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Abstract—We propose an outlier rejection algorithm that
functions as a preprocessing step for a pose graph collaborative
localization algorithm Outliers in both types of relative pose
measurements, from one time to the next for a given robot,
and between robots at a given time, are considered. Outliers
are identified using only the information contained in the
measurements. In particular, no a-priori distribution on the
relative measurements is assumed, nor is any information about
the absolute pose of the robots utilized. The outlier rejection
algorithm exploits properties of pose measurements concatenated
over simple cycles in the measurement graph to define an edge
consistency metric such that large values are indicative of the
presence of an outlier. A hypothesis test approach is then utilized
to identify the likely set of outlying measurements. Simulations
utilizing the proposed outlier rejection algorithm, along with
the collaborative localization algorithm developed in [12] are
presented. The outlier rejection algorithm is shown to successfully
identify up to 95% of the outliers in the scenario considered,
and successfully mitigate the effect of outliers on collaborative
localization.

I. INTRODUCTION

In recent years two distinct, though not necessarily mutually

exclusive, topics have dominated much of the literature on

robot localization, SLAM (simultaneous localization and map-

ping) and CL (collaborative localization). In each problem, the

inclusion of outliers, that is, measurements inconsistent with

the set of measurements as a whole, can prove catastrophic to

the accuracy of the location estimates.

A subset of the collaborative localization literature specif-

ically deals with the case when noisy relative measurements

between a single robot from one time to the next (inter-time

relative measurements), and measurements between robots at

a given time (inter-robot relative measurements) are utilized to

estimate the absolute position and orientation, or pose, of each

robot. In such a case, the collaborative localization problem

can be stated as an optimization problem over a measurement

graph. These algorithms are referred to as pose graph opti-

mization collaborative localization algorithms [12, 10, 1, 7, 18,

5]. Similarly, when the SLAM problem involves inter-robot

relative pose measurements, as well as pose measurements

with respect to landmarks, the problem is referred to as pose

graph SLAM (see [9] and references therein). In either case,

the presence of an outlying measurement can lead to grossly

inaccurate estimates. This had led to research in both outlier

mitigation, and outlier identification and rejection, the latter

of which is the topic of this paper.

Many collaborative localization and graph SLAM algo-

rithms attempt to detect data association errors or falsely iden-

tified loop closure events. In particular, [17, 16, 13, 2, 3] each

attempt to perform simultaneous localization and mapping

while remaining robust to outliers. However, since outliers are

not explicitly rejected by these algorithms, estimation accuracy

is still adversely affected. An outlier identification algorithm is

thus useful as a preprocessing step. The set of measurements

from which the outliers have been removed can then be utilized

by both the robust algorithms listed above, as well as non-

robust localization algorithms. In this work we present such a

pre-processing algorithm.

The paper [21] is most closely related to our work; they too

consider the problem of identifying outliers prior to utilizing

them in localizing. The authors of [21] utilize a least squares

approach to pose graph optimization, with the inclusion of

an additional state for each measurement indicating whether

that measurement should be included. The optimal solution to

the modified pose graph problem indicates what measurements

are likely to be outliers. Though this algorithm is successful in

rejecting outliers, it requires an increase in the dimensionality

of the optimization problem equal to the number of measure-

ments. When the number of measurements is large, this may

be undesirable.

We propose a novel outlier rejection algorithm that functions

as a preprocessing step for pose graph collaborative localiza-

tion. Unlike the method in [21], it entails no increase in the

dimension of the pose graph optimization problem. Though

the algorithm presented here is equally suitable for both pose

graph collaborative localization and graph SLAM, for ease of

exposition, we will restrict our focus to only the collaborative

localization scenario. We assume all robots are equipped

with proprioceptive sensors (vision, IMU, etc.) allowing each

robot to measure its change in pose. We refer to these noisy

measurements as inter-time relative pose measurements. Using

these noisy measurements, each robot can perform localization

through dead reckoning. In addition, we assume each robot

is equipped with exteroceptive sensors, allowing intermittent

noisy measurements of inter-robot relative pose between pairs

of robots. Finally, both inter-time and inter-robots measure-

ments may be corrupted by outliers. For the ease of exposition,

we assume that all measurements are of the relative pose.

