Improved localization in autonomous vehicles through
multi-vehicle cooperation

Joseph Knuth
Advisor: Dr. Prabir Barooah
University of Florida
Dept. Mechanical and Aerospace Engineering
knuth@ufl.edu

Control Brown Bag Lunch Student Seminar
February 09, 2010

UFL Joseph Knuth (knuth@ufl.edu) Improved localization in autonomous vehicles



Motivation Limitations of GPS
Ori 0

Error Propa

Limitations of GPS

BTN
N

Joseph Knuth

knuth®ufl.edu) Improved localization in autonomous vehicles



Motivation

Vision Based Systems

@ Capture pictures in each time
step

9 Find features common in two
consecutive pictures

@ Determine movement of

camera from movement of
common features
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Motivation Lin f GPS
Orientation Error
Error Prop:
Simulati

Orientation Error in a Vision Based System

system with error in position, but not in orientati

Ax;'s are iid, N(0, o?)

p(n) = Axy + Axo + -+ - + Axy

= var(p(n)) = no>
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Motivation

Ax;'s are iid, N(0, o?)

p(n) = Axy + Axo + -+ - + Axy

= var(p(n)) = no>

2-D system with error in orientation

~_ [cosB; —sinb; E >
i = (sinG; cos@;) et

p(n) =Rix1+Roxo+ -+ Raxn
= var(p(n)) =7
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Motivation

3-D Orientation Error and the VMF Distribution

In 3-D systems, the orientation can no longer be expressed as a scaler
distribution.

Solution: Look at the distribution of the unit quaternion g € 5(3)
One example of such a distribution is the Von Mises - Fisher distribution

kP/2—1

m eXp(k ILLTX) for x S 5(3)

f(x) =
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Motivation Lim GPS
Orientation Error
Error Propagation
Simulati Its

Points form a VMF Distribution on the 2-Sphere

Figure: Data from a VMF distribution with p = 3, k = 10, and p = [0, —0.8415,0.5403]7—
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Motivation
Er
Error Propagation
Simulation R s

Position Error in a Vision Based System

Global Reference Frame

@ Relative Measurements, Not
Absolute

@ Error Propagates

Reference Frame 1

Referetqce Frame 2 Reference Frame 3
ime 2 h
time 3

%, = 9R 'to1 + IR 3R %t1,
A & 15 A 1p 25
3= 9R Yto1 + %R IR %t1o + IR IR 3R 3tos
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Motivation
Er
Error Propagation
Simulation R s

Position Error in a Vision Based System

Global Reference Frame

@ Relative Measurements, Not
Absolute

@ Error Propagates

@ Complexity Increases

Reference Frame 1

Referetqce Frame 2 Reference Frame 3
ime 2 h
time 3

Uncertainty from: 15 Rotation 2" Rotation 3" Rotation

%, = R 'to1 + IR 3R %t1)>
A & 15 A 1p 25
3= 9R Yto1 + %R IR %t1o + IR IR 3R 3tos
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Motivation
Ori
Error Propagation
Simulation Results

Monte-Carlo Simulation Results for Position Erro

[[E[error(k)] Il
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error(k) = X(k) — X(k)
Growth of Bias — ©(n)

Growth of Variance — ©(n?)
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Multi-Agent Systems
Estimating POS
Algorithm

Multi-Agent Algorithm

( robot 1

..... @ robot 2 9@ When a group of vehicles
robot 3 work independently, the error
' in position grows quickly
lo
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Multi-Agent Systems
Estimating POS
Algorithm

Multi-Agent Algorithm

( robot 1

..... @ robot 2 @ When a group of vehicles
robot 3 Yvork |.m.1ependent|y, .the error
' in position grows quickly
kn o @ Assume vehicles have the
e ability to find relative
measurements between each
other
( robot 1 @ When the group cooperates

and shares that data, the
error increases more slowly

robot 2

robot 3

kn
>

Joseph Knuth

uth@ufl.edu) Improved localization in autonomous vehicles



Multi-Agent Algorithm

ystems
)S

Multi-Vehicle System

( robot 1

robot 2
robot 3
kn
>
time
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Multi-Agent Systems
imating POS

