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Localization is important and not always easy

Defining Localization

We say a robot (camera, UAV, AUV, etc.) is
localized when an estimate of is pose (position
and orientation) is available with respect to
some fixed relevant reference frame.

Localization is hard when GPS
measurements are not available, or
only intermittently available.

(a) In urban canyon

(b) Underwater

(a)
(b)
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Collaborative Localization

No GPS? Try Collaboration!

Areas of interest:

◮ Single Robot: How
fast does uncertainty
grow

◮ Collaborative
localization methods

◮ Collaborative
Localization: How fast
does uncertainty grow

UFL Joseph Knuth (knuth@ufl.edu) Ph.D. Proposal
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Chapter 2: Error growth in position estimation from dead reckoning
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Chapter 2: Error growth in position estimation from dead reckoning
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Assumption 1 and the Error Model

◮ The robot’s speed is uniformly
bounded.

◮ Independent measurements:
∀i 6= j

◮ t̃ii−1,i and t̃j
j−1,j independent

◮ R̃
i

i−1 and R̃
j

j−1 independent

◮ t̃ii−1,i and R̃
j

j−1 independent

◮ R̃
k

k−1 identically distributed and non-degenerate ∀k

◮ Additional technical assumptions on bounds of
moments

Error Model:

t̂
k
k−1,k = tkk−1,k + t̃

k
k−1,k

R̂
k−1
k = R̃

k−1
k Rk−1

k

path
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2R
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= R01 t

1
0,1

+ R01 R
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Main Theorem of Chapter 1: Asymptotic Bounds

Theorem

If

◮ Robot moving in 3-D Euclidean space

◮ Dead reckoning used for localization

◮ Assumption 1 holds

◮ e(n) := t00,n − t̂
0
0,n

Then

1. The bias in the position estimation error satisfies ‖E[e(n)]‖ = O(n). In particular,

‖t00,n‖ − c1(1 − γn) ≤ ‖E[e(n)]‖ ≤ ‖t00,n‖+ c1(1− γn) (1)

2. The position error covariance satisfies Tr (Cov(e(n), e(n))) = O(n), with upper bound

given by

Tr (Cov(e(n), e(n))) ≤ α0

(
1 + γ

1− γ
n

)

, (2)

If furthermore, Cov of translation measurements is large enough, then

Tr (Cov(e(n), e(n))) = Θ(n).

where c1, α0 are functions of the statistics and γ := ‖E[R̃
0
1]‖ < 1.
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Simple Example: Consequences

Straight Line Motion: Orientation given by θk
k,k+1 = 0,

position tk
k,k+1 = [1, 0]T for all k

k = 0 k = 1 k = 2 k = 3

‖ E[ t̂kk,k+1]‖

‖ t̂kk,k+1‖

◮ Temporarily no error in translation

◮ t̂
k
k−1,k : correct length, wrong direction

◮ More uncertain direction is, the shorter
E[ t̂

k
k−1,k ] becomes

‖E[ t̂
0
0,n]‖ → Constant

‖E[e(n)]‖ → ‖t00,n‖ − Constant

True Path

Average Estimated Path

t00,0 t00,1 t00,2 t00,3 t00,4

E[ t̂00,0] E[ t̂00,1] E[ t̂00,2] E[ t̂00,∞]. . .
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Comparison: Theoretical bounds with Monte-Carlo Simulation
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◮ Both bias and variance growth upper bounded by f (n) = c n for some c.

◮ Previously, it was stated that error growth was superlinear (Olson 2003). O(s3/2) was
claimed.

◮ Simulations show superlinear error growth initially. Often, γ ≈ 1 and so it takes a while
for geometric decay to kick in.
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Exact Results for Straight Line & Periodic Motion

2-D Motion: Orientation given by θ, position ∈ R2

c := E[cos
(

θ̃ − E[θ̃]
)

]

c < 1
R :=

(
cos E[θ̃] − sin E[θ̃]

sin E[θ̃] cos E[θ̃]

)

R0
1R

0
2

R̂
0
2

θ θ̂

θ̃

Straight Line: Periodic Motion:
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Exact Results for Straight Line & Periodic Motion

2-D Motion: Orientation given by θ, position ∈ R2

c := E[cos
(

θ̃ − E[θ̃]
)

]

c < 1
R :=

(
cos E[θ̃] − sin E[θ̃]

sin E[θ̃] cos E[θ̃]

)

R0
1R

0
2

R̂
0
2

θ θ̂

θ̃

Straight Line:
If, in addition to Assumption 1,

◮ Orientation and speed are constant. i.e.
tk
k−1,k = r, θk−1

k
= 0.

