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ABSTRACT

Using smartphones for accurate indoor localization opens a
new frontier of mobile services, offering enormous oppor-
tunities to enhance users’ experiences in indoor environ-
ments. Despite significant efforts on indoor localization in
both academia and industry in the past two decades, highly
accurate and practical smartphone-based indoor localization
remains an open problem. To enable indoor location-based
services (ILBS), there are several stringent requirements for
an indoor localization system: highly accurate that can dif-
ferentiate massive users’ locations (foot-level); no additional
hardware components or extensions on users’ smartphones;
scalable to massive concurrent users. Current GPS, Radio
RSS (e.g. WiFi, Bluetooth, ZigBee), or Fingerprinting based
solutions can only achieve meter-level or room-level accu-
racy. In this paper, we propose a practical and accurate
solution that fills the long-lasting gap of smartphone-based
indoor localization. Specifically, we design and implement
an indoor localization ecosystem Guoguo. Guoguo consists
of an anchor network with a coordination protocol to trans-
mit modulated localization beacons using high-band acous-
tic signals, a realtime processing app in a smartphone, and
a backend server for indoor contexts and location-based ser-
vices. We further propose approaches to improve its cover-
age, accuracy, and location update rate with low-power con-
sumption. Our prototype shows centimeter-level localiza-
tion accuracy in an office and classroom environment. Such
precise indoor localization is expected to have high impact
in the future ILBS and our daily activities.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]|: Wireless com-
munication; H.5.5 [Sound and Music Computing]: Sig-
nal analysis, synthesis, and processing
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1. INTRODUCTION

Current coarse-grained (room-level or meter-level) indoor
localization on a smartphone has enabled a lot of mobile ser-
vices, such as location-based services, indoor maps, and in-
door navigation systems. However, these services are severely
limited due to low resolution. Indoor users can hardly navi-
gate like using outdoor GPS services. The major difference
is as follows: meter-level (e.g. GPS with five-meter accu-
racy) localization is sufficient to navigate a car (meter-level
footprint) on a street (several-meter footprint); but it is far
from sufficient to navigate a user (foot-level footprint) in a
library (with half-meter-wide isles and inch-level books) or
a shopping mall (with inch-level items). Smartphone-based
accurate “indoor GPS” or IPS (indoor positioning system)
has long been waited to improve indoor mobile services and
enable new services. Despite significant efforts on indoor lo-
calization in both academia and industry in the past two
decades [2, 3, 4, 5, 23, 26], highly accurate and practi-
cal smartphone-based indoor localization remains an open
problem. Some accurate localization solutions cannot be
readily converted to smartphone-based ones due to various
constraints.

The technology that enables centimeter or decimeter level
location accuracy and integrates with context-aware mobile
services has the potential to revolutionize users’ mobile expe-
riences. Using ranging, angle, displacement or fingerprint-
ing based sensing is required for accurate indoor localiza-
tion. However, none of existing solutions could achieve de-
sired performance at low cost and low complexity. Time-of-
Arrival (TOA) based ranging approaches, e.g., special de-
vices using ultra-wideband or ultrasound signals, are more
reliable and accurate. However, the increased complexity
and additional devices make them not practically useful for
conventional users. Other low-complexity approaches rely
on existing sensors in smartphones to infer current loca-
tion, e.g., WiFi, fingerprinting, compasses and accelerom-
eters. However, their low accuracy and prerequisites like
site survey or pairing limits their applications.

Recent research on leveraging ubiquitous microphone sen-
sors in a smartphone introduces a convenient approach of
ranging by using the audible band acoustic signal (less than
20kHz). A microphone sensor is inexpensive and has poten-
tial for high accurate ranging due to the low transmission
speed of acoustic signals. However, the limited bandwidth
of a microphone, strong attenuation of aerial acoustic sig-
nals, as well as various interferences in the audible band,
poses significant challenges in using acoustic signals for in-
door localization. Although using acoustic signal to perform



ranging-based localization suffers from various issues, such
as short operation distance, low update rate, and sound pol-
lution, the potential of centimeter-level localization accuracy
motivates us to design better solutions to overcome its draw-
backs.

In this paper, we propose an indoor localization system
called “Guoguo” !, and further improve its performance in
terms of coverage, accuracy, update rate, and sound pollu-
tion. We make its acoustic beacons imperceptible to hu-
mans and improve detection sensitivity for better location
coverage. Rather than simply using “Beep” signals, to en-
able passive sensing for multiple smartphone users, we de-
sign the transmission waveform, wide-band modulation, and
one-way synchronization and ranging schemes. We design a
transmission scheme of the acoustic beacon that follows the
high-density pseudo-codes to enable anchor node identifica-
tion without radio assistance on a smartphone. We propose
a symbol-interleaved beacon structure to overcome the draw-
back of the low transmission speed of acoustic signal and im-
prove the location update rate. To improve the accuracy of
ranging, we propose a fine-grained adaptive time-of-arrival
(TOA) estimation approach that exploits the details of the
beacon signal and perform Non-line-of-sight (NLOS) identi-
fication and mitigation. By combining all these techniques
together, we implement the prototype system with anchor
nodes and localization processing app in a smartphone, and
make it work in realistic environment.

The rest of the paper is organized as follows. Section
7 summarizes the related work. Section 2 introduces the
design consideration and system architecture. Section 3
presents the acoustic beacon and anchor network design.
Section 4 presents the ranging and localization approaches
by using smartphone. Section 5 presents the experimental
evaluation of our proposed approach. Section 9 discusses the
future work. Section 8 concludes the paper.

2. SYSTEM DESIGN
2.1 Motivation

Various existing localization solutions rely on different as-
sumptions and are dedicated to specific applications. For
most existing solutions using only built-in sensors in a smart-

phone, rough position information can be obtained for building-

or room-level navigation. For indoor mobile services for
shelf-to-shelf navigation, location-aware and context-aware
information recommendation and virtual-reality interaction,
fined-grained indoor localization with the foot-level accuracy
is critical.

In terms of system complexity, users’ side is more stringent
especially in hardware requirement. It is very hard to per-
suade the consumers to purchase special devices for indoor
localization. Even with special devices, the integration with
the mobile services provided by smartphone is also a difficult
problem. To enable centimeter or decimeter level localiza-
tion accuracy, and only require smartphone on the user side,
the investment on indoor infrastructure is necessary and po-
tential for other interesting applications, e.g., surveillance
and monitoring. For normal retail stores, several hundred
dollars investment on indoor infrastructure to enable indoor

HGuoguo” means katydid/bush-cricket in Mandarin Chi-
nese. Guoguo, famous for its beautiful sound, represents
a pet culture in ancient China for thousands of years

“smart” shopping, could attract more consumers to enjoy
the mobile services, and in turn boost their business.

