Improved localization in autonomous vehicles through multi-vehicle cooperation

Joseph Knuth Advisor: Dr. Prabir Barooah University of Florida Dept. Mechanical and Aerospace Engineering knuth@ufl.edu

Control Brown Bag Lunch Student Seminar February 09, 2010

Limitations of GPS Orientation Error Error Propagation Simulation Results

Limitations of GPS

Limitations of GPS Orientation Error Error Propagation Simulation Results

Vision Based Systems

- Capture pictures in each time step
- Find features common in two consecutive pictures
- Determine movement of camera from movement of common features

3

- T

Limitations of GPS Orientation Error Error Propagation Simulation Results

Orientation Error in a Vision Based System

1-D system with error in position, but not in orientation.

 Δx_i 's are iid, N(0, σ^2)

UFL

$$p(n) = \Delta x_1 + \Delta x_2 + \dots + \Delta x_n$$
$$\Rightarrow var(p(n)) = n \sigma^2$$

Ξ.

Limitations of GPS Orientation Error Error Propagation Simulation Results

Orientation Error in a Vision Based System

1-D system with error in position, but not in orientation.

 Δx_i 's are iid, N(0, σ^2)

$$p(n) = \Delta x_1 + \Delta x_2 + \dots + \Delta x_n$$
$$\Rightarrow var(p(n)) = n \sigma^2$$

2-D system with error in orientation

$$R_{i} = \begin{pmatrix} \cos \theta_{i} & -\sin \theta_{i} \\ \sin \theta_{i} & \cos \theta_{i} \end{pmatrix} \quad \theta_{i} \text{'s} \sim ?$$

$$p(n) = R_{1} x_{1} + R_{2} x_{2} + \dots + R_{n} x_{n}$$

$$\Rightarrow var(p(n)) = ?$$

Limitations of GPS Orientation Error Error Propagation Simulation Results

3-D Orientation Error and the VMF Distribution

In 3-D systems, the orientation can no longer be expressed as a scaler distribution.

Solution: Look at the distribution of the unit quaternion $q \in S(3)$ One example of such a distribution is the Von Mises - Fisher distribution

$$f(x) = \frac{k^{p/2-1}}{(2\pi)^{p/2} I_{p/2-1}(k)} \exp(k \, \mu^T \, x) \text{ for } x \in S(3)$$

伺 ト イヨ ト イヨ ト

Limitations of GPS Orientation Error Error Propagation Simulation Results

Points form a VMF Distribution on the 2-Sphere

Figure: Data from a VMF distribution with p = 3, k = 10, and $\mu = [0, -0.8415, 0.5403]^T$

< ≣ ▶

Limitations of GPS Orientation Error Error Propagation Simulation Results

Position Error in a Vision Based System

- Relative Measurements, Not Absolute
- Error Propagates

Limitations of GPS Orientation Error Error Propagation Simulation Results

Position Error in a Vision Based System

Limitations of GPS Orientation Error Error Propagation Simulation Results

Position Error in a Vision Based System

Error Propagation

Position Error in a Vision Based System

Limitations of GPS Orientation Error Error Propagation Simulation Results

Monte-Carlo Simulation Results for Position Error

Growth of Variance $\rightarrow \Theta(n^2)$

- T

문어 세문어

Multi-Agent Systems Estimating POS Algorithm

 When a group of vehicles work independently, the error in position grows quickly

★□→ ★ 国 → ★ 国 →

Multi-Agent Systems Estimating POS Algorithm

- When a group of vehicles work independently, the error in position grows quickly
- Assume vehicles have the ability to find relative measurements between each other
- When the group cooperates and shares that data, the error increases more slowly

< ∃ >

э

Multi-Agent Systems Estimating POS Algorithm

Multi-Vehicle System

< 17 ▶

★ 문 ► ★ 문 ►

Multi-Agent Systems Estimating POS Algorithm

Multi-Vehicle System

• Single agent gives a single estimate of \hat{R}

ም.

문어 세문어

Multi-Agent Systems Estimating POS Algorithm

Multi-Vehicle System

- Single agent gives a single estimate of \hat{R}
- Multiple agents in cooperation can give multiple estimates of \hat{R}

Multi-Agent Systems Estimating POS Algorithm

Multi-Vehicle System

- Single agent gives a single estimate of \hat{R}
- Multiple agents in cooperation can give multiple estimates of R^ˆ
- Averaging multiple measurements for should give a better estimate
- Problem: $\frac{R_1+R_2}{2} \notin SO(3)$

(knuth@ufl.edu)

UFL

Multi-Agent Systems Estimating POS Algorithm

Estimating POS in a Multi-Agent System

 $M_i \rightarrow$ Transformation from global reference frame to reference frame i $M_{ij} \rightarrow$ Transformation from reference frame i to reference frame j $\hat{M} \rightarrow$ Estimates of M

Multi-Agent Systems Estimating POS Algorithm

Estimating POS in a Multi-Agent System

 $M_i \rightarrow$ Transformation from global reference frame to reference frame i $M_{ij} \rightarrow$ Transformation from reference frame i to reference frame j $\hat{M} \rightarrow$ Estimates of M