Multi-Agent Algorithm

Multi-Vehicle System

@ Single agent gives a single
( robot 1 estimate of R

robot 2

robot 3
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Multi-Agent Systems
timating POS
m

Multi-Agent Algorithm

Multi-Vehicle System

@ Single agent gives a single
( robot 1 estimate of R

@ Multiple agents in
cooperation can give multiple
robot 2 estimates of R

robot 3

=
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Multi-Agent Systems
timating POS
m

Multi-Agent Algorithm

Multi-Vehicle System

@ Single agent gives a single
( robot 1 estimate of R

@ Multiple agents in
cooperation can give multiple
robot 2 estimates of R

@ Averaging multiple
measurements for R should
give a better estimate

> @ Problem: @ ¢ SO(3)

=
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Multi-Agent Algorithm

robot 1

robot 2

robot 3

M; — Transformation from global reference frame to reference frame i

Mj; — Transformation from reference frame i to reference frame j

M — Estimates of M
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Multi-Agent Algorithm

Combining Estimates

g

i
) Z(Q/ robot2
W

Org.

M == M;M;!

= MMM, = |
Let m := log(M)

my = BCH(mj,—m,-)
my = m; —m;
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@ Constraints
9 Lie Algebra Equivalent Value

9 First order Approximation

—1
i = AMAR;
AMy = M
Adg = DAfnj — D
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Multi-Agent Algorithm

Estimating Absolute Position

Measurements Estimate

Estimator

Problem: Our desired estimates are not linearly dependent on our measurements

Solution: Use the linear equations from the first order approximation in the Lie Algebra

Linear System of Equations

NG NG

D

Q

A, A,
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Multi-Agent Algorithm s

Algorithm

Algorithm for Intrinsic Averaging of Translations

Least Squares Estimation

Ain NG
~ D'

Ay Ay,

Algorithm

9 Use traditional methods to estimate the global position of each agent: {M,}

Q Find error in relative positions: {AMU}

Q Find lie algebra equivalent of error matrices: {Afn,-j}

D Use the least squares equation to find estimate of error in global positions: {Am;}
9 Adjust the global position to compensate for error: M; = I\7I,- exp(Am;)

Q Repeat steps 2-5 until the global position errors become small: Y7, ||[Am;|| < e
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Centralized
Results Distributed

Centralized Method

Position Error Advantages
4 . . . . P11 @ Reduces Error
r=
Growth
3.5} .
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3 "
—_— ’ .
’,o? , Disadvantages
5 25 / 1 @ Single Vital
N—' / f—
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S, /
g 1.5¢ L lr=3 @ Communication
g - r=4 Limitations

e r=5
05¢ /,/’/ 1 @ Problem Complexity
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time step of Agents
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Centr d
Results Distributed

How to Distribute the Computation

robot 1
robot 2 @ Each agent sends an estimate of its
global position and their relative
position to any other agent it sees.
Those other agents then return their
robot 1 global positions.
@ Every agent runs the algorithm on its
robot 2 subset of the information
@ Complexity no longer scales directly
robot 3 with number of agents
) ¢ Computational work divided among
1%
2 robot 2 many
Org R
&
robot 3
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Results

Distributed Results

esults

@ Averaging algorithm can reduce complexity of error considerably

@ Distributed just as good as Centralized

Distributed Position Error
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Future Work

Future Work
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Future Work

Additional Slides

Baker-Campbell-Hausdorff

When A, B are two objects that do not commute:

eAeB — oBCH(A,B)

Where:
1 1
BCH(A,B) = A+ B + E[A, B] + E[A — B, [A, B]] + O(|(A, B)|*)

[A,B] = AB— BA «— Lie Bracket for Rotations and Translations

Matrix Logarithm

= /—A)k

log(A) = Z
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