Extending the algorithm to utilize measurements of the relative

orientation is straight forward and will be studied in future

work.

The proposed algoritm identifies outliers using only the

information contained in the relative measurements. In par-

ticular, no a priori distribution on the relative measurements

is assumed, nor is any information about the absolute pose

of the robots utilized. The outlier rejection algorithm exploits

properties of pose measurements concatenated over simple

cycles in the measurement graph to define an edge consistency

metric such that large values are indicative of the presence

of an outlier. A hypothesis test approach is then utilized to



identify the likely set of outlying measurements. In addition,

we indicate how our algorithm can utilize a sliding window

approximation. The use of such an approximation constitutes

a trade-off between computation time and outlier rejection

performance.

In Section II-A a brief review of the collaborative local-

ization problem is provided, then in Section II-B the outlier

identification and rejection problem is explicitly stated. Then

is Section III the pose graph outlier rejection algorithm is

developed. Finally, in Section IV, simulations utilizing the

proposed outlier rejection algorithm in conjunction with the

collaborative localization algorithm developed in [12] are

presented. The outlier rejection algorithm is shown to suc-

cessfully identify up to 95% of the outliers in the scenario

considered, and successfully mitigate the effect of outliers on

the collaborative localization problem. In addition, simulations

are presented verifying the simplifying assumptions necessary

to make use of hypotheses testing for the method of outlier

identification.

II. PROBLEM STATEMENT

A. Pose Graph Collaborative Localization

Consider a group of r mobile robots indexed by i =
1, . . . , r. Time is measured by a discrete counter k =
0, 1, 2, . . . . Each robot i is equipped with a local, rigidly

attached reference frame, called frame i. Localization of

robot i consists of estimating the Euclidean transformation

Ti ∈ SE(3) that relates a robot’s local reference frame

to an absolute reference frame common to all robots. This

transformation is referred to as the robot’s absolute pose.

Measurements of a robot’s absolute pose are either not

available or only rarely available. Instead, we assume that

each robot is equipped with sensors (such as inertial sensors

or vision based sensors) such that, at every time k, a robot

is able to obtain a inter-time relative pose measurement: a

measurement of the transformation between the previous and

the current pose. In addition, each robot is equipped with

exteroceptive sensors so that the robot is able to uniquely

identify each robot it can “see” (within some sensing radius),

and obtain a relative measurement for each such robot with

respect to itself. For ease of exposition, we will restrict all

inter-robot measurements to be of the relative pose. We call

these measurements inter-robot relative measurements.

The collaborative localization problem is to estimate the

absolute pose of every robot by utilizing both the inter-

time and inter-robot measurements. The situation above is

best described in terms of a directed, time-varying graph

G(k) = (V (k),E(k)) that shows how the noisy relative

measurements relate to the absolute pose of each robot at

every time step. The graph is defined as follows. For each

robot i ∈ {1, . . . , r} and each time t ≤ k, a unique index

(call it u) is assigned to the pair (i, t). This set of indices

define the set V̆ (k) and the node set of the graph is defined

as V (k) := V̆ (k)∪ {0}. We then refer to the reference frame

attached to robot i at time t as frame u. Node u is associated
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Fig. 1. Snapshot of a measurement graph at time k = 3 for a group of three
robots when all measurements are of the relative pose. Each (robot,time) pair is
labeled with the corresponding node index from V (3). Arrows indicate edges,
i.e., relative measurements, in E(3). Robots 1 and 3 had GPS measurements at
the initial time k = 0. Thereafter, no other GPS measurements were available.

with the absolute pose of robot i at time t relative to the

common reference frame. We call these poses node variables

and denote them Tu. We will also refer to the orientation Ru

and position tu components of the pose Tu as node variables.