◮ θ̃ symmetric about mean.

◮ t̃ i.i.d

Then

E[e(n)] = n r − (I − cR)−1 (
I − (cR)n

)

(cRr + ρ) ,

Tr (Cov(e(n), e(n))) = ψn + ω(n),

where the scalars ψ, ω(n) are function of the
statistics and motion.

Periodic Motion:
If, in addition to Assumption 1,

◮ motion/statistics periodic with period p

Then

E[e(n)] = t00,q −
(

I − (cR)p
)

−1

×
(

I − (cR)ηp)
w(p) − (cR)ηp

w(q),

where w(j) is given by

w(j) :=

j−1
∑

i=0

(cR)i R0
i+1

(

cR ti+1
i,i+1 + ρi

)

where c,R are function of the motion/stat,
η := ⌊n/p⌋, q := n − ηp.
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Comparison (Circular): Monte-Carlo Simulation vs Predicted vs Experimental

Monte-Carlo Simulation
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◮ Predictions match MC Simulation well

◮ The statistics of the robot could not be accurately
estimated, however, the general shape matches what
we predict.

◮ Small oscillations due to circular motion (65
ts/rotation)

◮ Large oscillations due to periodic motion (3020
ts/period)

k1
k2

k3
k4
k5
k6
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Chapter 3: Collaborative localization

Consider a group of autonomous robots that lose access to GPS.

Assume:

◮ Capable of dead reckoning
(inter-time relative pose
measurements)

◮ Pairs of robots can measure
their relative pose (inter-robot
relative pose measurements)

◮ Robots can exchange these
relative pose measurements

◮ Dead reckoning leads to unbounded growth in localization uncertainty.

◮ Utilizing inter-robot relative pose measurements can help mitigate this growth.

◮ Existing Methods: Extended Kalman Filter, Graph Optimization∗, Belief Propagation

UFL Joseph Knuth (knuth@ufl.edu) Ph.D. Proposal
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Corresponding Graph Problem: G(k) = (V (k),E(k))

(robot, time) absolute poses 7→ nodes

relative pose measurements 7→ edges
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◮ Path (a) corresponds to the dead reckoning estimate for robot 1 at time 3.

◮ Path (b) and (c) are additional paths available due to the noisy inter-robot relative pose
measurements.

◮ Each path gives a distinct estimate due to the noise in every measurement.

◮ Averaging over all such paths should give an improved estimate of the node variable.
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Averaging through minimization of a cost function

If no noise then:

R̂i j = RT
i Rj

t̂i j = RT
i (tj − ti )

id

Rj

R
T

iR̂
i
j

RT
i tj

−
R

T
i
t i t̂

i
j

Cost Function

f ({Ri , ti}i∈V (k)) :=
1

2

∑

(i,j)∈E(k)

(

d2(R̂i j ,R
T
i Rj ) + ‖t̂i j − RT

i (tj − ti )‖
2
)

Riemannian Distance: d(p, q) =
√

− 1
2
Tr

(
log2(p−1q)

)
, p, q ∈ SO(3)
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How to minimize f: Gradient Decent on a Manifold

Manifold (M)

A manifold of dim. n is a topological space
that is locallaly like Rn.

Geodesic (γ)

Geodesic is a generalization of the notaiton of
“straigh line”. For a Riemannian manifold, a
geodesic is the shortest curve between two
points.

Parallel Transport (expp)

Parallel trasport: Given a tangent vector v at
a point p ∈ M, expp(v) is a new point q ∈ M

found by moving in the direction of v along a
geodesic.

