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Abstract 
   
 Most empirical research in health economics is conducted with the goal of providing 

scientific evidence that will serve to inform current and future health policy.  Such policy 

analytic studies typically use nonexperimental (survey) data and focus on a particular variable 

(the policy variable, xp) that is at present, or will in the future be, under the control of a policy 

decision-making entity.  The goal is the estimation of the effect that a prospective exogenous 

change in xp would have on a targeted outcome of interest (y) – the policy effect.  In the present 

paper we propose a pseudo-difference-of-means (PDOM) framework for policy effect 

estimation.  The policy effect typically takes one of three forms (incremental, marginal, or 

treatment) depending on the nature of the policy variable (discrete, continuous, or binary), and 

on the type of change in xp under policy consideration.  The full development of the PDOM 

estimator in each of its three forms is presented -- from its intuitive conceptual foundations to the 

details of its practical implementation.  In the design of the PDOM estimator, particular attention 

is paid to accommodating the potential endogeneity of the policy variable.  The asymptotic 

properties of the PDOM are derived after showing that it can be cast as a special case of a 

general class of estimators that have been thoroughly studied in the econometrics literature.  

Three empirical applications of the PDOM are discussed -- one for each of the alternative forms 

of the PDOM (incremental, marginal, treatment).  In each of these examples the potential 

endogeneity of the policy variable was tested and found to be both statistically and substantively 

significant. 

JEL Classification:  C31, I11 

Keywords:  Incremental Effects, Marginal Effects, Treatment Effects, Asymptotic Inference 
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1.  Introduction 

 Most empirical research in health economics is conducted with the goal of providing 

scientific evidence that will serve to inform current and future health policy.  Typically, the focus 

is on a particular variable (the policy variable, xp) that is at present, or will in the future be, under 

the control of a policy-making entity.  The key policy analytic objective is estimation of the 

effect that a prospective exogenous change xp would have on a specified outcome of interest (y) 

[the policy effect (PE)].  Consider estimation of the effect that a change in the policy variable 

would, on average, have on the outcome.  In the ideal, to ensure that the results would be 

causally interpretable, the data for such a study would come from an experiment in which values 

of xp can be mandated for each sample member.  Formally, for the case in which xp is not binary 

(i.e. it is count-valued or continuous) and the prospective discrete policy change (a change in xp 

from xp1 to xp2) is known, the estimation objective is the following incremental or “arc” policy 

effect 

 

 p 2 p1x x
ARC p

p

E[y y ]
PE (Δx )

Δx

−
=        (1) 

 
 
where Δxp = xp2 – xp1, and *

px
y  is the random variable representing the value of the outcome for 

the case in which the value of the policy variable is mandated to be *
px  for everyone in the 

relevant population.  If xp is continuous and the specific prospective policy change is not defined 

(i.e., xp1 and xp2 have not been specified) the relevant version of (1) is the following marginal 

(partial) policy effect   
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p

x
MARG ARC pΔx 0

p

E[y ]
PE lim PE (Δx )

x→

∂
= =

∂
.     (2) 

 
Finally, if xp is binary [i.e., xp1=0 and xp2=1] (1) becomes the following treatment effect measure 

 
 TE 1 0PE E[y y ]= − .        (3) 

 
This paper focuses on estimation of such policy effects. 

 In the next section, we detail the conceptual background and formal development of a 

unifying and consistent pseudo difference-of-means (PDOM) estimation framework for (1), (2), 

and (3) when:  a) only survey data is available for estimation; b) a parametric conditional mean 

regression form can be used to represent 
pxE[y ] ; and c) survey observations on xp are sampled 

endogenously.  Because (2) and (3) are special cases of (1), most of the introductory exposition 

is cast in the arc policy effect context.  In section 3, we show that the PDOM method can be 

represented as a special case of a general class of estimators whose statistical properties are well-

established in the econometrics literature – two-stage optimization estimators.  The relevant 

asymptotic inferential statistics for hypothesis testing and confidence interval estimation are, 

therefore, easily derived from the general theory for this class of estimators.  In section 4, to 

illustrate the implementation of the PDOM method and corresponding asymptotic inferential 

statistics, we discuss empirical applications of the estimator.  Three examples are detailed – one 

for each of the relevant forms of the PDOM as it pertains to estimation of arc (incremental), 

marginal, and treatment effects – expression (1), (2) and (3), respectively.  The final section of 

the paper summarizes and concludes. 
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2. Policy Effects, Endogeneity and the Pseudo-Difference of Means Estimator 

 We begin by defining some important terms and concepts.  We place the discussion in the 

context of the arc policy effect defined in (1) [henceforth the policy effect] but all of the concepts 

discussed are easily extended to marginal and treatment effects as given in (2) and (3).  The 

policy is defined as a mandated change in the value of the policy variable (xp) from xp1 to xp2.  