With these two points in mind, we focus on developing
a fine-grained smartphone-based indoor localization system
leveraging indoor low-complexity anchor network.

2.2 Design Challenges and Consideration

To meet the localization accuracy, TOA-based ranging is
more appropriate [21]. Limited by the smartphone, using
acoustic signal for TOA-based ranging is the only solution.
However, making the acoustic signal for ranging and local-
ization in real situations has a lot of challenges.

First, the coverage of the anchor network should be suf-
ficient for a room or a retail store with less than 10 an-
chor nodes placed to minimize the infrastructure cost. The
possible solution is to increase the transmit power or detec-
tion sensitivity. However, increase the transmit power could
cause sound pollution and high energy cost. [17, 22] all suf-
fer from sound pollution caused by the audible signal. H.
Liu et al. [14] achieves less pollution, but only works within
3 meters. Maintaining a low transmit power and keeping
the acoustic beacon unnoticeable are the two prerequisites
in the anchor network design. Thus, improving the detection
sensitivity in the smartphone by using advanced signal pro-
cessing technique is the feasible solution to ensure sufficient
coverage.

Second, sufficient update rate is required to track users’
movement. If the localization update rate is too sluggish, no
user could be patient enough to wait their location results.
There are also not enough time margin for mobile services.
Existing acoustic ranging solution proposed in [14] shows
7.8s delay in one location calculation; authors in [19] perform
localization for desktop and calculates the running time for
5 nodes in the range of 3.7s to 285s. Possible solutions for
improving the location update rate includes better design
of the anchor network protocol, real time implementation
of the algorithm, and eliminate the use of WiFi assistance
(takes about 2s for one scan).

Third, the system should support multiuser simultane-
ously. However, solutions used in [22, 14, 19] utilize the
two-way approach for ranging. Two-way ranging eliminates
the synchronization requirement, but suffer from the limita-
tion of only allowing one user to access at one time. Sound
source localization [25] is another way to eliminate the syn-
chronization by using active transmit mode for users, how-
ever, the random access time of the user making the sensor
network could only handle limited users at the same time.
One-way passive ranging should be utilized to maximize the
multiuser capacity, which could support unlimited number
of users in theoretical.

2.3 System Architecture

In order to meet the requirements mentioned in Section
2.1 and 2.2, we propose to the develop an anchor network
with better coverage and make the beacon unnoticeable.
With several low-complexity anchor nodes mounted on in-
door places, the smartphone can localize itself by receiving
more than three beacon signals from the anchor nodes. The
simplified architecture of our proposed localization system is
shown in Fig. 1. In the receiver side, we implement advanced
signal processing and ranging algorithm in smartphone to
achieve accurate localization in passive mode. The cloud
server provides mobile services, e.g., localization, naviga-



tion, for the accessed users in real-time response mode and
minimize the computation and storage cost in the smart-
phone.

Specifically, the anchor network transmits modulated acous-

tic beacon signals based on the token of the controller pe-
riodically. By detecting and extracting the desired infor-
mation bits embedded in beacon signals, the smartphone
demodulates the symbols and calculates the relative TOA.
The algorithm in smartphone eliminates erroneous measure-
ments using statistical pruning methods, and access the an-
chor position by matching the pseudocodes. Finally, the
smartphone can be aware of its fine-grained position by ac-
cessing the localization results.

3. ANCHOR NETWORK DESIGN

3.1 Design Criterion

In our anchor network design, an anchor transmits the
spatial beacon signal to inform its unique location to a smart-
phone without relying on additional radio communication
devices. Such basic design criterion requires the anchor
network to support acoustic communication in addition to
ranging. Moreover, anchor nodes and mobile phones are
distributed without explicit connection or pairing, and use
acoustic communication to realize synchronization. Com-
pared with systems using a radio signal for synchronization
and communication to assist acoustic ranging, e.g., Cricket
[23] and Beep [17], our system implements both acoustic
communication and localization. With acoustic communica-
tion and ranging, our solution features the following salient
advantages: no need of special radio signal (e.g. ZigBee)
that is not available on a smartphone; no need of special de-
vices for ranging assistance; enabling one-way passive rang-
ing to support massive users like the outdoor GPS. Rang-
ing based on the acoustic communication channel improves
efficiency and scalability, and reduces the hardware require-
ments of system implementation. Using such configuration,
we can simply extend our system to other devices that con-
tains a microphone and computation resources rather than
limited to the smartphone platform.

3.2 Transmitter Waveform Design and Mod-
ulation

Using audible-band acoustic signal as beacon for rang-
ing and communication, we must contend with a variety of
noises to ensure its accurate ranging due to the highly popu-
lated frequency band below 20kHz. The ranging accuracy di-
rect depends on the signal-to-noise ratio (SNR) and effective
bandwidth. However, higher transmitter signal bandwidth
and power will generate sound noise that disturbs to users.
The standard microphone in mobile phone can only support
bandwidth of 200Hz ~ 20kHz. To minimize the sound noise
while perform ranging, we choose 15kHz ~ 20kHz as the op-
erating band. The reason is that our ear is less sensitive to
the high frequency signal, while the microphone in smart-
phone could still receive signal in this boundary band. With
well controlled transmitter signal power, the acoustic beacon
could be unnoticeable to humans while still detectable for
smartphone. We use spread-spectrum and ultra low-duty-
cycle pulse sharping techniques to ensure the proper opera-
tion of the acoustic beacon under realistic environment, as
well as improving the ranging accuracy. Unlike the less so-
phisticated single-frequency acoustic signal used in Cricket

and Beep, the beacon signal used in Guoguo is wide-band
modulated and unnoticeable to humans.

The task of anchor nodes that transmitting modulated
acoustic sharp pulse to the mobile receiver is to realize syn-
chronization and ranging, as well as inform its unique pseu-
docode p = [pm;i], m=1,...,M,i=1,...,L, where M is
the number of the anchor nodes; L is the pseudocode length.
The pseudocode pm,; = 0,1 is also the information bits car-
ried by the beacon signal. For the symbol waveform, we
choose to use the second derivative of the Gaussian (Dou-
blet) Pulse [24] and multiple it to the carrier wave. The
waveform could be written as

1— 47r(iﬂ exp {Qw(jﬂ cos(2rfut) (1)

where 7 is the pulse width parameter, f. is the carrier wave
frequency. We truncate the Doublet pulse by their 37 to
approach the real-time condition.