The common reference frame with respect to which all node

variables are expressed is associated with node 0. Estimating

the node variables is equivalent to determining the robots’

poses with respect to frame 0 (the reference frame associated

with node 0). Node 0 is therefore called the reference node.

The set of directed edges at time k, denoted E(k), corre-

sponds to the noisy inter-time and inter-robot measurements

collected up to time k. That is, suppose robot i is able to

measure robot j’s relative pose at time k, and let u, v be the

nodes corresponding to robots i, j at time k, respectively. Then

the edge e = (u, v) will be in E(k) for all k ≥ k. Similarly,

each inter-time relative pose measurements of a robot also

creates an edge in the graph. The noisy relative measurement

associated with each edge e = (u, v) ∈ E(k) is denoted by

M̂e.

The graph G(k) is called the measurement graph at time

k; see Figure 1 for an example. We make the following

assumption to ensure at least one estimate exists for every

robot at each time k:

Assumption 1. Each robot has access to an estimate of its

current absolute pose at time 0.

Under this assumption, an estimate for the pose of robot

i at time time k can be computed by composing the inter-

time relative pose measurements obtained by robot i up to

time k. This estimate is equivalent to robot i performing dead-

reckoning. The goal of collaborative localization is to fuse

information available from all edges in the graph G(k) to

obtain estimates of the robots’ poses at time k that is more

accurate than that possible from dead reckoning, which only

uses single paths from the reference to the current robot pose.

B. Outlier Rejection

Consider time varying measurement graph G(k) =

(V (k),E(k)) as described in section II-A. Let
{

M̂e

}

e∈E(k)



denote the corresponding set of inter-robot and inter-time

relative measurements. An outlier is a measurement M̂e′ ∈
{

M̂e

}

e∈E(k)
that is inconsistent with the remaining measure-

ments. An outlier is most often a grossly inaccurate measure-

ment in a set of measurements that are relatively accurate (for

which the noise is small). In such a case, if M̂e′ is an outlier,

we expect the estimate of the node variables corresponding to

the measurement graph (V (k),E(k)\{e′}) to be more accurate

then the estimates corresponding to G(k), in which the outlier

is still included. The outlier rejection problem is to identify

and remove such outliers using only the information provided

by the measurements, and no information about the node

variables. In particular, any knowledge of a prior distribution

on the value of the node variables is not available.

III. OUTLIER REJECTION ALGORITHM

A. The First Cut

Consider a set of robots attempting to perform collaborative

localization using a pose graph optimization CL algorithm in

the presence of outliers when all measurements are of the rela-

tive pose. Let G(k) = (V (k),E(k)) denote the corresponding

measurement graph and
{

M̂e

}

e∈E(k)
the set of all inter-robot

and inter-time relative measurements.

A simple cycle is an ordered collection of edges c =
(e0, · · · , eℓ) such that if, for each i, ei is an edge from node

ai to node bi, denoted by ei = (ai, bi), then

• ai = bi−1, i = 1, · · · , ℓ,
• a0 = bk,

• ai 6= aj , ∀i 6= j.

We will refer to the set of all such cycles in the graph G(k) as

C(k). For a measurement graph in which all measurements are

of the relative pose, composing noise-free measurements along

any cycle yields the identity. To utilize this fact, for a simple

cycle c = (e0, · · · , eℓ) ∈ C(k) define the cycle measurement

M̂c = M̂e0M̂e1 · · · M̂eℓ . Since M̂c = id ∈ SE(3) whenever

the measurements are noise free, a suitable distance metric on

the product manifold (SO(3)×R
3) provides a measure of the

noise encountered in cycle c. Towards this end, we define the

cycle consistency cost DC : C(k) → R
+ as

DC (c ∈ C(k)) =

√

d2(idSO(3), R̂c ) + ‖t̂c ‖2

|c| (1)

where M̂c = (R̂c , t̂c ) and d( · , · ) is the Riemannian dis-

tance [4] given by

d(A,B) =

√

−1

2
Tr

(

log2(ATB)
)

, A,B ∈ SO(3).