γ

ξ

M

TpM

p
expp(ξ)

Consider a function f : M → R

◮ There is an equivalent of the vector space
graident for Manifolds: grad f

◮ Move in the negative direction of the
grandient to minimize f

◮ Gradient Descent: We know how to do
this, see (Absil et al., 2008)

◮ Update Law:

pk+1 = expp(−ηkgrad f (p))

◮ Step size: ηk comes from line search on
Manifold

UFL Joseph Knuth (knuth@ufl.edu) Ph.D. Proposal
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Gradient Decent on the Product Manifold

Our Manifold: (SO(3) × R3)n

Given a collection of manifold M1,M2, . . . ,Mn and corresponding Riemannian metrics
< · | · >1

( · ), . . . , < · | · >n
( · ), define the product Riemannian manifold/metric

M = M1 ×M2 × · · · ×Mn < η | ξ >p=
n∑

i=1

< ηi | ξi >
i
pi

for all p = (p1, p2, . . . , pn) and all (η1, . . . , ηn), (ξ1, . . . , ξn) ∈ TpM.

When we define our product Riemannian manifold as above, the following fact holds.

Fact

The gradient of the cost function at p = (R1, t1, . . . ,Rn, tn) ∈
(
SO(3) × R3

)n
is

grad f (p) = (grad f (R1), grad f (t1), . . . , grad f (Rn), grad f (tn))

where, for i = 1, . . . , n = |V (k)|,

grad f (Ri ) =
∑

e∈E(k)

grad ge (Ri ) grad f (ti ) =
∑

e∈E(k)

grad ge(ti )

UFL Joseph Knuth (knuth@ufl.edu) Ph.D. Proposal
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Gradient Decent on the Product Manifold: Update Law

Theorem

The parallel transport map at a point p = (R1, t1, . . . ,Rn, tn) ∈ (SO(3) × R3)n, denoted by

expp , is given by

expp(ξ) = (R1 exp(R
T
1 ξR1

), t1 + ξt1 , . . . ,Rn exp(R
T
n ξRn

), tn + ξtn )

where ξ = (ξR1
, ξt1 , . . . , ξRn

, ξtn ) is an element of the tangent space

Tp

[
(SO(3) × R3)n

]
= TR1

SO(3) × · · · × TtnR
3.

To minimize the cost function, iteratively move in the direction of the negative gradient
using the parallel transport map. i.e.

pk+1 = exppk (−ηkgrad f (pk )).

We choose ηk as the Armijo step size.
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Minimizing the Cost Function: Gradient Decent on the Product Manifold

Input: G(k), measurements, inital guess
Output: {(Ri , ti )}i∈V (k)

repeat
foreach i ∈ V (k) do

Compute grad f (R̂i )

Compute grad f (̂ti )

end

Determine η(A), the Armijo step size
foreach i ∈ V (k) do

R̂i → R̂i exp
(

−η(A)R̂T
i grad f (R̂i )

)

t̂i → t̂i − η(A) grad f (̂ti )

end

until ‖grad f ‖ < ε

◮ Parallel transport is how we move in
the direction of a tangent vector.

◮ Parallel transport on the product
manifold is the product of parallel
transport on the individual
manifolds.

◮ For R ∈ SO(3) and ξ ∈ TRSO(3):
expR(ξ) = R exp(RT ξ).

γ

ξ

SO(3)

TR SO(3)

R
expR (ξ)

Convergence to a critical point of the cost function is guaranteed by
(Absil et al., 2008).
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Heterogeneous Measurements

Previously, only inter-robot relative pose measurements were considered. We can do better.

f (
{
T
}

V (k)
) :=

1

2

∑

(i,j)=e∈E(k)

ge(Ri , ti ,Rj , tj )

ge(Ri , ti ,Rj , tj ) =






d2(R̂i j ,R
T
i Rj ) if Orientation

‖t̂i j − RT
i
(tj − ti )‖

2 if Position

‖
(
τ̂i j‖tj − ti‖

)

−RT
i
(tj − ti )

if Bearing

‖
(
δ̂i j − ‖tj − ti‖

)
‖2 if Distance

New fully labeled, time varying graph.
The edge labels now indicate
the type of measurement.

Allow inter-robot relative measurements to be
any combination of the following types:

◮ Relative Orientation

◮ Relative Position

◮ Relative Bearing

◮ Relative Distance
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Orientation Measurements

grad ge (Rh) =







−2Rh

(

log(RT
h
Rv R̂T

u v ) if h = u

−2Rh

(

log(RT
h
RuR̂u v ) if h = v

0 otherwise

grad ge (th) = 0.

Position Measurements

grad ge(Rh) = −2Rh

(

RT
h (tv − tu )̂t

T
u v − t̂u v (tv − tu)

TRh

)

Iu(h)

grad ge(th) = 2Iuv (h)(tu + Ru t̂u v − tv ).