The center frequency f. of the modulated pulse is con-
trolled by the on-chip timer and working at 18kHz. In ad-
dition to f., 7 is tuned to ensure the effective bandwidth of
(1) lies in between 15kHz ~ 20kHz. The multiplication with
the carrier wave in (1) is also a spread spectrum process that
extend the initial narrow band f. to wide band signal g(t)
by using the Gaussian Doublet Pulse sharping. The use of
ultra low-duty cycle pulse (1) has the feature of higher data
rate, higher location refresh rate, better multipath resolu-
tion, lower energy consumption and smaller sound pollution.
To balance between the system complexity and the sophis-
ticated modulation scheme, we choose to perform 2-PAM
modulation with symbol duration as T%; i.e., transmit sharp
pulse g(¢) represents symbol ‘1’, no pulse for symbol ‘0’.

o)==

3.3 Pseudocode Selection

One design challenge faced in selecting the pseudocode is
to utilize the proper pseudo-codes with enough code distance
redundancy to separate different anchor nodes, e.g., utilize
orthogonal codes. In addition to communication, every sym-
bol ‘1’ in p will contribute to one ranging measurement, thus
the high density bit ‘1’ could improve the location update
rate.

Conventional communication process relies on the pream-
ble part of a frame to perform synchronization, then follows
the data bits. For our designed anchor network, the beacon
signal should only contain the pseudocodes and transmits
cyclically to save round time for higher location update rate.
The stringent requirement on efficiency making the remove
of unnecessary part of bits especially important for Guoguo
due to the low transmission speed of acoustic signal. How-
ever, most orthogonal pseudo-codes are not cyclic orthog-
onal; it will loss orthogonality due to the cyclical trans-
mission. Using Walsh-Hadamard codes, for example, only
L+1 codes with length L are orthogonal to each other in all
phases among Hadamard Matrix H (2%, L). Moreover, the
balanced ‘1’ and ‘0’ in these pseudo-codes does not comply
with our requirement on high ‘1’ density sequence.

In order to meet the special requirement of pseudocode for
our anchor network, we select three distinct maximum se-
quence as {ms1, msz, mss} with length of 2°, L is the pseu-
docode length. To increase the ‘1’ density, we perform plus
and decision process to combine these three m-sequences as
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Figure 1: Conceptual Architecture of the Guoguo System.

a new sequence ms’, as

ms’ = {msi + ms2 +ms3} = 0.5 (2)

where the length of ms’ is 2. Reshape ms’ into a (L', L)
matrix asm = {mq}, with L = 2D/ a4 = {1,..., L/},
b=1{1,...,L}. L is the code length, and total L' sequences
in mg,,;. To maintain the minimum code distance dio; be-
tween each sequences, we only select sequences in m that
satisfy the conditions in any phases that

Pm,i = arg;{pa,i| min||ma,; — prita; |l > diar},  (3)
Vi ={1,....m—1},Y0 = {1,...,L}

ae{l,...25 /LY m=m+1

where || - ||1 calculates the code distance between mg,; to
the selected sequences pg i+, ¢ + A performs cyclic phase
change for the sequence. (3) filters sequences in m that meet
minimum distance di,; among selected sequence sets and
add into py,,;. When L = 16, among total 2<L71)/L = 2048
sequences, only 12 sequences satisfy (3). These sequences
can be assigned to M anchors, where M = 9 for a micro-cell
in our system.

3.4 Anchor Network Protocol

The anchor network structure is shown in Fig. 1, with
several anchor nodes and one controller. The controller pro-
vides basic timing via radio beacon passing for the whole
network; and all the anchor nodes are synchronized to the
controller by receiving the radio beacon passively and pe-
riodically. Such scheme can guarantee that the transmit-
ted signal from anchor nodes are synchronized to a common
timing source. There are two kind of beacons in Guoguo,
the first kind of beacon is transmitted by the controller,
which synchronizes all the anchor nodes to the controller’s
clock based on message passing; the second kind of beacon is
transmitted by the anchor nodes from the acoustic speaker,
which provide ranging and synchronization information to
the smartphone.

The controller beacon is realized by using the existing ra-
dio chips, e.g., Zigbee. The data domain contains the anchor
token, and current beacon index. The anchor node performs
its own processing, i.e., transmit its own acoustic beacon,
when the anchor token is received. Denote the controller

beacon interval is T}, if every anchor node executes the sim-
ilar processing, the delay can be viewed as fixed and making
the acoustic beacon timing equals to T),.

Due to the reason that there is no commercial acoustic
communication physical layer in mobile devices, we need
to design our own processing to realize the communication
capability. The ranging and synchronization capabilities of
the anchor-smartphone pair are all based on the acoustic
communication channel, while a good beacon structure can
improve the overall throughput and data rate.

Denote the guard time between each beacon is Ty; the
frame duration is Ty = LT, + Ty. One beacon period of
anchor can be written as T, := Ty = LT + Ty. Using
the Time Division Multiple Access (TDMA) to avoid the
collision between each beacon, the total round period T;
equals to T, = MT, = M(LTs + Ty). The mobile phone
can differentiate all the anchor nodes after T, thus the syn-
chronization time between the anchor network and smart-
phone is Tsyn = M(LTs + Ty). The localization process
after synchronization also needs M beacons to obtain rang-
ing information from all the anchors, i.e., update rate is
Tuwp = Tsyn = M(LTs + T;). When M = 9, L = 16,
Ts = 0.0781s, assume Ty = T, then Typ = Tsyn = 11.9493s.
Such a long time of synchronization and position update is
caused by the low transmission speed of acoustic signal, and
it is not sufficient fast enough for tracking the movement of
humans. One possible way to increase the update rate is
to lower the symbol duration Ts, with faster symbol trans-
mission rate. However, symbol duration is restricted by the
delay spread or coherence bandwidth of channel, and could
not be further reduced without sacrificing the multipath re-
sistance. To improve the speed of localization without rely-
ing on the compression of the symbol interval, a new beacon
structure should be developed.

3.5 Symbol-Interleaved Beacon Structure

One possible solution is interleaving the L length symbols
into the different beacon period; we call it symbol-interleaved
acoustic beacon structure. Unlike the conventional TDMA
that transmits the whole frame within a beacon period, i.e.,
T, =Ty = LTs + Ty, we divide the whole frame into sym-
bols. By transmit one symbol in each beacon period with-
out Ty, the beacon period T}, can be decreased to T}, := Ts.



With reduced T}, the anchor network can achieve higher ac-
curacy by receiving more radio beacons from the controller
for every second. In the receiver side, the adjacent received
symbols are from different anchors. The receiver maintains
L length pipeline, and performs code matching in an itera-
tive way. When the symbols in the pipeline matched with
one sequence in p, the anchor node can be identified. Using
symbol-interleaved beacon structure, the initial synchroniza-
tion time Ty, cannot be lowered, but the following update
time interval can be reduced to Ty, = MTs = 0.7029s. The
refresh of the location data for every 0.7029 second is suffi-
cient for tracking slow-moving humans.