The policy effect (PE), as defined in (1) measures the per unit of xp expected amount by which 

*
px

y  will change as a result of the policy, recalling that *
px

y  is the random variable representing 

the potential outcomes under the mandated condition that *
p px x=  for everyone in the 

population.  As such, *
px

y  is counterfactual from the perspective of survey data in that its value 

can only be observed for individuals whose sampled values of xp are equal to *
px .  For example, 

let  

 y  ≡  the number of yearly visits to the physician 
 
 xp ≡  the per visit copay 
 
and suppose a change in the copay from $15 to $25 is proposed. Consider the hypothetical 

population of 6 individuals shown in Figure 1.   

Figure 1 
Person y15 (xp* = $15) y25 (xp* = $25) 

 
1 
2 
3 
4 
5 
6 

 
3 
5 
2 
3 
1 
3 

 
3 
4 
1 
3 
3 
2 

 
 
The policy effect as defined in (1) in this case is 
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 25 15E[y y ] 2.667 2.833PE .0166
10 10

− −
= = = − .     (4) 

Expression (4) measures the change in the expected number of doctor visits per dollar change in 

the copay.  If we could sample experimentally, each sample members' behavior (manifested as 

the number of times they visit the physician - *
px

y ) could be observed for both of the relevant 

values of xp (xp1 = $15 and xp2 = $25, respectively) and a causally interpretable estimate of (4) 

would be obtained using the following simple difference-of-means (DOM) 

 

 

n n

25(i) 15(i)
i 1 i 1

y y
1

10 n n
= =

 
 
 −
 
 
 

∑ ∑
       (5) 

 
where *

px (i)
y denotes the experimental value of the outcome for the ith sampled individual (i = 1, 

..., n) under the mandated policy value *
px  (= $15 or $25), and n is the sample size.   

Unfortunately, in the survey sampling context y15 and y25 are counterfactual in the sense that 

neither is fully observable in the population -- i.e. some individuals will be observed with 

px 15= , others with px 25=  , and still others with xp equal to neither $15 nor $25.  In our 

example, suppose that only individuals 1 and 2 actually have a copay of $15 (i.e., the observed 

value of xp for persons 1 and 2 is 15).  For these individuals, 15y  is observable [in the form of (y | 

xp =15)] but 25y  is not -- i.e. for individuals 1 and 2, *
px

y  is a counterfactual entity when *
px 15≠ .  

An analogous assessment holds for individuals 3 and 4.  For these two individuals y25 is 

observable as (y | xp= 25) but the random variable *
px

y  is a counterfactual entity for them when 
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*
px 25≠ .  Finally, for individuals 5 and 6, *

px
y  is counterfactual when either *

px 15=  or *
px 25= .  

Therefore, the DOM given in (5) is not feasible.  Moreover, the following version of the DOM, 

based on the observable data, will be biased  

 

 

25 15n n

i pi i pi
i 1 i 1

25 15

(y | x 25) (y | x 15)
1

10 n n
= =

 
= = 

 −
 
 
 

∑ ∑
     (6) 

  

where *
i pi p(y | x x )= denotes the observed value of the outcome conditional on the fact that the 

ith individual was sampled from the subpopulation for whom *
p px x= , and *

px
n  denote the size of 

the corresponding subsample.  To see this, consider the version of Figure 1 shown in Figure 2 

 
Figure 2 

Person y15 (xp* = $15) y25 (xp* = $25) 

(observable xp = $15) 
1 
2 

 
A (observable y at xp = $15) 

3 
5 
 

 
D 
3 
4 
 

(observable xp = $25) 
3 
4 

 
B 
2 
3 
 

 
E (observable y at xp = $25) 

1 
3 
 

 
($15 ≠ observable xp ≠ $25) 

5 
6 

 
C 
1 
3 

 
F 
3 
2 

 
 
Note that we distinguish observed values of the policy variable from mandated values using a 

"*" superscript -- xp denotes observed values, *
px  denotes mandated values.  The population data 
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on the outcome y for individuals whose observed copay under survey sampling would be $15 

(i.e. persons 1 and 2) are given in cells A and D of Figure 2.  In cell A are given the observable 

(factual) values of y for these individuals.  The counterfactual (nonobservable) values of y as 

they would be for these individuals if the copay were mandated to be $25 are given in block D.  