Bearing Measurements

grad ge(Rh) = −2Rh

(

RT
h (tv − th)τ̂

T
u v‖tu − tv‖ − τ̂u v‖tv − tu‖(tv − tu)

TRh

)

Iu(h)

grad ge(th) = −4Iuv (h)[(tv − tu)− ‖tv − tu‖Ru τ̂u v ]

Distance Measurements

grad ge(Rh) = 0 grad ge(th) = −2Iuv (h)
(δ̂u v − ‖tv − tu‖)

‖tv − tu‖
(tv − tu).

where Iuv (h) = 1 if h = u, −1 if h = v and 0 otherwise and Iu is an indicator function.
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How to Distribute the Computation

At each time step every robot i performs the following:

◮ Estimate current pose using past estimate and inter-time measurement.
◮ Broadcast/Receive absolute pose estimate and inter-robot measurements to/from all

neighbors.
◮ Run the centralized algorithm on local subgraph using centralized algorithm.
◮ Only robot i ’s new estimate of its global pose is retained.
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How to Distribute the Computation
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Simulations: Centralized vs Distributed Algorithm
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The Distributed algorithm does not
solve the centralized problem, but
how close can it get?
Simulation:

◮ Simulated 5 robots moving
along random zig-zag paths.

◮ Single run, not Monte-Carlo.

◮ Surprisingly, distributed does as
well as centralized.

◮ Both outperform dead
reckoning.

This motivates the use of the
distributed algorithm for all future
simulations.
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Experimental Results: Distributed Collaborative Localization
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◮ Experiments were conducted using two Pioneer P3-DX robots equipped with cameras
and targets.

◮ The true path (found using the overhead camera), estimated path using self
localization, and estimated path using the distributed collaborative localization
algorithm for each measurement type are all reported.

◮ A distinct improvement in localization accuracy is seen when collaborative localization is
performed.
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Simulations: Distributed Collaborative Localization

−4−2 0 2 4 6 8 0 10 20 30

0

5

10

15

20

 

 

◦ k = 0
∗ k = 100

x (m) y (m)

y
(m

)

◮ 5 robots move along random zig-zag
paths.

◮ Inter-robot relative pose
measurements are available.

◮ Neighbor relations are determined by
distance.

◮ Noise: Orientation - Von
Mises-Fisher, Position - Zero-Mean
Normal
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Simulations: Distributed Collaborative Localization

 

 

Self Loc.

Pose

Orient.

Position
Bearing

Distance

0

5

10

15

20

0

10

20

30

40

50

60

00 200200 400400

Bias (m) Standard Deviation (m)

Time k

◮ Simulated 5 robots utilizing various types of inter-robot relative measurements (relative
pose, orientation, position, bearing and distance).

◮ All measurement types lead to improved estimate.

◮ Full relative pose performs the best (most information)

◮ Bearing nearly as good as full position (and much easier to get)
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Outline

Chapter 1: Motivation

Chapter 2: Error Growth

Chapter 3: Collaborative Localization Algorithm

Chapter 4: Comparisons

Chapter 6: Future Work
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Chapter 4 Comparison with existing Work

Graph SLAM/Standard Pose Graph:

◮ Utilizes the same graph presented here.

◮ Requires the ability to recognize and label landmarks. (see Lu, 1997; Duckett, 2002;
Olson, 2006; Grisetti, 2009)

◮ Cost function dependent on the parameterization of SO(3) that is chosen. (see
Kummerle, 2011; Tiggs, 2000; Konolige, 2010; Lourakis, 2009)

(Extended) Kalman Filter:

◮ Problem becomes very complicated in 3−D

◮ Linearization required (see Roumeliotis and Bekey, 2002; Karam et al., 2006; Sharma
and Taylor, 2008).

◮ Requires absolute orientation measurements (Roumeliotis 2002, Roumeliotis and
Rekleitis, 2004)

◮ Requires exact knowledge of the absolute orientation (see Sanderson, 1998; Barooah et
al., 2010).
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Method 1: Standard Pose Graph Optimization (Parameterize SO(3))

Given graph G = (V , E, ℓ), node variables {(Ri , ti )}n and orientation and position

measurements
{

R̂i j

}

m1

,
{
t̂i j

}

m2
.