Using symbol-interleaved beacon structure, the transmit-
ted beacon sequence from the anchor network in j-th period
can be written as p(;y(a(j), b(j)), where a(j) = [j mod M]
is the index of the anchor node; b(j) = |j/L] is the index of
the pseudocode in one frame; ¢(j) = [j/(ML)] is one round
measurement.

Using symbol-interleaved beacon structure, the transmit-
ted beacon from the anchor network can be modeled as

Ns—1

gi(t) = Ve Z Pe(i)(a(4), b(7)) - gt = jT5) (4)

g(t) is the acoustic sharp pulse designed in (1); € is the signal
energy. The number of total transmitted symbol is Ns.

4. SMARTPHONE LOCALIZATION
4.1 Design Work flow

In the smartphone, the Signal Detection and Demodula-
tion module performs audio signal recording and filtering,
detect and extract the embedded beacon signal. The detec-
tion result is the digital symbols. Code Matching module
matches the demodulated digital symbols to determine the
anchor ID and its predefined location. The TOA Estimation
module obtains pseudo-ranges by measuring the arrival time
of the signal. Relative Distance module accumulates all the
distance from different anchor nodes until sufficient num-
ber of measurements available for localization. Localization
module performs location calculation by using the measured
pseudo-distance pairs and available anchor positions. The
technical details of all these modules are elaborated in the
following subsections.

4.2 Symbol Detection and Demodulation

In the receiver side, i.e., the smartphone, we need to detect
the signal and demodulate the information bits in the re-
ceived signal (k). The received signal constitutes £; multi-
paths, and these multi-paths can be utilized to extract the
symbol. Thus, the detection problem can be written as to
detect the signal present or not in the j-th symbol. The
received signal waveform in the j-th symbol period could be
written as

&1

ri(k) = VE Y Ajgi(k — k5) +n (k) ()
=0

Assume the sampling rate is F, for symbol duration T, the
total sampling point in one symbol is M, = Ts X Fs. For the
low-duty-cycle pulse used in (1) as the symbol waveform,
the actual signal length is shorter than the total symbol
length. Assume the multi-path delay spread coefficient is «,

the average sampling points for the signal region is M, =
a X (37) X Fs. Thus, the two conditions of the hypothesis
for detecting the signal can be written as
Ho: Tje=0jk k= 1~--Mo
I I‘j,kZ\/gSj’k-i-l’lj,k k:k;-)~~~k?+Mp—1
S memmge k=1 k0 — LR+ M, M,
(6)
where n; j, is the matrix form of the noise n;(k), s; « is the k-
th sampling point for the signal in j-th symbol. The symbol
synchronization process is to detect the signal region in the
noise background, i.e., detect H; condition out of Hy, while
the TOA estimation is to detect the first path of signal and
its delay k?.

To detect the signal region (H; condition), the decision
vector z; can be obtained by using generalized likelihood
ratio test (GLRT) [10]. The decision vector could be derived
as the form of z; 1 > nsyn, With j-th symbol declared present
if the inequity condition is satisfied and return an estimated
value of the signal region k,. The threshold 7sy» is chosen
to maintain a constant false alarm rate (CFAR) [10], and
written as the form of So, where o is the noise variance, 8
is calculated in experiment by using the given false alarm
rate. Then p.;)(a(j),b(j)) in the receiver will be set to
‘1’, otherwise p.(;)(a(j),b(j)) = 0, where ¢ = [j/(ML)].
De(j)(a(f), b(4)) is one estimated version of p(a(j),b(s)), ¢ is
one round measurement.

4.3 TOA Estimation

After detected the symbols in Section 4.2, more detailed
time-of-arrival (TOA) estimation should be performed to
estimate the first path sample k;-) in the whole symbol du-
ration. The TOA estimation provides ranging information
that needed for localization, and its accuracy directly affects
the overall position resolution. The TOA estimation prob-
lem can be written as to detect kj in j-th symbol of (5)
as

k) = min(klr; (k) > fhoa), k € [kp — Jp, Ky + Mo]  (7)

where k, is the obtained rough signal region during sig-
nal detection; J, is the step length used for Jump-Back-
and-Search-Forward (JBSF) [8]; Ntoq is the TOA estimation
threshold; I%? is the estimated TOA path of kﬁ) The chal-
lenges of dynamically change the TOA estimation threshold
Ntoa to balance between the false alarm and miss detection
is addressed in [15] by maximizing the TOA Detection Prob-
ability.

4.4 Synchronization and Code Matching
Perform code matching between predefined pseudo-codes
Pm,: and the estimated information bits p.(;)(a(j), b(4)), the
m-th anchor node can be identified if these two sequences
matched. When symbols with total M x L length have been
received, the code matching process can be utilized to syn-
chronize between the anchor node and the smartphone by

[Aa, Ab} = (8)
arg min 1Pe(i) (a(3) + Aa, b(7) + Ab) = Pm,ill1 < deot

a»=p
where the beacon period index j € [jo, jo+ M L], jo = c(j) x
(ML) is the starting index of the symbol sequence, ML is
the total length of symbols that used to perform (8), j =



Jj — jo. ¢(j) can be used to illustrate the index number of
code matching. a(j)+ A, and b(5) + Ay is the cyclic shifting
in pej) (-)-

With the offsets A, and A, available for the anchor node
index and pseudocode sequence index, the mobile phone can
aware the the anchor node index (72) and sequence index (2)
of the current received symbol j as

mod M]+ A, (9)

i=[(j—jo) mod L]+ A,

where jo = |j/ML]| x (ML).

4.5 Distance Update

After the synchronization in Section 4.4, and obtained
and 7 in (9), then every M symbols can obtain one distance
measurement group with the same pseudo sequence index i.
Such group of measurements is the minimum tuple of rang-
ing for one position update, and every measurement in such
a group is from different anchor nodes. For j-th symbol, the
index of group is j, = |j/M| with each element represents
the TOA value obtained in (7). Denote the TOA estimation
matrix as r = 7,5, m = [1, M]. For notation convenience,
one group of measurements from all anchor nodes can be
represented as ry = 7y, j,, Where jg is a fixed value, ry is a
measurement vector.