Multi-Agent Systems Estimating POS Algorithm

Estimating POS in a Multi-Agent System

 $M_i \rightarrow$ Transformation from global reference frame to reference frame i $M_{ij} \rightarrow$ Transformation from reference frame i to reference frame j $\hat{M} \rightarrow$ Estimates of M

Multi-Agent Systems Estimating POS Algorithm

Estimating POS in a Multi-Agent System

 $M_i \rightarrow$ Transformation from global reference frame to reference frame i $M_{ij} \rightarrow$ Transformation from reference frame i to reference frame j $\hat{M} \rightarrow$ Estimates of M

Multi-Agent Systems Estimating POS Algorithm

Combining Estimates

- Constraints
- Lie Algebra Equivalent Value
- First order Approximation

$$M_{ij} := M_j M_i^{-1}$$

$$\Rightarrow M_j^{-1} M_{ij} M_i = I$$

Let $m := log(M)$
 $m_{ij} = BCH(m_j, -m_i)$
 $m_{ij} \approx m_j - m_i$

$$egin{aligned} &\Delta \hat{M}_i := M_i \hat{M}_i^{-1} \ &\Delta \hat{M}_{ij} := \Delta \hat{M}_j \Delta \hat{M}_i^{-1} \ &\Delta \hat{M}_{ij} = \hat{M}_j^{-1} \hat{M}_{ij} \hat{M}_i \ &\Delta \hat{m}_{ij} pprox \Delta \hat{m}_j - \Delta \hat{m}_i \end{aligned}$$

A 10

▶ < ∃ >

2

UFL

Multi-Agent Systems Estimating POS Algorithm

Estimating Absolute Position

Problem: Our desired estimates are not linearly dependent on our measurements

Solution: Use the linear equations from the first order approximation in the Lie Algebra

Linear System of Equations

$$\mathbf{D}\begin{bmatrix}\Delta\hat{m}_{1}\\\vdots\\\Delta\hat{m}_{m}\end{bmatrix}\approx\begin{bmatrix}\Delta\hat{m}_{ij1}\\\vdots\\\Delta\hat{m}_{ijn}\end{bmatrix}$$

くぼう くほう くほう

3

UFL Joseph Knuth (knuth@ufl.edu) Improved localization in autonomous vehicles

Multi-Agent Systems Estimating POS Algorithm

Algorithm for Intrinsic Averaging of Translations

Least Squares Estimation

$$\begin{bmatrix} \Delta \hat{m}_1 \\ \vdots \\ \Delta \hat{m}_m \end{bmatrix} \approx \mathbf{D}^{\dagger} \begin{bmatrix} \Delta \hat{m}_{ij1} \\ \vdots \\ \Delta \hat{m}_{ijn} \end{bmatrix}$$

Algorithm

- **④** Use traditional methods to estimate the global position of each agent: $\left\{ \hat{M}_i \right\}$
- Find error in relative positions: $\left\{ \Delta \hat{M}_{ij} \right\}$
- Find lie algebra equivalent of error matrices: $\left\{\Delta\hat{m}_{ij}
 ight\}$
- Use the least squares equation to find estimate of error in global positions: $\{\Delta \hat{m}_i\}$
- **③** Adjust the global position to compensate for error: $\hat{M}_i = \hat{M}_i \exp(\Delta m_i)$
- **③** Repeat steps 2-5 until the global position errors become small: $\sum_{i=1}^{m} \|\Delta m_i\| < \varepsilon$

・ 何 ト ・ ヨ ト ・ ヨ ト

Centralized Distributed

Centralized Method

Advantages

 Reduces Error Growth

Disadvantages

- Single Vital Component
- Communication Limitations
- Problem Complexity Scales with Number of Agents

< ∃ >

Centralized Distributed

How to Distribute the Computation

- Each agent sends an estimate of its global position and their relative position to any other agent it sees. Those other agents then return their global positions.
- Every agent runs the algorithm on its subset of the information
- Complexity no longer scales directly with number of agents
- Computational work divided among many

< ∃ >

э

Centralized Distributed

Distributed Results

Results

- Averaging algorithm can reduce complexity of error considerably
- Distributed just as good as Centralized

Distributed Position Error

Future Work

2

・ロト ・回ト ・ヨト ・ヨト

Additional Slides

Baker-Campbell-Hausdorff

When A, B are two objects that do not commute:

$$e^A e^B = e^{BCH(A,B)}$$

Where:

$$BCH(A, B) = A + B + \frac{1}{2}[A, B] + \frac{1}{12}[A - B, [A, B]] + \mathcal{O}(|(A, B)|^4)$$
$$[A, B] = AB - BA \quad \leftarrow \text{Lie Bracket for Rotations and Translations}$$

Matrix Logarithm

$$log(A) = -\sum_{k=1}^{\infty} \frac{(I-A)^k}{k}$$

UFL

Joseph Knuth

・ 回 と ・ ヨ と ・ ヨ と