Likewise the population data for those who actually have a $25 copay  (i.e. persons 3 and 4) are 

given in cells B and E.  The latter displaying the values of the outcome (doctor visits) that are 

observable via survey sampling.  The former containing the values of y pertaining to the 

counterfactual scenario in which a $15 copay is mandated.  Cells C and F hold the potential 

doctor visit outcomes for those individuals whose copays are neither $15 nor $25.  These cells 

correspond to the counterfactual scenarios in which the manadated value of xp is either $15 or 

$25, respectively.  The population data in both of these cells is, of course, counterfactual.  The 

counterfactual cells of the population distributions of the random variables y15 and y25 are 

indicated by shading. The observable cells of the population distributions of the counterfactual 

random variables y15 and y25 are unshaded (A and E, respectively).  If we simply conduct a 

survey (i.e. draw a sample from blocks A and E) and apply the version of the DOM estimator 

given in (6), the result will be biased for (4) because (6) is unbiased for1  

 

 p pE[y | x 25] E[y | x 15] 2 4 .2
10 10

= − = −
= = −     (7) 

 

which greatly overstates (in absolute value) the true policy effect given in (4) [-.0166].  

 Why do (4) and (7) differ?  They differ because of the existence of variables that 

influence the value of y and are correlated with xp – so-called confounders. For example, 

                                                
1 E[y | xp=25] and E[y | xp=15] are obtained as the average values within blocks A and E, respectively. 
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suppose sicker individuals, who are apt to visit a physician, are less likely to be observed with 

lower copays due to individual insurance plan choice.  In this case, health status is a confounder 

that will cause the (7) to overstate (in absolute value) the true (albeit counterfactual) policy effect 

(4).  Specifically, due to the health status confounder, on average, individuals observed with low 

copays (the sicker individuals in cell A) visit the doctor more (E[y | xp = 15] = 4) than would be 

manifested if all individuals in the population faced a $15 copay ( 15E[y ]  = 2.833 -- the average 

value in the second full column of Figure 2).  By a similar argument, those observed with high 

copays (the healthier individuals in block E) visit the doctor less (E[y | xp = 25] = 2) than would 

be observed if all individuals in the population faced a $25 copay ( 25E[y ]  = 2.667 -- the average 

value in the third full column of Figure 2).  To summarize, in general, (1) and2  

 

 p p2 p p1

p

E[y | x x ] E[y | x x ]
Δx

= − =
 

are likely to differ because   

 
 

px * p pE[y ] E[y | x x *]≠ = .        (8) 

 
Moreover, (8) is a direct consequence of the existence of confounders and, as we have seen, is 

the reason for the biasedness of the simple difference of means estimator given in (6) which is 

based on observable (factual) data only.   

 We seek a version of (6) that requires only observable data but is unbiased.  What is 

needed here is a way to express the counterfactual expectation on the left-hand side of (8) [i.e., 

the full-column average in Figure 2] in terms of the expected value of an aspect of the 

                                                
2 The non-equality in (8) can be characterized in the second and third columns of Figure 2 as the likely difference 
between the average value in the unshaded block and the full column average. 
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distribution of the outcome that is observable (factual) – akin to the right-hand side of (8) [i.e., 

the average of y in the unshaded block in a particular column]. With this in mind, by the iterated 

expectations rule (Wooldridge, 2003, pp. 18-22), we note that for any confounder v we can 

rewrite the left-hand side of (8) as 

 
 

p px * x *E[y ] E E[y | v] =   .       (9) 

 
This prompts us to consider the relationship between 

px *E[y | v]  and *
p pE[y | x x , v]= .  The 

former is the key counterfactual component of the right-hand side of (9), and the latter is 

accessible (estimable) via observable (factual) data.  To explore this relationship, let us return to 

the example.  Suppose the individuals in the population characterized in Figures 1 and 2 are 

either “ill” or “well” and that everyone is well except persons #2 and #5.  If we condition the on 

only the well subpopulation (i.e. if we drop persons #2 and #5), we obtain Figure 3. 

