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Abstract— We propose a distributed algorithm for estimating
the full 3-D pose (position and orientation) of multiple au-
tonomous vehicles with respect to a common reference frame
when GPS is not available. This algorithm does not rely on
the use of any maps, or the ability to recognize landmarks in
the environment. Instead we assume that noisy measurements
of the relative pose between pairs of robots are intermittently
available. We utilize the additional information about each
robot’s pose provided by these measurements to improve over
self-localization estimates. The proposed method is based on
solving an optimization problem in an underlying product
manifold (SO(3)×R

3)n(k). A provably correct explicit gradient
descent law is provided. Unlike many previous approaches, the
proposed algorithm is applicable to the 3-D case. The method
is also capable of handling a fully dynamic scenario where
the neighbor relationships are time-varying. Simulations show
that the errors in the localization estimates obtained using this
algorithm are significantly lower then what is achieved when
robots estimate their pose without cooperation. Results from
experiments with a pair of ground robots with vision-based
sensors reinforce these findings.

I. I NTRODUCTION

In recent years, interest in utilizing teams of autonomous
mobile robots has grown rapidly. Multi-robot teams are
beneficial in many ways. Utilizing a group of low cost robots
may be more economical then risking a single, more costly
robot. In search and rescue operations, a group of robots
can cover a larger area then a single robot. In hazardous
conditions, the innate redundancy of a group of robots
may be necessary to prevent catastrophic loss of mission
capability. Regardless of the application, localization is a
crucial task for any autonomous mobile robot team.

Localization for autonomous robots can be accomplished
using a variety of sensors. Some of the more common sensors
include Inertial Measurement Units (IMUs), vision based
sensors, and Global Positioning System (GPS). Of the three,
GPS is the only sensor capable of providing global mea-
surements of a robots position. However in many situations,
GPS measurements may not be available, or may only be
intermittently available. For example, a group of unmanned
aerial vehicles (UAVs) operating in an urban environment
may temporarily lose GPS measurements when the signal is
blocked by large buildings. In such a situation, the global
pose can be found by integrating over the relative pose
measurements found using IMUs or vision based sensors.
This method of localization through “dead reckoning” can
lead to a rapid growth in localization error [1]. When
utilizing a team of robots, measurements of the relative pose
between pairs of robots may be available. These provide
additional information on the robots’ pose that can be used

to improve localization accuracy.
In this paper we propose a method for collaborative

localization after a group of robots loses access to GPS. We
assume all robots are equipped with proprioceptive sensors
(vision, IMU, etc.) allowing each robot to measure its change
in pose between time steps. We refer to these noisy measure-
ments asinter-time relative pose measurements. Using these
noisy measurements, each robot can perform localization
through dead reckoning. In addition, we assume each robot
is equipped with exteroceptive sensors, allowing intermittent
noisy measurements of the relative pose between pairs of
robots. We refer to these measurements asinter-robot relative
pose measurements. These inter-robot relative pose measure-
ments provide additional information on the absolute pose of
each robot. We propose both a centralized and distributed
algorithm to perform collaborative localization by fusing
the inter-time and inter-robot relative pose measurements
to obtain a improved estimate of the global pose of every
robot. In the distributed algorithm, communication is only
necessary between pairs of robots for which an inter-robot
relative pose measurement has been obtained.

Collaborative localization has been considered in the con-
text of simultaneous localization and mapping (SLAM). In
one class of approaches, robots exchange local maps which
are aligned and merged to improve robots’ location estimates
as well as to improve the maps; see [2], [3] and references
therein. This requires the ability to identify common features
in distinct maps generated by the robots. A method based
on pose graphs is developed in [4] that does not require
exchange of maps. In [5], robots exchange images and an
implicit extended Kalman filter is used to update the state of
each robot when a common feature is found.

Recognizing common landmarks in distinct maps is often
challenging. In addition, exchanging image data or maps
between robot requires high bandwidth communication. A
second body of work therefore considers the collaborative
localization problem as one in which only relative mea-
surements (of pose, position, orientation etc.) between pairs
of robots are obtained and used to improve localization
accuracy over self-localization. The most common approach
to localize a team of robots in 2-D is through the use of
the Kalman filter or the Extended Kalman filter; see [6],
[7], [8], [9] and references therein. Other approaches include
the ML estimator based method of Howard et al. [10], the
MAP estimator based approach of Nerurkar et al. [11], and
methods based on iterative computation of the best linear
unbiased estimator [12]. Leung et al. considers the problem
of equivalency between centralized and decentralized collab-



orative localization algorithms [13]. No specific algorithm is
proposed. Instead they allow for an arbitrary algorithm to fit
within their framework.