Due to some symbol-miss in real situations and none dis-
tance measure during ‘0’ symbols, the TOA value is not fully
available for all M anchor nodes in one round time, i.e., the
obtained ranging value ry is a sparse vector. To improve the
reliability of ranging results, we perform sliding window for
the TOA estimation matrix r with an appropriate length of
W, and obtain a new version of ry. The rational of the slid-
ing window is to use the historical data to represent current
sparse measurement. However, different symbol index corre-
sponds to its own starting index of the TOA measurement,
e.g., the TOA value in j-th symbol is larger than (j — 1)-th
TOA value by Nj. Thus, for the extracted length of W and
width of M matrix, i.e., the latest W column of the matrix
r, ry = [rg(m)] can be calculated by

Jg’

w-1
1
Tg(m) = W AZ_O [Tmf(jg_Ag) + Ag X Nk:l (10)
g=

where 7, (j,—a,) only counts when it contains TOA mea-
surement, Ng4(m) is the total number of effective measure-
ments available in the W length matrix r, m represents the
m-th row. Thus, vector r4(m) can be used as the current
distance measurement, with each TOA value indicates the
pseudo-range from the m-th anchor to the mobile device.

The measured pseudo-ranges between the anchor nodes to
the mobile phone is 7 = C X r4(m), where C is the speed
of the aerial acoustic signal. Denote the true distances are
m, m = [1,..., M], the unknown starting point is 0., 7n,
can be written as

P = T+ Or + N (11)
where n,, is the distance measurement noise for #,,.

4.6 Location Estimation

With the measured distance from M anchor nodes avail-
able, multilateration can be performed to localize the smart-
phone. Assume the real position of the smartphone is p =

(z,y), the position of the anchor node is pm = (Tm,Ym),
then the real distance from the smartphone to the anchor
node m can be written as 7m = /(T — Tm)2 + (Y — ym)>
We define the vector of unknown parameteras = [z y &,]".
The localization purpose is to obtain estimated value of ¢
from observations, where [Z, §] in 0 is the estimated position.
However, (11) contains the nonlinear term, rather than
estimate 6 directly, we select one of the M measurements as
the reference f, and using this reference to cancel out the
nonlinear term. The selection of this reference could be ran-
dom or based on the code-matching quality (the mis-match
residues). To better illustrate this process, we can square
the both sides of (11) and minus the reference measurement

f as
2

(@5 + Y — ) = (@5 + Y7 = F7)] + 2PmTim — 25an(1
12)

= Q(IW - If).’L‘ + 2(ym - yf)y - 26’r(fm - Tf)

where n,, is differential noise term of n,, — ny. Equation
(12) can be expressed in matrix form as

A =v+pn (13)
Tm —Tf Ym —Yf Tf—7Tm T

where A = ,0= 1|y | and
. 5,

V= %[(mgn-i-y?n—ﬁn)—(xfc-i-y?—fff)}(M—l)x:sa m=1,....M

when m # f. 7., is the measured distance obtained from
(11). pn = 2FmNm — 25Ny, is the noise term with its first
moment as E(pn) = 0 and the covariance matrix of vector
Pn as 3 = Cov(pn). The diagonal element of the covariance
matrix are 27, (o2, + O'J%) + 26,02, with other elements in
the matrix as Qfmafc.

Then (13) can be formulated as a Least-Square (LS) prob-
lem, and we can obtain the solution as

6=A"STTA)TTATE Y (14)

Initially, the value of the covariance matrix > is unknown,
we could initialize 3 with all ‘1’ in its diagonal and ‘0’ for
other elements. For the following snapshots, > could be
estimated, and we can substitute 3 into (14) to improve
estimation accuracy.

4.7 Error Pruning Techniques

Error pruning techniques are essential for the correct oper-
ation of the indoor localization system. The source of poten-
tial errors could be the sound noise, blockage, indoor Non-
light-of-sight (NLOS) transmission, anchor network failure.
In real system, applying too strong criterion in error pruning
would lower the location update rate, thus the parameters
used in the following techniques should balance between the
accuracy and location update rate.

Signal Level Resistance. To deal with the signal noise
issues, we perform spread spectrum in transmission and cor-
relation processing in the receiver to obtain noise resistance.
We use the the Gaussian second derivative pulse as the wave-
form, which has the properties of high multipath and timing
resolution, low energy consumption, robust to noise, and low
spectrum emission.

NLOS Identification and Mitigation. Compared with
the noise, indoor harsh environment with blockage and high-
dense multi-paths is more challenge. The blocked localiza-



tion beacon could either be attenuated or introduces addi-
tional delay that prolonged the obtained ranging distance,
we call it NLOS bias effects. Using these problematic rang-
ing results could cause over-fitting in localization calcula-
tion, or even make the final results diverge. Thus, how to
identify and mitigate these prolonged or problematic rang-
ing measurement is crucial in localization.

One of the superiority of using acoustic signal for rang-
ing lies its high timing resolution and the full access of the
acoustic channel information. Extract features from esti-
mated channel condition, the goodness of transmission could
be evaluated. For example, if the delay spread of the esti-
mated channel is significant larger than normal conditions,
the ranging result from this channel has high probability of
blockage, i.e., NLOS condition. By lowering the weighting
efficient of these ranging measurements during localization,
overall location result could be more stable. We use the
combined metrics of RMS delay spread, Kurtosis, and Mean
excess delay to identify the NLOS channel condition, and as-
signs lower weight for the measurements from NLOS channel
during localization processing.

Anchor Level Error Mitigation In subsection 4.4, the
demodulated pseudocode is matched to identify the anchor
node. In real situations, these exists some bit-error for our
implemented acoustic communication physical layer. When
designing the pseudocode, some extent of redundancy is em-
bedded. The code matching process has some tolerance of
dior for the bit-error. However, if the bit-error for one an-
chor node is higher than the design redundancy, then the
measurements from this anchor node should be mitigated
in this round. This process could eliminate some extent of
large errors.

5.  PERFORMANCE EVALUATION

In this section, we perform system performance evalua-
tion by using Apple’s iPhone 4S and iPod Touch 5 (iTouch5)
without any modification of the hardware or jailbreak of the
operating system. First, we provide quantified results of
the sound pressure level of our acoustic beacon in subsec-
tion 5.1. Second, we evaluate the localization performance
of our proposed system in two typical environments: office
(Subsection 5.2) and classroom (Subsection 5.3).

The 3dB pulse width of the transmitted signal as in (1) is
chosen with T, = 1.5ms to meet the bandwidth constraint.
A sharper pulse results in better multipath robustness and
time-domain resolution, but with increased bandwidth oc-
cupancy. Restricted by the bandwidth of a microphone, the
effective pulse energy and operating distance would be de-
creased when more frequency components outside the re-
ceiver band. The symbol duration is chosen as Ts = 0.0781s,
resulting in the pulse duty cycle of R = 1.92%. Shorter
symbol duration leads to a higher data rate and location re-
freshing rate, but restricted by the multipath environment.
The choice of these parameters is a tradeoff between the
achievable resolution and maximum operating distance.