While DC (c) provides a measure of the average noise

encountered along the cycle c ∈ C(k), using DC (c) alone, little

can be said about the accuracy of any particular measurement.

Instead, we will consider the cycle consistency costs for all

cycles containing a given edge of interest. Let Ce(k) ⊂ C(k)

denote the set of all cycles that include edge e. The edge

consistency cost D : E(k) → R is then defined as

D(e ∈ E(k)) = min
c∈Ce(k)

{DC (c)} . (2)

D(e) provides a measure of the noise in measurement M̂e

based only on other measurements in the graph.

As the number of measurements in a graph G(k) grow, find-

ing all cycles, and subsequently the value of D(e ∈ E(k)), can

become infeasible. Instead, we will will consider some subset

found through a depth first search (DFS) on the graph [8].

In particular, let m indicate the number of edges in E(k)
and define a tuning parameter M > 0. We then find mM
random cycles by using the DFS. The set of cycles so found

is denoted by Ĉ(k) ⊂ C(k). We then consider the approximate

edge consistency cost D̂(e ∈ E(k)) given by

D̂(e) = min
c∈Ĉe(k)

{DC (c)} (3)

where Ĉe(k) ⊂ Ĉ(k) is the set of all cycles found that contain

the edge e.

For the algorithm to perform well, the topology of the graph,

the number of outliers, and the value of the tuning parameter

M should be such that the following condition is satisfied: If

e ∈ E(k) is not an outlier, then there exists a cycle c ∈ Ĉe(k)
such that every edge in Ĉe(k) is not an outlier. When this

condition is satisfied, if a large value of DC (c) indicates the

presence of an outlier in the cycle c, then we expect D̂(e) to

be large if and only if e itself is an outlier.

To identify outliers, a hypothesis test of the set
{

D̂(e) | e ∈ E(k)
}

will be utilized. Though the values of D̂(e)

are not i.i.d. (independent, identically distributed) we will

make the simplifying assumption that they in fact are i.i.d.

Further, we choose the log-normal distribution to describe

the distribution of
{

D̂(e) | e ∈ E(k)
}

. Evidence supporting

this choice of distribution will be presented in Section IV-A.

Finally the set S(k) =
{

log(D̂(e)) | e ∈ E(k)
}

is considered.

Under the simplifying assumption that the values D̂(e) are

distributed i.i.d. log-normal, the set S(k) will be distributed

i.i.d. normal. The one sided version of Grubbs’ test for

outliers [6] can then be used to identify likely outliers in the

measurements as follows. Given the data set S(k), we say

a value s ∈ S(k) is an outlier (in distribution) if it is not

distributed according to the same i.i.d. normal distribution

describing the probability of seeing the other values in S(k).
The null hypothesis, H0, is that there are no large outliers in

the set S(k). Here “large” indicates we are only considering

outliers to the right of the mean. Outliers that are very negative

would not be rejected. The alternative hypothesis is that the

largest value in S(k) is an outlier (in distribution). Define the

one sided Grubbs’ test statistic as

G =
smax − s̄

σs

where smax denotes the maximum value in S(k), and s̄, σs

are the sample mean and sample standard deviation of S(k)



respectively The null hypothesis is rejected at a significance

level of α if

G >
N − 1√

N

√

√

√

√

t2α/N,N−2

N − 2 + t2α/N,N−2

where tα/N,N−2 denotes the upper critical value of the t-

distribution with N −2 degrees of freedom and a significance

level of α/N .

If the null hypothesis is rejected, smax is removed from S(k)
and the hypothesis test is repeated until the null hypothesis

can not be rejected. Each time an outlier (in distribution)

is removed from the set S(k), the edge that generated that

particular value is also removed from the graph, and the

measurement is discarded as a suspected outlier.