As in the papers cited in the previous paragraph, in this
paper we provide a method for collaborative localization of
robots that uses noisy relative pose measurements between
certain pairs of robots. In contrast to existing work, we
make two novel contributions. First, our method is appli-
cable to 3-D pose estimation problem, while to the best
of our knowledge all the previous papers on collaborative
localization using relative measurements are limited to 2-
D pose estimation. Our proposed method relies on solving
a non-linear optimization problem on a product manifold
(SO(3) × R

3)n(k). This is accomplished through a prov-
ably convergent gradient descent algorithm on the product
manifold. We provide an explicit formula for the gradients
as well as the update law. The gradient descent law is
provided in a parameterization-independent form, and any
parametrization of the rotation operators can be used in
its numerical implementation. This problem was previously
considered in [14], but the solution provided there used an
update law that relied on linear approximation and no proof
of correctness could be provided. The second contribution
is that the method is applicable to the dynamic scenario,
in which the pairs of robots that obtain inter-robot relative
pose measurements vary over time. As Leung et al. reports
in [13], an important assumption in the papers cited in the
previous paragraph (except for [13] itself) is that of a static
communication network, or the ability of each robot to send
information to all other robots.

We provide two algorithms, a centralized and a distributed
one. In the latter, each robot only uses locally available
measurements and communicates only with a small number
of neighbors. The complexity of the computations performed
by a robot is only a function of the number of its neighbors at
any given time, not the total number of robots in the group.
This makes the distributed algorithm scalable to arbitrarily
large groups of robots. In addition, the communication com-
plexity of the algorithm is small. At every update, a pair of
neighboring robots needs to exchange only (i) measurement
of their relative pose and (ii) their current pose estimates.
Since a pose measurement, which is an element ofSE(3),
can be represented by 6 numbers, the pair of robots have to
exchange only 12 numbers.

II. PROBLEM STATEMENT

Consider a group ofr mobile robots indexed byi =
1, . . . , r. Time is measured by a discrete counterk =
0, 1, 2, . . . . Measurements of a robot’s global pose (position
and orientation) from GPS and compass is either not avail-
able or only rarely available. Instead, we assume that each
robot is equipped with proprioceptive sensors such that, at
every timek, the robot is able to measure the Euclidean
transformation between its current pose and its pose at the
previous timek−1. We refer to these measurements asinter-
time relative pose measurements. Such measurements can be
obtained with inertial sensors, vision based sensors, or with a
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Fig. 1. A time history of three robots up to timek = 3 with inter-time
and inter-robot relative pose measurements. Each (robot,time) pair is labeled
with the corresponding node index fromV0(3). Arrows indicate edges, i.e.,
relative measurements, inE (3). Robots 1 and 3 had GPS measurements at
the initial timek = 0. No other GPS measurements were available.

combination thereof. Additionally, they need not be obtained
from a sensor alone. Instead, a measurement could also be
the estimate of the rotation and translation undergone by the
robot in that time interval that is obtained by fusing raw
sensor measurements with prediction of the robot’s motion
from a dynamic/kinematic model.

In addition to these inter-time measurements, each robot
is equipped with exteroceptive sensors so that it can mea-
sure the relative pose (Euclidean transformation) of another
robot with respect to itself whenever it can “see” the other
robot. We call these measurementsinter-robot relative pose
measurements. Various combinations of sensors are able to
extract inter-robot relative pose measurements. When infor-
mation about the robots motion is known a priori, bearing
and distance, bearing-only, and distance-only sensors canall
be used to find the full pose [15]. If instead each robot is
equipped with a camera and a target with known geometry,
the full pose can be estimated from visual measurements
using the epipolar constraint [16].

The situation above is best described in terms of a time-
varying graph G(k) = (V0(k), E (k)) that shows how the
noisy relative pose measurements relate to the global pose
of each robot at every time step. The graph is defined as
follows. For each roboti ∈ {1, . . . , r} and each timet ≤
k, a unique index (call itu) is assigned to the pair(i, t).
How this indexing is done is immaterial. The set of these
indices {1, . . . , rk} define the setV (k) and the node set
of the graph is defined asV0(k) := V (k) ∪ {0}. We then
refer to the reference frame attached to roboti at time t as
frame u. Node u is associated with the pose of roboti at
time t relative to some common reference frame, given by
the Euclidean transformation between the common reference
frame and frameu, expressed in the common frame. We call
these posesnode variable and denote themTu. The common
reference frame with respect to which all node variables are
expressed is associated with node0. If the global pose of at
least one robot is known at time0, perhaps through the use of
a GPS and compass, then node0 can be associated with the
global reference frame. When global pose measurements are



not available, node0 could correspond to the initial reference
frame of one of the robots. In either case, estimating the
node variables is equivalent to determining the robots’ poses
with respect to frame0. The node0 is therefore called the
reference node.