Definitions

◮ qi = q(Ri )

◮ C(qi ) = Ri

◮ q̂i j = q(R̂i j )

◮ qi = [q̄i
T q4]

T

◮ q ⊞ p̄ = (p⊗ q)

State Variable

X =






t1
q1
...






Cost Function

f (X ) =
∑

e∈E

ge (X )TPege(X ), Pe > 0

ge (X ) =

{

q−1
i

⊗ qj ⊗ q̂−1
i j

− id ℓ(e) = R

C(qi )
T (tj − ti )− t̂i j ℓ(e) = t

Minimize f: Levenberg-Marquardt

P = diag(P1,P2, . . . )

g(X ) =






g1(X )
g2(X )

...






J =
[

∂gi (X⊞∆X )
∂∆Xj

∣
∣
∣
∆X=0

]

ij

H = JTPJ

b = −JTPg(X )

(H + λI )∆X = b

Xk+1 = Xk ⊞∆X
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Method 2: Indirect (error-state) Kalman Filter

Definitions

qik = q(RT
u ) s.t. (i , k) 7→ u

qik,k+1 = q(R̂T
u v ) s.t. (i , k) 7→ u, (i , k + 1) 7→ v

C(qik) = RT
u

Cross(a, b) = ⌊a×⌋b

State Vector

X i
k =

[
ti
k

qi
k

]

Xk =






X 1
k
.
..
X r
k






Error States

t̃ik = tik − t̂ik

δqik = qik ⊗ q̂ik ≈

[
1
2
δθi

k

1

]

Indirect KF State

X̃ i
k =

[
t̃i
k

δθi
k

]

X̃k =







X̃ 1
k
..
.

X̃ r
k







Integrator

qik+1 = (qik,k+1)
−1 ⊗ qik

tik+1 = tik + C(qik )
T tik,k+1

→
q̂ik+1 = (

q̂ik,k+1←measurement

︷ ︸︸ ︷

q̃ik,k+1 ⊗ qik,k+1)
−1 ⊗ q̂ik

t̂ik+1 = t̂ik + C(q̂ik )
T (tik,k+1 + t̃ik,k+1

︸ ︷︷ ︸

measurement→t̂i
k,k+1

)
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Method 2: Indirect (error-state) Kalman Filter

Linearized Error State Equations

t̃ik+1 = t̃ik − C(q̂ik )⌊t̃
i
k,k+1×⌋δθi

k − C(q̂ik )
T t̃ik,k+1

δθi
k+1 = C(q̂ik,k+1)

Tδθi
k + C(q̂ik,k+1)δθ

i
k,k+1

→ X̃k+1|k = FX̃k|k + Gη

Measurement Model (inter-robot relative position measurements)

zij = C(qik+1)(t
j
k+1 − tik+1) + ξ

E[ξ] = 0, E[ξξT ] = R

z̃ij = zij − ẑij

≈ HX̃k+1|k + ξ

H = eTi ⊗ Hi + eTj ⊗ Hj

Hi =
[

C(q̂i
k+1) ⌊C(q̂i

k+1)(̂t
j
k+1 − t̂i

k+1)×⌋]
]

Hj =
[
C(q̂i

k+1) 0
]

Update (reset)

S = HPk+1|kH
T + R

K = PHTS−1

∆X = Kz̃

∆X =






∆t1

δθ1

...






δθi 1-1
7−→ δqi

q̂ik+1|k+1 = δqi ⊗ q̂ik+1|k

t̂ik+1|k+1 = t̂ik+1|k +∆t1
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Simulations: Comparison vs State of the Art
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◮ Accurate orientation
measurements ⇒ Std.
PG better.

◮ Inaccurate orientation
measurements ⇒ Rim.
PG better.

◮ Frequent
measurements ⇒ KF
better
(Accurate Cov leads to

better est.)

◮ Infrequent
measurements ⇒ Rim.
PG better.
(small angle

approximation violated)
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Summary

Advantages
◮ Directly applicable to 3-D pose estimation

◮ Able to handle a time-varying neighbor relationship in the distributed
setting

◮ Solution independent of parameterization of SO(3)

◮ Able to utilize heterogeneous measurement types (of the relative position,
orientation, bearing, distance, or any combination thereof )

◮ Useful when time between measurements is large, or error in orientation
measurements is large.

