇒ |E[V1]| ≤ ‖ti+1
i,i+1‖ ‖R

j−i
t
j+1

j,j+1‖

≤ ‖R
j−i

‖ ‖ti+1
i,i+1‖ ‖tj+1

j,j+1‖ ≤ γj−iτ2,

where the first inequality uses the fact that rotations do

not change the 2-norm. For V2, since t̃
i+1

i,i+1 is statistically

dependent only on R̃
i

i+1 and not on R̃
i+1

i+2, . . . , R̃
j

j+1, it is

also independent of R̂
i+1

j+1. Hence,

|E[V2]| = |bi Ri+1

i+2 RR
j
j+1 Rt

j+1

j,j+1 ⇒ |E[V2]| ≤ γj−i bτ.

Similarly, we have, for i < j,

E[V3] = (ti
i+1,i+1)

T Ri+1

j+1 R R
j−1

j R ρj+1

⇒ |E[V3]| ≤ γj−i 1

γ
τρ.

and for i = j, |E[V3]| ≤ τb. For V4, when i < j, we have

V4 = (t̃
i+1

i,i+1)
T Ri+1

i+2 R̃
i+1

i+2 . . .R
j
j+1 R̃

j

j+1 t̃
j+1

j,j+1,

⇒ |E[V4]| ≤ ‖bi‖ ‖R‖j−i−1‖ρj+1‖ ≤ γj−i 1

γ
bρ.

When i = j, we have V4 = (t̃
j+1

j,j+1)
T t̃

j+1

j,j+1, which implies

E[V4] = Tr [Pj+1] + bT
j+1bj+1, by definition. Therefore,

0 < p ≤ E[V4] ≤ p+ b2. (i = j).

Combining all four terms, we get,

α0γ
j−i ≤E[(t̂

0

i,i+1)
T t̂

0

j,j+1] ≤ α0γ
j−i, (i < j)

β0 ≤E[(t̂
0

i,i+1)
T t̂

0

i,i+1] ≤ β0,

where α0 := −(τ2+τb+ 1

γ τρ+
1

γ bρ), α0 := τ2+τb+ 1

γ τρ+
1

γ bρ, and β0 := p−(τ2 +2τb), β0 := τ2 +2τb+p+b2. Note
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that in case β0 is negative, it is a poor lower lower bound

since (t̂
0

i,i+1)
T t̂

0

i,i+1 > 0. Repeating these arguments for
i ≥ j and combining, we find that

α0γ
|i−j| ≤ E[(t̂

0

i,i+1)
T t̂

0

j,j+1] ≤ α0γ
|i−j|, (i 6= j)

max{0, β0} ≤ E[(t̂
0

i,i+1)
T t̂

0

i,i+1] ≤ α0,

where α0 := max{α0, β0}. Now call Xi := t̂
0

i,i+1,

so that t̂
0

0,n =
∑n−1

i=0
Xi. Hence, E[(t̂

0

0,n)T t̂
0

0,n] =

E[(
∑n−1

i=0
Xi)

T (
∑n−1

j=0
Xj)]. It now follows from Proposi-

tion 2 that E[(t̂
0

0,n)T t̂
0

0,n] isO(n), and is Θ(n) if β0 > 2
|α0|
1−γ .

Since |α0| = τ2+τb+τρ, the condition β0 > 2
|α0|
1−γ is equiv-

alent to p > 2bτ + τ2 + 2
(τ + ρ/γ)(τ + b)

1 − γ
, which proves

the result.

Proof of Theorem 2. Define a new random variable,
δθ̃k−1,k := θ̃k−1,k − E[θ̃k−1,k]. Then {δθ̃k−1,k}

∞
k=0 is an

i.i.d. sequence and the marginal density of δθ̃k−1,k is sym-
metric about 0. We define the corresponding rotation ma-

trices ˜δR
i

j := fR(δθ̃i,j). Utilizing the commutative prop-

erty of 2-D rotation matrices, we have R̃
i

j =
(

Rj−i
)

δ̃R
i

j .
It then follows from (5) that

e(n) = nr − t̂
0

0,n

and from (4), (3), and (2) that

t̂
0

0,n =
n
∑

k=1

(

k
∏

i=1

Rδ̃R
i−1

i

)

(

r + t̃
k

k−1,k

)

,

where we have used the fact that R̂
i−1

i = Ri−1

i R̃
i−1

i =

Rδ̃R
i−1

i since Ri−1
i = I due to the nature of the trajectory.

We define two new random variables

fn :=

n
∑

k=1

(

k
∏

i=1

Rδ̃R
i−1

i

)

r

gn :=

n
∑

k=1

(

k
∏

i=1

Rδ̃R
i−1

i

)

t̃
k

k−1,k,

so that

t̂
0

0,n = fn + gn. (28)

By the i.i.d. assumption on the sequence {θ̃k−1,k}k, the

sequence {δ̃R
k−1

k }k is also i.i.d., so that

E[ ˜δR
i

j ] = E[

k
∏

k=i+1

δ̃R
k−1

k ] =

j
∏

k=i−1

E[ ˜δR
k−1

k ] = cj−iI,

(29)

where we have used the fact that E[sin δθ̃i−1,i] = 0, which
follows from Assumption 1. It is then straightforward to
show that

E[fn] =

n
∑

k=1

(cR)k r = (I − cR)
−1

(I − (cR)n) cRr

E[gn] =

n−1
∑

k=0

(cR)k ρ = (I − cR)
−1

(I − (cR)n)ρ

The expected value e(n) is now

E[e(n)] = n r− (I − cR)
−1

(I − (cR)n) (cRr + ρ) (30)

which proves the first equality in (18).
For the variance, it follows from (28) that