5.1 Sound Pressure Level Measurement

Guoguo system uses audible-band signal as beacon, mak-
ing it user-friendly and widely applicable for many indoor
location services and applications. However, users might be
concerned about the noise effect of the acoustic signals in
indoor environments.

To make our transmitted acoustic signal unperceptible to
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Figure 2: (a) The perception level of human ears; (b) com-
parison of sound pressure level in four scenarios.

users, we tuned the waveform of the beacon signal with
appropriate transmission power. To quantify the results,
from the perception curve of human ears (A-weighting co-
efficients, we derive the sound pressure level (SPL) value
as a metric of noisiness of the environment. We place four
anchor nodes very close to a smartphone (the most noisy
case), and measure the difference of SPL. The normal sound
background case is named (“Normal”); the environment that
filled with our beacon signal is called (“Beacon”). The SPL
values for these two conditions in four different environments
are shown in Fig. 2b. From Fig. 2b, we observe that the dif-
ference in average SPL level of the “Normal” and “Beacon”
is under the level of randomness: different measurement of
the SPL in different time has some sort of randomness (near
2dBA). The maximum difference of the SPL caused by the
“Beacon” is 0.85dBA, which is below the perception level of
human’s ear. Therefore, we can conclude that our trans-
mitted acoustic beacon signal is completely ignorable and
disturbance-free even in extreme cases.

5.2 Exp I: Office Environment

Experiment Setup. We deploy 9 anchor nodes in a
typical office environment to evaluate the performance of
Guoguo as shown in Fig. 3. The maximum distance between
anchor nodes is larger than 10 meters.

Total 12 cases have been tested: 6 of them are tested un-
der quite environment for theoretical performance; other 6
cases are tested under simulated realistic environment (sim-
ulate human talking by playing video sound near the mobile
device). The experiment configuration is summarized in Ta-
ble 1. The term Length represents the measurement lasting
time in seconds, which is randomly chosen. The last term is
the effective number of accessed anchor nodes (Ness) during
localization calculation. The number of real accessed anchor
nodes is less than total number of deployed anchors. This
is often caused by interference, blockage, and NLOS during
localization process.

Localization Accuracy in Quite Environment. The
scatters of the localization results for users in different loca-
tions in a normal office environment are shown in Fig. 4. In
this case study, to support quantitative analysis, we local-
ize a smartphone when its user stands still at different spots.
We can get the error surface of localization from Fig. 4. Note
that, our system is not limited to localize a standing subject.
Localization traces of a moving subject are demonstrated in
the next section.
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Figure 3: Experiment setup in an office environment

Table 1: Experiment configuration in an office environments

ID | Use Cases Length (s) Background Neyy
1 Envl 60.91 Quite 6.86
2 Env2 60.97 Quite 6.15
3 Env3 60.61 Quite 8

4 Env4 60.64 Quite 7.77
5 Envb 60.53 Quite 8.24
6 Env6 60.64 Quite 8.72
7 P4snoisel 522.97 Sound 5.03
8 P4snoise2 300.48 Sound 6.11
9 P4snoise3 346.35 Sound 5.99
10 | Touchnoisel 398.79 Sound 5.97
11 | Touchnoise2 461.03 Sound 6.13
12 | Touchnoise3 582.14 Sound 6.07

The cumulative distribution function (CDF) of the local-
ization error (LE) are shown in Fig. 5. If using 80% proba-
bility, the localization error for all the cases is in the range
between 4cm to 8cm. These localization results are very ac-
curate and sufficient for fine-grained indoor location-based
services.

Localization Accuracy under Background Sound.
To evaluate the localization performance in realistic environ-
ment, we add artificial sound by playing high volume videos.
The CDFs of the added sound are shown in Fig. 6. The
measured sound pressure level (dBA) is calculated from the
received acoustic signal at a smartphone during localization.

Fig. 7 shows the CDF of the localization error (LE) in
an office environment. In these six cases with background
sound, the final localization accuracy is still within 10cm,
with less than 10% results slightly affected. From another
point of view, the number of effective accessed anchors un-
der background sound is slightly lower than the normal cases
from the N¢ss value in Table 1 because some of the acoustic
beacons have been mitigated. Since we use more anchors
than the minimum requirement (three anchors), these addi-
tional anchors can improve our system’s availability under
realistic environment.

Localization Metrics. Other metrics that used to eval-
uate the system performance are the Ranging Rate, local-
ization Miss Rate, and location Average Update Time. The
definition of the Ranging Rate is Nroa/Ns, where Nroa
is the total Number of TOA measurements, N is the to-
tal number of symbols transmitted. Higher Ranging Rate
means better ranging detection probability. The maximum
theoretical value of Ranging Rate depends on the ‘1’ density
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Figure 4: Scatters of the localization results in an office
environment.

of the pseudo-code rather than 1. From Fig. 8a, we know
that the Ranging Rate is larger than 0.5 for most cases,
which is contributed by using our derived high ‘1’ density
pseudo-codes.

The localization Miss Rate evaluates the quality of ob-
tained location values. The definition of Miss Rate is Nioc/Npos,
where N, is the number of obtained location results; Npos is
the number of refined location results after the post-processing
module. Lower Miss Rate means better localization results.
The Miss Rates for all the cases in Fig. 8b show very small
value, i.e., the localization results have a very good quality.

Another important metric is the Average Update Time,
representing the refreshing rate of the localization process.
If the refreshing rate is too slow, it is hard to keep up with
the moving traces of subjects. Due to the low transmis-
sion speed of acoustic signal, minimizing Average Update
Time is nontrivial. From Fig. 8c, we observe that the Aver-
age Update Time for Guoguo is less than one second, suffi-
cient for capturing the traces of moving subjects at modest
speed. This rate is significantly faster than other existing
approaches that also use acoustic signal for localization.

Overall Localization Accuracy. Using 50-percentile,
80-percentile, and 90-percentile probability to evaluate the
localization accuracy, the results of all 12 cases are shown in
Fig. 9. The achieved localization accuracy is in the centimeter-
level even for the cases with added interference. Such results
could push the current coarse-level LBS into fine-grained
level in an effective way.
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5.3 Exp 2: Classroom Environment

Experiment Setup. Similar to subsection 5.2, we deploy
9 anchor nodes in a multimedia classroom environment to
evaluate the performance of Guoguo as shown in Fig. 10,
with maximum distance larger than 15 meters.
The experiment configuration in this classroom environ-

ment is summarized in Table 2.