B. Second Cut: Sliding Window Approximation

Straightforward application of the method described in the

previous section is only possible up to a certain time, beyond

which the size of the graph makes computations infeasible (m
becomes too large). Under such a condition, a sliding window

approximation can be used. Sliding window approximation is

commonly used in both pose graph CL and graph SLAM

(see [19, 20, 14]). In this section we briefly review the

sliding window approximation and provide a modification

under which the sliding window approximation can be used

in the outlier identification problem.

The sliding window measurement graph at time k is given

by removing all measurements that occurred before time

k − s. If left at this point, often the resulting graph will

be disconnected, as all edges leading to node 0 may have

been removed. To reconnect the graph, the most recent node

variable estimates for the nodes introduced at time k− s (the

earliest nodes still in the graph) are used as measurements

between those nodes and node 0. Specifically, the sliding

window measurement graph Gs(k) = (Vs(k),Es(k)) where

Vs(k) =
(

V (k) \ V
(

k − (s+ 1)
)

)

∪ {0}

Es(k) =
(

E(k) \ E
(

k − (s+ 1)
)

)

∪ {e = (0, j) | j ∈ V (k − s) \ V (k − (s+ 1))} .

and the additional edges (0, j) in Es(k) correspond to mea-

surements given by the node variable estimates (R̂j , t̂j ) ∈
{

(R̂i, t̂i)
}

V (k−1)\V (k−(s+1))
found using a pose graph opti-

mization collaborative localization algorithm.

When utilizing the sliding window approximation to identify

outliers, a simple modification is necessary. Let Gs(k) =
(Vs(k),Es(k)) denote a sliding window pose graph. Rather

then attempting to identify outliers in Gs(k), a reduced graph

Gr(k) = (Vr(k),Er(k)) is used, where Vr(k) = Vs(k) \ {0}
and Er(k) = Es(k) \ {(0, j) | the edge (0, j) corresponds to

an estimate of the node variable, not a true measurement }.

In simple terms, we remove the additional edges connected to

0 added in the construction of the sliding window pose graph.

This reduction of the sliding window graph is necessary as,

for sufficiently large k, the measurements (really node variable

estimates) corresponding to these edges are expected to be

more noisy then the inter-robot and inter-time measurements.

In fact, in many cases the uncertainty in these node variable es-

timates will grow without bound while the uncertainty in inter-

robot and inter-time measurements remains constant. Finally,

the outlier rejection algorithm described in Section III is now

applied to the reduced sliding window graph so constructed at

every time index k. The original (non-reduced) sliding window

graph, minus the identified outliers, can then be passed to any

appropriate pose graph CL algorithm.

Remark 1. Though only the centralized solution is discussed

in this paper, the outlier rejection algorithm utilizing the

sliding window approximation can be distributed in such a way

as to have each robot perform its own outlier rejection using

only measurements for neighboring robots. In particular, each

robot will maintain contact with any robots it has measured

(or that has measured it) since time k − s and construct a

local sliding window measurement graph consisting of inter-

robot measurements between its self and its neighbors, as

well as inter-time measurements for itself and for each of

its neighbors. Outlier rejection can then be performed on the

local sliding window measurement graph.

Remark 2. Although the outlier rejection algorithm is devel-

oped for the case when all measurement are of the relative

pose, extending the algorithm to the case when measurements

are of the relative orientation instead is straightforward.

Utilizing the fact that noise free orientation measurements

composed over cycles also yield the identity, the algorithm

as presented need only be modified by redefining the cycle

consistency cost function Dc as

Dc(c ∈ C(k)) =
d(idSO(3), R̂c )

|c| .