Figure 3 
Conditioned on Health Status (only those who are well) 

Person y15 (xp* = $15, well) y25 (xp* = $25, well ) 

(observable xp = $15, well) 
1 
 

 
A (observable y at  

xp = $15, well) 
3 
 

 
D 
3 
 

(observable xp = $25, well) 
3 
4 

 
B 
2 
3 
 

 
E (observable y at  

xp = $25, well) 
1 
3 
 

 
($15 ≠ observable xp ≠ $25, well) 

6 

 
C 
3 

 
F 
2 

 
 
From Figure 3 we find that the discrepancy between 
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 25 15E[y | well] E[y | well] 2.25 2.75 .05
10 10
− −

= = −  

 
and 
 

 p pE[y | x 25, well] E[y | x 15, well] 2 3 .1
10 10

= − = −
= = −  

 
[viz., .05] is smaller than the difference between (4) and (7) [viz., .183].   This exercise illustrates 

how conditioning on confounders can serve to bring 
px *E[y | v]  and *

p pE[y | x x , v]=  closer to 

equality.  Indeed, if such conditioning is comprehensive, in the sense that all possible 

confounders are included in the analysis, we obtain 

 
 

p

*
x * p pE[y | x] E[y | x x , x]= =        (10) 

 
where x denotes the comprehensive vector of confounders. 

 In the remainder of this section, we develop a consistent two-stage policy effect estimator 

based on (10) that is designed to accommodate cases in which the survey data on the policy 

variable of interest is endogenously sampled – i.e. cases in which the comprehensive vector of 

confounders includes both observable (xo) and unobservable (xu) components.  We begin by 

assuming that *
px

y (the counterfactual outcome at the fixed mandated value *
px ) follows a 

parametric random process of the form 

 
 *

p

*
p o ux

y H(x , x , x ,ε, τ)=        (11) 

where H(  ) is a known (possibly nonlinear) function, ε is the random error term, and τ is a vector 

of unknown parameters.  Moreover, ε is defined such that 
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 *

p

* *
o u p o u p o u o ux

ε

E[y | x , x ] M(x , x , x , τ) H(x , x , x ,ε,τ) f(ε | x , x ) dε= = ∫  (12) 

where f(ε | xo, xu) denotes the conditional pdf of ε given xo and xu.  The form of M(   ) will often 

be similar to that of H(   ).  For example, suppose H(   ) is linear and E[ε | xo, xu] = 0 so that (11) 

becomes 

 
 *

p

*
p p o o u ux

y x β x β x β ε= + + +        (13) 

 
and (12) yields 

 
 * *

p o u p p o o u uM(x , x , x , τ) x β x β x β= + +       (14) 

 

where τ = [βp   βo   βu] is the vector of unknown parameters. For count-valued and other 

nonnegative outcomes one might assume that 

 
 *

p

*
p p o o u ux

y exp(x β x β x β ε)= + + +       (15) 

 
where E[exp(ε) | xo, xu] = 1.  In this case, (12) yields 

 
 * *

p o u p p o o u uM(x , x , x , τ) exp(x β x β x β )= + +      (16) 

 
where τ is defined as in (14).  As a final illustration, consider the case in which (11) is of the 

form 

 
 *

p

*
p p o o u ux

y I(x β x β x β ε > 0)= + + +       (17) 
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where (ε | xo, xu) is standard normal distributed, and I(A) denotes the indicator function that takes 

on the value if 1 of condition A is true, and 0 otherwise.  From (12) we obtain 

 
 * *

p o u p p o o u uM(x , x , x , τ) Φ(x β x β x β )= + + .     (18) 

 
where Φ(   ) denotes the standard normal cumulative distribution function and τ is defined as in 

(14). 

 Using (9) and (12) we can now rewrite (1), (2), and (3) respectively as3 

 

 ARC p p2 o u p1 o u
p

1PE (Δx ) E[M(x , x , x , τ) M(x , x , x , τ)]
Δx

= −    (19) 

 p o u p o u
MARG

p p

E[M(x , x , x , τ)] M(x , x , x , τ)
PE E

x x
 ∂ ∂

= =  
∂ ∂  

   (20) 

and 

 TE o u o uPE E[M(1, x , x , τ) M(0, x , x , τ)]= − .     (21) 

 
Consistent estimation of each of (19) through (21) requires a consistent estimate of τ.  Terza et 

al. (2008) discuss a two-stage residual inclusion (2SRI) method that can be used in all three 

cases, and Terza (2008) suggests full information maximum likelihood (FIML) and two-stage 

method of moments (TSM) approaches that are appropriate only in the context of (21).4  Both 

2SRI and TSM are based on following regression specification which is implied by the 

comprehensiveness of x = [xo   xu], and equations (10) and (12) 

 
                                                