The set ofdirected edges at timek, denotedE (k), corre-
sponds to the noisy inter-time and inter-robot measurements
collected upto timek. That is, suppose roboti is able to
measure robotj’s relative pose at timeℓ, and letu, v be
the nodes corresponding to robotsi, j at timeℓ, respectively.
Then (u, v) ∈ E (k) for all k ≥ ℓ. This edge is associated
with the noisy measurement of the relative pose between
robot i and robotj, expressed in roboti’s frame at timeℓ.
We denote this noisy relative pose measurement byT̂u v.
Similarly, each inter-time relative pose measurements of a
robot also creates an edge in the graph.

The graphG(k) is called themeasurement graph at time
k. Figure 1 shows an example of the graph corresponding to
the measurements collected by3 robots up to time index3.

An estimate of roboti’s pose at timek can be obtained
by chaining together (through the standard pose composition
operator) the inter-time relative pose measurements collected
from time0 until time k. This is how a robot localizes itself
after losing GPS signal if it is operating alone. In context of
the measurement graph, this corresponds to chaining mea-
surements from node0 to the nodeu (nodeu corresponds
to the pose of roboti at time k) along the path that only
consists of the inter-time measurements of roboti. However,
measurement on edges along any undirected path from node
0 to u can lead to such an estimate as well. Because both
inter-time and inter-robot relative pose measurements are
corrupted by noise, each path from0 to u will yield a distinct
estimate of the node variable associated withu. Fusing
each estimate should then yield a more accurate estimate
than what is possible by following a single path. When
the measurements are linearly related to the node variables,
this can be accomplished by using the best linear unbiased
estimator, as done in [12]. In our case, the relationship
between the measurements and node variables is nonlinear.

In the following sections we propose a method to solve
the collaborative localization problem, that is, to estimate
the pose of each robot at timek with respect to the common
reference frame0 by using all the measurements in the
graph G(k). We first propose a centralized algorithm that
takes into account all paths in the graphG(k) and finds the
“best” estimate for each node variable. We then propose a
modified algorithm that is fully distributed and only requires
communication between robot pairs that obtain inter-robot
relative pose measurements.

III. C ENTRALIZED ALGORITHM

In this section we present a solution to the collaborative
localization problem where all the relative measurements are
instantly available to a central processor at each timek. The
centralized solution naturally leads to a distributed scheme,
which will be described in the next section.

Instead of addressing the problem of estimating the robots’
current poses at timek, we examine the more general
problem of estimating all the node variables of the mea-
surement graphG(k) using the robots’ past noisy relative
pose measurements. We assume the graphG(k) is weakly
connected for all time k. That is, for all k ≥ 0 and all
i, j ∈ V (k) there exists an undirected path fromi to j. An
undirected path from a node to another is a path along the
edges without respecting the directions of the edges. The
problem is posed as an optimization of a cost function over
the set of node variables, where the cost function measures
how well a given set of global poses explains the noisy
measurements collected up to timek. The initial condition
for each node variablei ∈ V (k) is given by chaining together
the noisy relative pose measurements associated with the
edges of any undirected path from node0 to node i. For
ease of exposition we assume each robot at time0 has an
initial estimate of its pose at that time with respect to the
reference node.

To derive a suitable cost function, we break each pose
(both noisy relative pose measurements and node variables)
into its corresponding rotationR ∈ SO(3) 1 and translation
t ∈ R

3. Note that we consider a rotationR ∈ SO(3) to
be an abstract operator and not necessarily equated to its
matrix representation. When the relative pose measurements
are completely error free,̂Ri j is the true rotation between
framei and framej, expressed in framei. This rotation can
also be expressed in terms of the node variables asR

T
i Rj ,

whereRT
i is the adjoint of the operatorRi. Similarly, both

t̂i j andRT
i (tj−ti) should be equal, which is the translation

from framei to framej expressed in framei, if there were
no noise in̂ti j . When noise is present in the measurements,
how much these estimates differ - measured by a suitable
distance function - provides a measure of how a given set of
node variables explain the noisy measurements. Distance for
the translations can be given in terms of the 2-norm of the
difference. To measure the distance betweenA,B ∈ SO(3),
we use a Riemannian distanced(A,B) given by

d(A,B) =

√

−
1

2
Tr
(

log2(ATB)
)

. (1)

More details on this distance function can be found in [18].
The cost function is then given by summing over all mea-
surements.

f(
{

T
}

V (k)
) :=

1

2

∑

(i,j)∈E (k)

(

d2(R̂i j ,R
T
i Rj)

+‖t̂i j −R
T
i (tj − ti)‖

2
)

.