IV. SIMULATION

In this section we first present results justifying the use of

the log-normal distribution to describe the edge consistency

cost distribution, which is necessary in the application of

Grubbs’ test for outliers. Then in section IV-B we present

simulations in which outliers are present during collaborative

localization and the results of applying the outlier rejection

algorithm.

A. Justification of the log-normal distribution

A pose measurement graph G = (V ,E) with 50 nodes

and 202 edges was used in two simulations in which all

edges correspond to relative pose measurements. Outliers were

generated by corrupting 3% of the relative pose measurements

by 10m in position and 90◦ in orientation (about a random

axis). The robots moved at an average speed of .1m per time

step, so a 10m error is enough to make a measurement an

outlier. The 90◦ error in the orientation measurement was

chosen because it is commonly seen when utilizing vision-

based sensors (see [15]). The average angular speed of the

robots was 8◦ per time step, and so the error in orientation is
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also sufficiently large to be classified as an outlier. The tunning

parameters M and α were set at 10 and 0.025 respectively.

The values of
{

D̂(e) | e ∈ E

}

were computed for the graph

G. Gaussian kernel density approximation was then used to

compute an estimate of the pdf describing the values found.

In addition, the sample mean and variance were computed, and

the log-normal density with the equivalent mean and variance

was identified.

In Figure 2 both the estimated pdf, along with the corre-

sponding log-normal density function can be seen. A compari-

son of the estimated and log-normal pdf shows that, while not

an exact match, the approximate shape is adequately captured.

Most importantly to the success of the hypothesis test based

algorithm presented in Section III, the value of D̂(e) when e
is out outlier is also an outlier for the identified log-normal

distribution.

B. Outlier Rejection

We now present a set of simulations that provide some in-

sight into the effectiveness of the proposed algorithm. First we

define a set of convenient performance metrics. The position

estimation error of robot i is defined as ei(k) := t̂i(k)−ti(k),
where ti(k) is its absolute position at k and t̂i(k) is the

estimate. The bias in the position estimation error of robot

i is defined as ‖E[ei(k)]‖, where ‖ · ‖ is the 2-norm and

E denotes expectation. The standard deviation is defined as
√

Tr (Cov(ei(k), ei(k))), where Cov( · ) stands for covari-

ance. In each scenario described below, the bias and standard

deviation in position estimation error is estimated through the

use of a Monte Carlo simulation with 300 sample runs.

A group of 4 robots were simulated to move along distinct

3-D paths. Two robots were able to obtain noisy relative pose

measurements at time k if the Euclidean distance between

them at that time was less then 7m. The Riemannian pose

graph optimization algorithm presented in [12] was used to
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Fig. 3. A comparison of localization accuracy without outliers, with outliers
and no rejection, and with outliers when the rejection algorithm is utilized. The
(a) Bias and (b) Standard Deviation in position estimation error are estimated
using a 300-iteration Monte-Carlo Simulation.

perform the collaborative localization in three case. In the first

simulation, all measurements were equally accurate, that is, no

outliers were present. In the second simulation, outliers were

generated by corrupting approximately 4% of the measure-

ments by 90◦ in orientation (about a random axis) and 10m in

position. Finally, the same set of outlier induced measurements

was considered, but the outlier rejection algorithm presented

in Section III was utilized to identify and reject likely out-

liers. For this simulation the sliding window approximation

described in Section III-B was utilized with a window length

(s) of 3. The tunning parameters M and α were set at

10 and 0.025 respectively. The bias and standard deviation

of the position estimation error, defined above, estimated

using a 300-iteration Monte-Carlo simulation are presented in

Figure 3. A summary of the average number of measurements,

outliers, and false negatives/positives is reported in Table I.