Tr [Cov(e(n), e(n))] = Tr
[

Cov(t̂
0

0,n, t̂
0

0,n)
]

= E[fT
n fn] + E[gT

ngn] + 2 E[fT
n gn]

− E[t̂
0

0,n]T E[t̂
0

0,n]. (31)

E[fT
n fn] = rT E







n
∑

i=1





i
∏

j=1

R δ̃R
j−1

j





T
n
∑

k=1

(

k
∏

ℓ=1

R ˜δR
ℓ−1

ℓ

)






r

= rT
[ (

I + cRT + · · · + (cRT )n−1
)

+
(

cR + I + cRT + · · · + (cRT )n−2
)

· · · +
(

(cR)n−1 + · · · + I
)

]

r

where we have used the independence of the sequence

{δ̃R
k−1

k }k and the fact that δ̃R
k−1

k δ̃R
k−1

k = I = RRT .
The expression above simplifies to

E[fT
n fn] = rT

[

nI + 2

n−1
∑

k=1

(n− k) (cR)
k

]

r = rT (I − cR)
−2

×
(

I + 2(n− 2)cR − 2(n− 1) (cR)
2

+ 2 (cR)
n+1

)

r.

To examine E[gT
n gn], we express the product as gT

n gn =
∑n

k=1
Tk where

Tk = (t̃
k

k−1,k)T
(

(δ̃R
k−1

k )T ( ˜δR
k−2

k−1)
T . . . ( ˜δR

0

1)
T
)

(Rk)T

×
(

R δ̃R
0

1 t̃
1

0,1 + · · · + Rn δ̃R
0

1 . . . δ̃R
k−1

k t̃
k
k−1,k

)

.

Taking expectation and using the assumptions on the noise
correlations, we get for k > 1,

E[Tk] = Tr
[

P + bbT
]

+ bT ((cR)k−2 + (cR)k−3 + · · · + I

+ I + (cR) + (cR)2 + · · · + (cR)n−1−k)ρ,

and for k = 1, E[Tk] = Tr
[

P + bbT
]

+bT (I+cR+(cR)2+
· · ·+ (cR)n−1−k)ρ. Repeating this for all the Tk’s we get:

E[gT
ngn] = nTr

[

P + bbT
]

+bT

[

2

n−2
∑

k=0

(n− k − 1) (cR)
k

]

ρ

= nTr
[

P + bbT
]

+ bT (I − cR)−2 ×

[2(n− 1)I − 2ncR + 2 (cR)
n
] ρ.
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Similar tedious calculations lead to the following

E[fT
n gn] =

[

n−1
∑

k=0

bT (cR)k +

n−2
∑

k=0

(n− k − 1)ρT (cRT )k

]

r

= bT (I − cR)−2
[

I − cR − (cR)n + (cR)n+1
]

r

+ rT (I − cR)
−2

[(n− 1)I − ncR + (cR)n] ρ.

Plugging all of this back in (31), we get
Tr [Cov (e(n), e(n))] = ψn + ω(n), where ψ, ω(n) are
given in (15). This proves the second equality in (18).

Proof of Theorem 3. Define a new random variable,
δθ̃k−1,k := θ̃k−1,k − E[θ̃k−1,k]. The sequence {δθ̃k−1,k}

∞
k=0

are then i.i.d. and the marginal density of δθ̃k−1,k is sym-
metric about the origin for each k. We define the cor-

responding rotation matrices δ̃R
i

j := fR(δθ̃i,j). Utilizing
the commutative property of rotations in 2-D, we have the
following relation

R̃
i

j =
(

Rj−i
)

δ̃R
i

j (32)

To examine the bias, we first re-write the position estimate

t̂
0

0,n as

t̂
0

0,n =

n
∑

i=0

t̂
0

i,i+1 =

η−1
∑

k=0

(

p
∑

m=1

t̂
0

kp+m−1,kp+m

)

+

q
∑

j=1

t̂
0

ηp+j−1,ηp+j ,

(33)

where the first term is sum is over all time steps up to the
end of the last (η-th) period and the second term for the
time steps after that. For any 0 ≤ m < p, we have

t̂
0

kp+m−1,kp+m = R̂
0

kp+m t̂
kp+m

kp+m−1,kp+m

= R0
m R̃

0

kp+m(tm
m−1,m + t̃

kp+m

kp+m−1,kp+m),

where apart from R̂ = RR̃, we have used the periodic na-
ture of the trajectory that leads to R0

kp+m = R0
m and

t
kp+m
kp+m−1,kp+m = tm

m−1,m. Taking expectation and us-
ing (32), we obtain

E[t̂
0

kp+m−1,kp+m] = R0
m(cR)kp+m−1(cRtm

m−1,m + ρm)

This expression is used to evaluate E[t00,n] by taking ex-
pectation of the right hand side of (33). After grouping
terms, we obtain

E[t00,n] =

(

η−1
∑

k=0

(cR)kpω(p)

)

+ (cR)ηpω(q) (34)

Using techniques similar to those used in the proof of The-
orem 2, it can be shown that

E[t̂
0

0,n] =

η−1
∑

i=0

(cR)ipw + (cR)ηpw(q)

⇒ E[e(n)] =

q−1
∑

k=0

R0
k+1t

k+1

k,k+1
−

η−1
∑

k=0

(cR)kp w − (cR)ηpw(q).

By replacing the summation we arrive at (20).
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