Disadvantages
◮ No way of utilizing statistical information about the measurements when
available

◮ No indication of the accuracy of the estimate
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Outline
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Chapter 2: Error Growth
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Chapter 4: Comparisons
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Future Work: Maximum Likelihood

Idea: We need a systematic way to weight
measurements

1. Define the probability of seeing a certain
measurement given the node variables.

2. Density w.r.t. orientation measurements
must be defined on the SO(3) manifold.

3. Density w.r.t. bearing measurements
must be defined on S2.

4. Cost function given by negative
log-likelihood function.

5. Minimizing cost function gives max
likelihood est. of node variables.

Possible density for SO(3) : Wrapped
Gaussian Distribution

◮ Gaussian-like: Solution to heat equation
on SO(2)

◮ (Approximate) max likelihood problem
tractable

◮ Observations:
◮ Single mode at mean
◮ Distribution for axis of rotation uniform
◮ Does not (necessarily) give rise to

normally distributed parameterization
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Future Work: Outlier Rejection

Goal: Given enough redundant measurements, reject outliers.
Idea: Rejecting Pose/Orientation Measurements

◮ Consider a random subset of all cycles.

◮ Cost of a cycle given by d(id, R̂i j . . . R̂k j ).

◮ Cost of and edge e given by min {cost of cycle c | e ∈ c}.

◮ Assume edge costs are Normally distributed and apply Grubbs’ test for outliers.
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Education

Education:

PhD Mechanical Engineering, University of Florida 2011 - Present
Department of Mechanical and Aerospace Engineering, Gainesville, FL.

MS Mechanical Engineering, University of Florida 2008 - 2010
Department of Mechanical and Aerospace Engineering, Gainesville, FL.

BS Computer Engineering, University of Illinois at Urbana-Champaign 2003 - 2007
Department of Electrical and Computer Engineering, Urbana, IL.

Areas of study:
Major: Nonlinear/Adaptive Control Theory, Stochastic Control, Robot Geometry, Dynamics,
Random Dynamical Systems
Mathematics: Analysis, Measure Theory, Probability Theory, Partial Differential Equations,
Optimal Estimation, Statistics, Differential Geometry

UFL Joseph Knuth (knuth@ufl.edu) Ph.D. Proposal



Motivation
Error Growth
CL Algorithm

Comparisons
Future Work
Additional Slides

Max Likelihood
Outlier Rejection
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Journal Articles:

◮ J. Knuth and P. Barooah, ”Error Growth in Position Estimation from Noisy Relative Pose
Measurements.” submitted to Robotics and Autonomous Systems, 2012

◮ J. Knuth and P.Barooah, “Distributed Collaborative 3D Pose Estimation of Robots from
Heterogeneous Relative Measurements: an Optimization on Manifold Approach.” submitted to
International Journal of Robotics Research, 2012

In Conference:

◮ J. Knuth and P. Barooah, ”Maximum-likelihood localization of a camera network from
heterogeneous relative measurements”, submitted to American Control Conference, 2013

◮ J. Knuth and P. Barooah, ”Collaborative localization with heterogeneous inter-robot measurements
by Riemannian optimization”, submitted to IEEE international Conference on Robots and
Automation, 2013

◮ J. Knuth and P. Barooah, ”Collaborative 3D localization of robots from relative pose measurements
using gradient descent on manifolds”, IEEE international Conference on Robots and Automation,
2012

◮ J. Knuth and P. Barooah, ”Distributed collaborative localization of multiple vehicles from relative
pose measurements”, 47th Annual Allerton Conference on Communication, Control and Computing,
September 30- October 2, 2009, Urbana-Champaign, IL.

◮ L. Erickson, J. Knuth, J. OKane, and S. LaValle, Probabilistic localization with a blind robot, in
iEEE International Conference on Robotics and Automation, pp. 18211827, May 2008.
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Additional Slides

◮ GS vs Riemannian Dist.

◮ Tangent Plane

◮ Inner-Product

◮ Matrix Exponential

◮ Armijo Step Size

◮ S(1) - The Circle

◮ Parameterizations of SO(3)
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Graph SLAM Cost Function vs. Riemannian Dist. Cost Function
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Tangent Planes

Definition

Given a manifold M, the tangent plane TpM at a point p ∈ M consists of vectors ξ ∈ TpM

s.t.