(2)

By minimizing the cost function, we expect to find an
improved estimate for the global pose of each robot over
what can be found through dead reckoning alone. This cost
function in (2) is similar to one proposed in [19] for a static
camera network; here the cost function changes with time.

1SO(3) denotes the set of all bounded linear operators on the Euclidean
spaceR3 that preserve the length of vectors and orientation of the space.
For more information about the groupSO(3) and its properties, see [17].



Finding the minimum of a function defined over a vector
space has been studied extensively. However the function
f( · ) is defined on a curved surface, specifically, the product
Riemannian Manifold (SO(3) × R

3)n(k) where n(k) =
|V (k)|, the cardinality of the setV (k). One option for this
optimization is to use a parameterization of the rotations
using, say, Euler angles or unit quaternions, and then embed-
ding the manifold in an vector space of higher dimension.
Optimization techniques applicable to vector spaces can then
be used, with the constraints on the parameterization of
rotations appearing as Lagrange multipliers. However our
goal is to find a provably correct algorithm that utilizes
the geometry of the space without relying on any particular
parameterization. See [20] for a discussion on the merits
of such a direct optimization over the alternatives. We
accomplish this through use of a gradient descent algorithm
on the product manifold.

Given a smooth real valued functionf defined on a
manifoldM , the gradient off at p ∈ M , denotedgrad f(p),
is a vector in the tangent space ofM at p, denotedTpM .
Just as in Euclidean Space,grad f(p) points in the direction
of greatest rate of increase off . The following theorem
provides the gradient for our cost function. Due to space
constraints, the proof of the theorem is given in the corre-
sponding technical report [18].

Theorem 1: The gradient of the cost function shown in (2)
at p = (R1, t1, . . . ,Rn, tn) ∈

(

SO(3)× R
3
)n

is

grad f(p) = (grad f(R1), grad f(t1), . . . ,

grad f(Rn), grad f(tn))
(3)

where, fori = 1, . . . , n,

grad f(Ri) = −Ri

(

∑

(i,j)∈E (k)

[

R
T
i (tj − ti)t̂

T
i j

−t̂i j(tj − ti)
T
Ri + log(RT

i RjR̂
T
i j)
]

+
∑

(j,i)∈E (k)

log(RT
i RjR̂j i)

)

(4)

grad f(ti) =
∑

(i,j)∈E (k)

(

ti +Rit̂i j − tj

)

+
∑

(j,i)∈E (k)

(

ti −Rj t̂j i − tj

)

.

(5)

Minimizing a functionf using gradient descent requires that
during each iteration, the current estimate must be updated
by moving in the direction of the negative gradient. In
a vector space this is accomplished by simply subtracting
η grad f from the current estimate for some appropriate
scalarη. On a Riemannian manifold, moving in the direction
of −grad f requires the notion ofparallel transport. The
parallel transport map at a pointp = (R1, t1, . . . ,Rn, tn) ∈

(SO(3)× R
3)n, denoted byexpp, is given by

expp(ξ) = (R1 exp(R
T
1 ξR1

), t1 + ξt1 , . . . ,

Rn exp(R
T
n ξRn

), tn + ξtn)
(6)

whereξ = (ξR1
, ξt1 , . . . , ξRn

, ξtn) is an element of thetan-
gent space Tp

[

(SO(3)×R
3)n
]

= TR1
SO(3)×· · ·×Ttn

R
3,

and theexp( · ) function appearing in the right hand side
of (6) is the Lie-group exponential map [20]. The derivation
of (6) is provided in [18]. The gradient descent law is

pt+1 = exppt
(−ηtgrad f(pt)), t = 0, 1, . . . , (7)

where ηt ≥ 0 is chosen to be theArmijo step size. More
detail on gradient descent algorithms on manifolds, and on
the Armijo step size in particular, can be found in [21].