Table 2: Experiment configuration in a classroom

ID | Use Cases Length (s) Background Ny
1 Envl 590.43 Quite 6.98
2 Env2 408.70 Quite 6.80
3 Env3 459.76 Quite 7.0
4 Env4 676.39 Quite 6.99
5 Envb 270.49 Quite 5.9
6 Env6 599.47 Quite 7.0
7 P4snoisel 279.38 Sound 6.94
8 P4snoise2 641.74 Sound 7.96
9 P4snoise3 240.40 Sound 7.72
10 | Touchnoisel 599 Sound 7.0
11 | Touchnoise2 88.79 Sound 5.38
12 | Touchnoise3 347.5 Sound 5.0

Localization Accuracy under Quite Environment.
The scatters of the localization results for users in different
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Figure 6: CDF of the added background sound level in an
office environment.

locations in a classroom environment are shown in Fig. 11.
Similar to Fig. 4, the error surface of achieved location re-
sults is very small.

The CDF of the localization results for the measurements
in Fig. 11 is shown in Fig. 12. For most of the cases, e.g.,
using 80% probability, the localization accuracy is very high
and in the range from 5¢m to 10cm.

Localization Accuracy under Background Sound.
To evaluate the localization performance under interference,
we added artificial sound in the classroom environment by
playing the lecture videos. The CDF of the added differ-
ent background sound is shown in Fig. 13. The CDF of the
localization results under background sound on classroom
environment is shown in Fig. 14. One interesting observa-
tion from Fig. 14 is that the iPhone4s achieves much better
performance than the iTouchb5. The reason could be the
build-in multi-microphones and noise-canceling mechanisms
in iPhoned4s; while the iTouchb is only equipped with one
microphone and no noise-canceling hardware.

Localization Metrics. The Ranging Rate for the mea-
surements in a classroom environment is shown in Fig. 15a,
while two cases of iTouchb suffers from low Ranging Rate
under background sound. The Miss Rates in Fig. 8b shows
very small value. The Average Update Time for the envi-
ronment of classroom is near 0.8 second, and sufficient for
mobility cases.



Figure 10: The experiment setup in a classroom environment
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an office environment

Overall Localization Accuracy. The 50-percentile,
80-percentile, and 90-percentile localization accuracy results
are summarized in Fig. 9. Except the iTouch5 under back-
ground sound, other cases achieves localization accuracy un-
der 10cm for most cases. The localization results of iPod
Touchb are slightly worser than iPhone4s, but still sufficient
for indoor location-based services.

Anchor Node Design. Targeting at fine-grained indoor
location-based services, e.g., retail store, museum, office and
classroom, several hundreds investment on the anchor in-
frastructure to enable centimeter-level location related ser-
vices could be profitable. To minimize the infrastructure
cost and promote the real system deployment, we designed
our own hardware for the anchor node with low-complexity

6. PUTTING IT ALL TOGETHER and additional features, e.g., solar powered, battery charg-

Our proposed smartphone-based indoor localization sys- ing, pluggable sensor board, remote program upload, wire-
tem achieves centimeter localization accuracy by leveraging less speaker/microphone. The comparison of our “Guoguo”
the anchor network and processing on smartphone. To make hardware vs. two quarters is shown in Fig. 17. The total
the real system applicable and suitable for real deployment, BOM price for the anchor node is less than $10. With one
significant efforts should be made to design the anchor net- anchor every 10-20 meters deployed in an indoor space (e.g.

work and implement the algorithm into the smartphone. museum, shopping center) and minimum of four anchors,
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Figure 12: CDF of the localization results in a classroom
environment.

it is feasible and cost effective to deploy such systems in
many indoor environments. For example, with marginal in-
vestment on the indoor infrastructure, a retail store can en-
able “smart” shopping experiences for smartphone users with
fine-grained shelf-to-shelf navigation, location-aware recom-
mendation and advising, and physical items searching and
navigation.

Smartphone Processing. We implemented the algo-
rithms from audio recording and pre-processing, signal de-
tection, TOA estimation, code matching, and NLOS mitiga-
tion into the smartphone app. All the processing was put in
the iOS Grand Central Dispatch (GCD) queue to enable con-
currency with the mobile application without slowing down
the smartphone’s responsiveness. To ensure efficiency of the
smartphone processing, we use the vDSP portion of the Ac-
celerate framework in iOS. Other complex computation was
executed in the server to minimize the computation cost in
the smartphone. Once the smartphone publishes a ranging
result to the server, the process on the server side performs
localization and returns the result to the smartphone asyn-
chronously. Such configuration balanced the communication
and computation cost: the smartphone extracts ranging in-
formation from the audio raw data and greatly reduces com-
munication overheads; the server handles concurrency and
serves multiple localization requests from smartphones.

Moving Traces Demo. To demonstrate the perfor-
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Figure 13: CDF of the background sound in a classroom
environment.
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Figure 14: Localization error of the background sound in a
classroom environment.

mance of “Guoguo” in real situations, three typical moving
traces captured by the Guoguo system are shown in Fig. 18.
The moving traces demonstrate the localization accuracy
and feasible update rate of our system.

7. RELATED WORK

Localization schemes can be classified into three cate-
gories: angle-based, fingerprinting-based, and ranging-based.
An angle-based approach relies on the directional antenna
scan to achieve angle resolution. But a narrow-beam direc-
tional antenna is very expensive and unsuitable for consumer
applications. Fingerprinting-based approaches [3, 5, 2, 4]
or other proximity approaches [20, 9, 6, 1] feature lowest
complexity without any requirement on additional infras-
tructure. However, they achieve only room-level resolution
and require the site-survey to build fingerprinting databases
at the cost of intensive labors. Ranging-based approach is
more straightforward. Measuring the radio signal strength
(RSS) and time-of-arrival (TOA) are the two typical ranging
solutions. Compared with TOA, RSS information is widely
available and lots of work are dedicated to use the RSS of
WiFi, bluetooth, or cellular signal, for indoor localization
[27, 7, 11, 13]. However, the need of the prior informa-
tion of the radio attenuation model, and the time varying
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Figure 17: Guoguo anchor node vs. quarters

features of channel make these approaches only suitable for
applications with low location accuracy needs.

TOA-based ranging is more accurate and robust. The
Cramér-Rao Low Bound (CRLB) of TOA ranging is in-
versely propositional to the effective bandwidth of signal, it
is also why Ultra-wideband (UWB) signal received special
attention for its high accuracy on ranging and localization.
However, current UWB techniques are still under develop-
ment and not available on current smartphones. Another
option is to use the acoustic signal for TOA ranging due to
its low transmission speed. MIT Cricket[23], Active Bat [26]
and DOLPHIN [18] are well-known systems that use ultra-
sound for localization. However, normal smartphones can-
not receive ultrasound. In addition, they require radio signal
for synchronization, e.g., ZigBee for Cricket. Dependence on
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Figure 18: Moving traces obtained by indoor localization

special devices and non-applicability on smartphones greatly
limits their adoption in daily indoor activities.