◮ ξ : C∞(M) → R

◮ ξ acts as a derivation of C∞(M) evaluated at p
i.e. for f , g ∈ C∞(M)

ξ(fg) = (ξf )g(p) + f (p)(ξg)

Definition (alt)

Let γ : [0, 1] → M be a parameterized path on M s.t. γ(0) = p ∈ M. Then
d
dt
γ(t)|t=0 ∈ TpM. Considering all such paths characterizes TpM.
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Inner-Product

An inner-product space H is a complex vector space equipped with an inner product

< | >: H× H → C

such that for α, β ∈ C, x , y , u, z ∈ H

◮ < u|α x + β y >= α < u|x > +β < u|y >

◮ < x |y > =< y |x >

◮ < z |z >≥ 0 ∀z ∈ H and < z |z >= 0 iff z = 0

A norm on H is given by ‖z‖ =
√
< z |z >. If H is complete w.r.t to this norm, then H is a

Hilbert Space.
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The Matrix Exponential

For X ∈ Rn×n,

exp(X ) =
∞∑

k=0

1

k!
X k
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Armijo Step Size

To minimize the cost function, iteratively move in the direction of the negative gradient
using the parallel transport map. i.e.

pk+1 = exppk (−ηkgrad f (pk )).

We choose ηk as the Armijo step size η
(A)
t = βNkα, where Nk is the smallest nonnegative

integer such that

f (pk )− f (exppk (β
Nkα grad f (pk ))) ≥ σβNkα‖grad f (pk )‖,

for scalar tuning parameters α > 0, β, σ ∈ (0, 1).
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EX: S(1) - The Circle

S(1) ⊂ R2 is a 1-D manifold.

Range

map

S(1)

θ

Question: What are the charts?
◮ If we try to use only one chart

whose domain is all of S(1) we
cannot find a homeomorphism.

◮ f −1(0) = f−1(2π)
◮ If we remove 2π f is not

continuous.

◮ Instead, we break S(1) into
pieces (at least 2).
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EX: S(1) - The Circle

S(1) ⊂ R2 is a 1-D manifold.

S(1)

θ [0, 2π] ⊂ R

[
x

y

]

7→ θ

Question: What are the charts?
◮ If we try to use only one chart

whose domain is all of S(1) we
cannot find a homeomorphism.

◮ f −1(0) = f−1(2π)
◮ If we remove 2π f is not

continuous.

◮ Instead, we break S(1) into
pieces (at least 2).

UFL Joseph Knuth (knuth@ufl.edu) Ph.D. Proposal



Motivation
Error Growth
CL Algorithm

Comparisons
Future Work
Additional Slides

EX: S(1) - The Circle

S(1) ⊂ R2 is a 1-D manifold.

S(1)

θ [a, b] ⊂ R

[
x

y

]

7→ θ

Question: What are the charts?
◮ If we try to use only one chart

whose domain is all of S(1) we
cannot find a homeomorphism.
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◮ If we remove 2π f is not

continuous.

◮ Instead, we break S(1) into
pieces (at least 2).
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Comparison: Parameterizations of SO(3)

In each of the methods mentioned above, the space SO(3) must be represented by a map to
R3. A distribution is then assumed on this map. However this can be misleading. Consider
the following example.
We generate 100, 000 samples from a Wrapped Gaussian distribution on the group SO(3),
then use kernel density estimation to find the pdf of the Euler angles (3-2-1). The pdf for
one angle for multiple variances is shown below.
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Clearly the distribution is not Gaussian, and is in fact multi-modal.
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Method 1: Indirect Kalman Filter

Propagation

Xk+1 = f (Xk ) + g(ηk+1), E[ηk+1] = 0, E[ηk+1η
T
k+1] = Q

X̂k+1|k = f ( ˆXk|k )

KF State: X̃k+1|k = Xk+1 + X̂k+1|k

Linearized SS Model: X̃k+1|k ≈ FX̃k|k + Gηk+1

Pk+1| = FPk|kF
T + GQGT

Note:

(i) ˆ̃
X0|0 = 0 by
assumption.

(ii) ˆ̃
Xk|k = 0 ⇒
ˆ̃
Xk+1|k = 0.