Using the upadate law given in 7, a gradient descent is
performed, terminating when the norm of the graident falls
below some user specified threshold. Theorem4.3.1 in [21]
guarantees that the estimates found using this algorithm are
critical points of the cost functionf defined in (2).

It should be noted that while it might be convenient to
represent rotations as3×3 rotation matrices in computation,
the algorithm presented above is independent of the param-
eterization used to represent rotations.

IV. D ISTRIBUTED ALGORITHM

In this section we propose a modified algorithm capable of
running in a fully distributed manner with limited memory,
processor power, and communication bandwidth.

For each roboti, let N (+)
i (k) denote the set of all robots

j ∈ {1, . . . , r} such that, at timek, robot i can measure its
relative pose with respect toj. Let N (−)

i (k) denote the set
of all robots j ∈ {1, . . . , r} such that, at timek, robot j
can measure its relative pose with respect to roboti. The
neighbors of robot i at time k are then given by the set
Ni(k) = N

(+)
i (k) ∪ N

(−)
i (k). We assume that each robot

can communicate with its neighbors during each time step.
To facilitate the description of the distributed algorithm,

consider the time varyinglocal measurement graphGi(k) =
(V i(k), E i(k)) of robot i, whose node set is simply the
neighbors ofi at timek along with the reference node0 andi
itself: V i(k) = Ni(k)∪{0, i}. The edges ofGi(k) correspond
to the inter-robot measurements at timek betweeni and its
neighbors, along with an edge(0, j) for eachj ∈ V i(k). Thus
if robot i can “see” robotj at time k, then (i, j) ∈ E i(k).
Similarly, if j can seei, (j, i) ∈ Ei(k). Each node in the local
measurement graphGi(k) is associated with a global pose
for a robot at timek. Thus an edge(p, q) ∈ Gi(k) (where
i = p or q) is associated with the noisy inter-robot relative
pose measurement between robotsp and q at time k. The
additional edges(0, j), j ∈ V i(k) are associated with the
initial estimate for each robots global pose, denotedT̂0 j .
Each roboti obtains T̂0 i at time k by concatenating the
robot’s pose estimate obtained at timek − 1 with the noisy
inter-time relative pose measurement describing the robots
motion from k − 1 to k. We consider this estimate as a
measurement on the edge(0, i). The graphGi(k) is a now a



valid measurement graph since each edge has an associated
noisy relative measurement. The edge(0, i) ensures that
Gi(k) is weakly connected.

The decentralized algorithm works as follows. At each
timek, every roboti ∈ {1, . . . , r} forms an initial estimate of
its global posêT0 i(k) as described above and measures the
inter-robot relative posêTi j for each robotj ∈ N

(+)
i (k). It

then transmits the pair(T̂i j , T̂0 i) to each robotj ∈ N
(+)
i (k)

and receives in turn robotj’s estimate of its current global
poseT̂0 j(k). Similarly, for each robotj ∈ N

(−)
i (k) robot i

will receive the pair(T̂j i, T̂0 j) and transmit to robotj the
estimateT̂0 i. Roboti then executes the algorithm present in
section III on the local measurement graphGi(k). After the
computation, only the estimated value for the node variable
Ti is retained. No other value need be stored in roboti’s
local memory. Note that if roboti has no neighbors at
time k, the distributed collaborative localization algorithm is
equivalent to performing self-localization from inter-time rel-
ative measurements. Since the distributed algorithm is simply
the centralized algorithm applied to a local measurement
graph, it inherits the correctness property from the algorithm
presented in section III.

V. SIMULATION RESULTS

In this section we estimate the bias and variance for a
group of robots using a Monte Carlo simulation with1, 000
samples. The distributed, rather then the centralized, algo-
rithm was chosen because it is more practical to implement
on larger reams of robots. The robots were simulated travel-
ing along distinct zig-zag paths in 3-D space, so that all three
translational and rotational coordinates varied along time for
each robot. Two robots were able to obtain relative pose
measurements at timek if the Euclidean distance between
them at that time was less than7 m. Furthermore,25%
of these potential measurements were dropped to simulate
random failure and ensure the measurement graph was not
symmetric.

The rotation measurements for each relative pose (both
inter-robot and inter-time) were corrupted by independent
identically distributed (i.i.d.) unit quaternions drawn from a
Von Mises-Fisher distribution [22] centered around the zero-
rotation quaternion and with a concentration parameter of
10, 000. Noise in the relative translation measurements was
simulated by adding i.i.d zero-mean normal random variables
with covariance matrixI3×3× 10−6 m2. A plot of the paths
used for each robot, along with a plot of the number of
neighbors for robot1 over time can be found in [18].