Recent research on leveraging the ubiquitous microphone
sensors in a smartphone introduces a convenient and low-
complexity approach. A. Mandal et al. [17] used a PDA
to transmit noticeable 4kHz acoustic signal. C. Peng et al.
[22] proposed to transmit low-attenuation 2-6kHz acoustic
signal for better coverage, but their solution causes sound
pollution due to the audible signal. H. Liu et al. [14] used
a smartphone to transmit high-band audible sound to assist
WiFi localization. Authors in [19] performed localization
using desktop PCs and laptops, achieving location accuracy
of several meters. In addition, these solutions are not scal-
able and feature low location update rates. Due to the use
of two-way ranging and simple acoustic “Beep” signal, only
one user can be handled and localized at a time. Adopting
time-divided coordination among users could be a partial
solution. However, random concurrent access patterns of
many users in real situations make their solutions hard to
support multiple users.

To compare the performance of Guoguo with other ex-
isting indoor localization approaches, we summarize their
key features in terms of principle, accuracy, cost, scalability,
pros and cons in Table 3. The scalability refers to how many
end users can be supported simultaneously. From Table 3,
we observe that Guoguo achieves better balance in terms of
cost and performance over other acoustic/ultrasound based
approaches. Ranging in the passive receiving mode in a
Guoguo-enabled smartphone makes it highly scalable while
other ranging methods in the active transmitting mode lim-
its the scalability due to interference of signals. Guoguo
only requires a smartphone for a user, along with low-cost
anchor nodes preconfigured by a service provider. Compared
with other low cost approaches (mainly smartphone-based),
e.g., RSS and fingerprinting based approach, Guoguo sig-
nificantly outperforms other approaches in accuracy. Exist-
ing smartphone-based approaches achieve only room-level
or several-meter-level accuracy. As far as we know, Guoguo
outstands as a practical smartphone-based solution with foot-
level accuracy without special hardware extensions on users’
phones.

8. CONCLUSION

We proposed the Guoguo algorithm and ecosystem to re-
alize the smartphone-based fined-grained indoor localiza-
tion. For the first time, we can locate a smartphone user
at the centimeter-level, which has significant implication
for potential indoor location services and applications com-
pared with existing meter-level localization solutions. To
address the challenges of utilizing the audible-band acoustic
signal in smartphone localization, i.e., strong attenuation,
interference-rich, high sound disturbance and difficulty in
synchronization, we proposed comprehensive schemes to im-
prove the localization accuracy and extend coverage without
sound disturbance. Significant improvements were achieved
in terms of accuracy, cost, and scalability, compared with
other existing approaches. Experimental results demonstrated
that the achieved average localization accuracy is about 6 ~
25cm in typical office and classroom environments. Guoguo
represents a leap progress in smartphone-based indoor lo-
calizations, opening enormous new opportunities for indoor
location-based services, positioning and navigation systems,
and other commercial, educational, or entertainment appli-



Table 3: Comparison of Guoguo with existing localization techniques

System Signal Type | Technique | Accuracy] Cost Scalability, Pros Cons
Guoguo Modulated Passive- High Low High No dedicated device | Low-complexity an-
acoustic mode 6 ~ for users, high accu- | chor nodes
signal  (17- | ranging 25cm) racy and scalability,
20kHz) disturbance-free
Cricket[23] Ultrasound, | Ranging High Medium | High High accuracy Need dedicated de-
radio- based (10 cm) vices
assistant
Beep [17] Acoustic sig- | Active- High Medium | Limited High accuracy noticeable acous-
nal (4kHz) mode (60cm) tic signal, complex
ranging anchors, limited
users
Active  Bat | Ultrasound Active- High Medium | Limited | High accuracy Need dedicated de-
[26], DOL- mode (cen- vices, need dense an-
PHIN [18] ranging time- chor nodes, limited
ter) scalability
Ultra- Impulse- Ranging High High High High penetrating | Need dedicated de-
wideband radio Ultra- | based ability, high accu- | vices, expensive de-
[12, 16] wideband racy, high multi-path | vices
signal resolution
Radio RSS | WiFi, blue- | Ranging Low Lowest | High No dedicated de- | Need a prior of the
[7, 11, 13, 27] | tooth, or cel- | based vices, existing | radio attenuation
lular signal infrastructure, low | model, low accuracy,
cost need calibration
Fingerprinting| WiFi, Cel- | Fingerprintf Low Lowest | High No need of addi- | Need war-driving,
2, 3, 4, 5] lular, Blue- | matching | (room- tional infrastructure, | time-varying, low
tooth, FM level) low cost accuracy
and ambient
sound
Proximity [1, | RFID, NFC | Proximity | Low Medium | High Low  cost sensor | Low accuracy, and
6, 9, 20] and acoustic | based nodes, support | needs dense sensors
signal multi-users

cations. We will build Guoguo-enabled indoor LBS appli-
cations, and plan to deploy such ILBS applications in mu-
seums and libraries, and further push the envelope of high-
resolution indoor localization.

9. FUTURE WORK

Anchor Coverage and Maximum Operation Dis-
tance. In this paper, we only demonstrated that the Guoguo
works in two typical indoor environments. A more compre-
hensive study regarding the maximum operation distance of
the anchor and the coverage of the anchor network should
be conducted. In real environments with blockages, e.g.,
big shelves or human walking, the effective coverage of the
anchor network would be much smaller. Different schemes
of anchor node placement, and the guideline for real de-
ployment should be developed for better coverage and easy
installation.

Optimized Localization Approach. The localization
algorithm used in Guoguo is a normal least squares (LS)
based approach. When the pseudorange measurements are
non-convex, LS approach would converge to local optimal
values. In the future work, we will apply global location
optimization approaches, e.g., Semidefinite Programming,
to jointly estimate the location and delay (d,), and avoid
the calculation of the matrix inversion operation in (14).

Interference-robust Scheme. The inherent interfer-
ence in the crowded audible-band would impede the appro-

priate operation of Guoguo. Ambient noise causes the in-
band interference, and has much large bandwidth and en-
ergy than the acoustic beacon of Guoguo. In addition to
the approaches proposed in this paper for signal detection,
TOA ranging and localization, sophisticated error and inter-
ference mitigation schemes should be developed to improve
the robustness.

Human and Animal Exposure. In this paper, we
made the beacon unnoticeable to human to minimize the
potential healthy risk. For the effect caused by long term
exposure of the acoustic beacon, related professional studies
should be cited. Moreover, we are not sure whether some
animal species can actually hear the beacon sound. Further
studies should be conducted to analyze the reaction of the
animal or pets when exposed to the acoustic beacon. It is
very important to make the system pet friendly.
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