Update

z = h(Xk+1) + ξk+1, E[ξk+1|k ] = 0, E[ξk+1ξ
T
k+1] = R

z̃ = z − ẑ ≈ HX̃k+1|k

r̃ = z̃ − H
ˆ̃
Xk+1|k = z̃ =: r

S = HPk+1|kH
T + R

K = Pk+1|kH
TS−1

∆X = Kr

ˆ̃
Xk+1|k+1 = ˜̂

Xk+1|k +∆X

Reset

Reset ˆ̃
Xk+1|k+1 = 0

Best est of Xk

= ˆ̃
Xk+1|k+1 + X̂k+1|k

= 0 + X̂k+1|k+1

⇒ X̂k+1|k+1 = X̂k+1|k +∆X
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Full Assumption 1:

1. The robot’s speed is uniformly bounded. More specifically, there exists a constant τ > 0
such that ‖tk

k−1,k‖ ≤ τ .

2. The translation measurement errors t̃
k
k−1,k form a sequence of independent random

vectors, with mean bk := E[ t̃
k
k−1,k ] and covariance Pk := Cov(t̃

k
k−1,k , t̃

k
k−1,k) that are

uniformly bounded. That is, there exist scalar constants b, p, p such that 0 ≤ ‖bk‖ ≤ b

and 0 ≤ p ≤ Tr (Pk) ≤ p < ∞ for all k.

3. The rotation measurement errors R̃
k

k+1 form a sequence of independent random

matrices. The rotation and translation measurement errors R̃
j−1
j and t̃

k
k−1,k are

mutually independent if j 6= k, and possibly dependent when j = k, with

E[R̃
k−1
k t̃

k
k−1,k ] =: ρk ∈ Rd . There exists a scalar ρ such that ‖ρk‖ ≤ ρ for all k.

4. The relative translation measurement errors {t̃
k
k−1,k}

∞
k=1 are uniformly absolutely

integrable, i.e., there exists a scalar β so that βk ≤ β < ∞ for all k where

βk := E ‖t̃
k
k−1,k‖.

5. The rotation measurement errors R̃
k

k+1 are identically distributed, so that each R̃
k

k+1 has

the same distribution as that of some matrix R̃ ∈ SO(d), d ∈ {2, 3}. Moreover, R̃ is
not degenerate, i.e., its pdf (probability distribution function) is not concentrated on a
set of measure zero.
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α0 = max

{

(τ2 + 2τb + p + b2), (τ +
β

γ
)(τ + b)

}

. (3)

c=
γτ + β

1− γ
(4)

Very Large:

p ≥ 2bτ + τ2 + 2
(τ + ρ/γ)(τ + b)

1− γ
, (5)
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ψ = 2crT (I − cR)−1 Rr+ Tr
(

P+ bbT
)

+ (2bT + rT )(I − cR)−1ρ

ω(n) = rT (I − cR)−2
(
I − 4cR + 2(cR)2 + 2(cR)n+1

)
r− 2bT (I − cR)−2 (I − (cR)n)ρ

+ bT (I − cR)−1 [I − (cR)n] r− rT (I − cR)−2 [I − (cR)n]ρ

− ‖
[
(I − cR)−1(I − (cR)n)(cRr + ρ)

]
‖22
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Method 1: Indirect Kalman Filter

Propagation

Xk+1 = f (Xk ) + g(ηk+1), E[ηk+1] = 0, E[ηk+1η
T
k+1] = Q

X̂k+1|k = f ( ˆXk|k )

KF State: X̃k+1|k = Xk+1 + X̂k+1|k

Linearized SS Model: X̃k+1|k ≈ FX̃k|k + Gηk+1

Pk+1| = FPk|kF
T + GQGT

Note:

(i) ˆ̃
X0|0 = 0 by
assumption.

(ii) ˆ̃
Xk|k = 0 ⇒
ˆ̃
Xk+1|k = 0.

Update

z = h(Xk+1) + ξk+1, E[ξk+1|k ] = 0, E[ξk+1ξ
T
k+1] = R

z̃ = z − ẑ ≈ HX̃k+1|k

r̃ = z̃ − H
ˆ̃
Xk+1|k = z̃ =: r

S = HPk+1|kH
T + R

K = Pk+1|kH
TS−1

∆X = Kr

ˆ̃
Xk+1|k+1 = ˜̂

Xk+1|k +∆X

Reset

Reset ˆ̃
Xk+1|k+1 = 0

Best est of Xk

= ˆ̃
Xk+1|k+1 + X̂k+1|k

= 0 + X̂k+1|k+1

⇒ X̂k+1|k+1 = X̂k+1|k +∆X
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