Simulations for robot teams of size1, 2, 3, 4 and 5 were
carried out. When only one robot is present in the team,
collaborative localization is equivalent to self-localization
without the aid of any inter-robot relative pose measurement.

The position estimation error of roboti is ei(k) := t̂i(k)−
ti(k), whereti(k) is its global position at timek andt̂i(k) is
the estimate of this position. The bias and standard deviation
in the position estimation errorei(k) for robot 1 (i = 1)
are shown in Figure 2. Both bias and standard deviation
show significant improvement with distributed collaborative
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Fig. 2. The bias and standard deviation in position error forrobot1 when
the distributed algorithm is applied to a group of1, 2, 3, 4 or 5 robots. Note,
what we refer to as standard deviation is given by

√

Tr (Cov(e(k), e(k)))

localization over self-localization. This is evident evenfor
a team of only two robots. As the number of robots in the
team increases, the localization error of robot1 decreases.
The improvement in accuracy however, shows a diminishing
return with increasing team size.

VI. EXPERIMENTAL RESULTS

In this section we present results from an experiment
conducted using the two Pioneer P3-DX robots shown
in Figure 3. Each robot was equipped with a calibrated
monocular Prosillica EC 1020 camera and wheel odometers.
Measurements from these sensors were fused to find the
noisy inter-time relative pose measurements. Each robot is
additionally equipped with a target allowing the on-board
cameras to measure the inter-robot relative pose by exploiting
the known geometry of each target. The true pose of each
robot was determined using an overhead camera capable
of tracking each robot’s target. The sensor were polled
every 0.2 seconds with the noisy inter-robot relative pose
measurements available at most, but not all times.

Each robot moved in a straight line with their paths
approximately parallel. Two different pose estimates of the
robots were obtained. One with self-localization (with the
inter-time relative pose measurements alone) and the other
with collaborative localization with the distributed algorithm,
which utilized the inter-robot relative pose measurements.
The resulting global position estimates, along with the true
positions, for robot1 are reported in Figure 4. A similar
trend is seen in the orientation localization errors. These
results are omitted here due to space limitations, but can
be found in [18]. A distinct improvement in localization ac-
curacy is seen when collaborative localization is performed.
Simulations presented in Section V indicate that we should
see a significant improvement in localization accuracy even
in this small team, and the experimental results are consistent
with that conclusion.

A second experiment in which the robots moved in circular
paths was also performed and a similar improvement in
localization accuracy was observed. These results are not
presented here due to space limitations; the interested reader
is referred to [18].



Fig. 3. Two Pioneer P3-DX robots equipped cameras and targets. Robot
1 is shown on the left, while robot2 is on the right.
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Fig. 4. A plot of the location of robot1 when both robots move in a straight
line. The true path (found using the overhead camera), estimated path
using self localization, and estimated path using the distributed collaborative
localization algorithm are all reported.

VII. C ONCLUSION AND FUTURE WORK

We introduced a novel distributed algorithm for estimating
the full 3-D pose of multiple robots when noisy measure-
ments of the relative pose between pairs of robots are inter-
mittently available. The proposed algorithm does not rely on
any particular parameterization of the underlying manifold.
The algorithm is provably correct: the solution converges
to a minimum of the cost function that measures how well
the estimates explain the noisy relative measurements. The
distributed algorithm requires communication only between
neighbors. Both memory capacity and processing power
requirements are small, and only depends on the number of
neighbors, not on the total number of robots. The algorithm
is applicable to a dynamic scenario in which the neighbors
of a robot can vary arbitrarily with time. The novel con-
tributions of this work compared to much of earlier work
on collaborative localization are (i) ability to perform 3-D
localization and (ii) ability to handle a time-varying network
of robots.

Simulations show a significant increase in localization
accuracy with the distributed collaborative localizationalgo-
rithm over self-localization. The improvement is significant
even for a small team of robots (2 or 3), with diminishing re-
turns with increasing number of robots. Experimental results
verify that indeed significant accuracy improvement can be
achieved even with two robots.

In this paper we assume availability of relative pose
measurements between robots. The “measurement graph”-
based framework we use is also applicable when relative
measurements of distance, bearing, or orientation between
robots are available. In these cases, the cost function has to be

changed suitably so that it is a function only of the available
measurements on the edges of the graph. Preliminary work
along these lines shows promising results; details will be
presented elsewhere.
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