A number of observations can be made from the plots in



Average Percentage

Measurements 48.1 -

Outliers 1.85 3.7%
False Rejects 0.22 0.5%
False Accepts 0.087 5%

TABLE I
THE AVERAGE NUMBER OF MEASUREMENTS, OUTLIERS, MEASUREMENTS

FALSELY REJECTED, AND OUTLIER MEASUREMENTS FALSELY ACCEPTED

WHEN THE OUTLIER REJECTION ALGORITHM IS SIMULATED AS A

PREPROCESSING STEP OF COLLABORATIVE LOCALIZATION. THE

AVERAGES ARE WITH RESPECT TO ALL 300 MONTE-CARLO SIMULATIONS

OVER ALL 50 TIME STEPS. THE PERCENTAGES ARE WITH RESPECT TO

TOTAL MEASUREMENTS FOR OUTLIERS, NON-OUTLIER MEASUREMENTS

FOR FALSELY REJECTED MEASUREMENTS, AND OUTLIER MEASUREMENTS

FOR FALSELY ACCEPTED MEASUREMENTS.

Figure 3. The first observation is that the presence of outliers

can cause the estimates found using collaborative localization

to become even less accurate than those found using dead

reckoning alone. To see why this is so, it is important to

note that the collaborative localization algorithm used in this

simulation is essentially a least squares optimization problem.

As such, the algorithm is sensitive to outliers, to the extent that

the estimated node variables may better reflect the information

contained in the outliers, rather then the remaining, more

accurate measurements.

The second observation to be made from Figure 3 is the

considerable improvement to localization accuracy when the

proposed outlier rejection algorithm is utilized before perform-

ing collaborative localization. In fact, accuracy is almost as

good as that if no outliers were present. This is unsurprising

as, from Table I it is evident that the majority of outliers

were correctly identified, and very few additional measure-

ments were falsely rejected. A sufficient number of relative

measurements, approximately 96%, remained after the outlier

rejection preprocessing; enough to allow the collaborative

location algorithm to perform well.

V. SUMMARY AND FUTURE WORK

In this paper we presented an algorithm to identify and

rejection outliers as a preprocessing step to pose graph

optimization based collaborative localization. The algorithm

utilized properties of relative pose measurements composed

over cycles to develop a metric on the set of edges indicative of

the presence of an outlier. A hypothesis test was then utilized

to identify the likely set of outliers.

Simulations were presented that studied the effectiveness of

the outlier rejection algorithm when utilized before performing

collaborative location on a set of robots. It was shown that,

while the presence of outliers can cause collaborative local-

ization to perform even worse then dead reckoning, the outlier

rejection algorithm succeeds in the task of removing outliers

to such a extent that performance is increased nearly to that

of the no-outlier case.

In addition, simulations were presented that explored the

validity of the assumption that edge consistency costs were

i.i.d. log-normal. The critical conclusion of this simulation was

that, if an edge e′ is an outlier, the corresponding approximate

edge consistency cost D̂(e′) is an outlier of the log-normal

distribution with mean and variance given by the sample mean

and variance of the set
{

D̂(e)
}

. Because of this, we expect

to correctly identify outlying measurements using Grubbs’ test

for outliers.

The algorithm was developed for the case when all mea-

surements are of the relieve pose. However, it is important

to note that the extension to rejection of orientation measure-

ment outliers is trivial whenever all inter-robot measurements

include an orientation measurement; see Remark 2. In fact,

other measurement types are permissible and can be included

in the collaborative location computations (as done in [11]),

but will be neglected by the outlier rejection algorithm.

While it is clear that the number of edges affect the

robustness of the outlier rejection algorithm, an in-depth study

of the connection between the maximum number of outliers

for which the rejection algorithm succeeds versus the topology

of the measurement graph remains an active area for future

work. Future studies will also attempt to extend the proposed

outlier rejection scheme to other measurement types: position,

bearing, and distance.

Finally, in addition to the centralized algorithm presented

in Section III, a method to distributed the outlier rejection

algorithm was also briefly outlined in Remark 1. In such a

distributed scheme, each robot poses a different local measure-

ment graph that is only a small part of the total graph. How the

outlier rejection performs on these local graphs as compared

to the full centralized solution presented here requires further

study.
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