3 The second equality in (20) holds under fairly general conditions (see Bierens, 1994, p. 25). 
4 The TSM methods discussed in Terza (2008) are applicable to a broader class of models that encompasses those 
discussed here and may offer efficiency gains relative to 2SRI, although this claim has not been formally validated. 
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 p o u p o uE[y | x , x , x ] M(x , x , x , τ)= .      (22) 

 
For 2SRI estimation, we note that (22) implies the following sampling model 
 
 
 p o uy M(x , x , x , τ) + e=        (23) 
 
 
where p o ue y M(x , x , x , τ)= −  is the regression error term.  In addition we assume the existence 

of the following auxiliary equation 

 
 p ux r(w,α) x= +         (24) 

 
where r is a known (possibly nonlinear) function, w = [xo   w+], E[xu | w] = 0, α is a vector of 

unknown parameters, and w+ denotes a vector of observable identifying instrumental variables 

that are correlated with xp and are neither included in xo nor correlated with e.  Under these 

assumptions, the following two-stage (2SRI) estimator is consistent for τ:5  

First Stage 

Consistently estimate α by applying the nonlinear least squares (NLS) method to (24). 

Second Stage 

Estimate τ by applying NLS to the following version of (23) 

 
 i pi oi ui iˆy M(x , x , x , τ) + e=        (25) 
 

where ui pi i ˆx̂ x r(w ,α)= − , α̂  denotes the first-stage estimate of α, i = 1, ..., n indicates the ith 

sample member, and n is the sample size. 

                                                
5 See Terza, Basu, and Rathouz (2008) for details. 
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Given the 2SRI estimates, consistent estimators of (19) and (20) can be obtained from the 

following pseudo difference-of-means (PDOM) 

 

 ¶ { }
n

ARC p p2 oi ui p1 o ui
i 1p

1 1 ˆ ˆ ˆ ˆPE (Δx ) M(x , x , x , τ) M(x , x , x , τ)
Δx n=

= −∑   (26) 

 ¶ n
pi oi ui

MARG
i 1 p

ˆ ˆM(x , x , x , τ)1PE
n x=

∂
=

∂∑       (27) 

 
where τ̂  denotes the 2SRI estimate of τ. 

 For the special case in which xp is binary, Terza (2008) considers models in which (24) is 

replaced by 

 
 xp = I(wα + xu > 0)        (28) 

 
and the distribution of (xu | w) is known.  For example, we may assume that (xu | w) is standard 

normal distributed so that (28) defines a conventional probit model.  Based on this assumption 

and (22), the TSM estimator suggested by Terza (2008) yields a consistent estimate of τ, call it 

τ% .6  Therefore, (21) can be consistently estimated using the following PDOM 

 

 ± [ ]
u

n

TE oi u oi u u u
i 1 x

1PE M(1, x , x , τ) M(0, x , x , τ) g(x | w) dx
n=

  = − 
  

∑ ∫ % %   (29) 

 
where g(xu | w) denotes the conditional probability density function of xu given w.  If, in addition 

to (12) and (22), we have that 

 

                                                
6 See Terza  (2008) for details. 
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 *
p

* *
o u p o u p o ux

f (y | x , x ) f (y | x , x , x ) g(y, x , x , x , τ)= =  

 
where g(   ) is a known probability density function, then Terza (2008) shows that a FIML 

method can be used to consistently estimate τ.7  Applications of the TSM and FIML methods 

suggested by Terza (2008) can be found in Coulson et al. (1995), Kenkel and Terza (2001), Koc 

(2005), McGeary and  French (2000), Neslusan et al. (1999), Pryor and Terza (2002), Terza 

(1994ª, 1994b,1998, 1999, 2002), Terza, Kenkel, et al. (2008),  and Treglia et al. (1999). 

 In the special case in which xo is comprehensive (i.e. there are no unobservable 

confounders), (26), (27) and (29) reduce to the estimators considered by Wooldridge (2003), 

Basu and Rathouz (2005) and many others.  These estimators are, of course, not consistent when 

xp is endogenously sampled.   

 

3.  The PDOM as a Two-Stage Optimization Estimator: Asymptotic Inference 

 In the previous section, we developed versions of the PDOM estimator [(26), (27) and 

(29)] for each of the three versions of the policy effect defined in (1), (2) and (3).  We now turn 

to the asymptotic properties of these estimators.  Of particular interest here is the derivation of 

the correct asymptotic standard errors of these estimators. To summarize the results of the 

previous section, if we have a consistent estimator for θ  = [α’  τ’]’ (say θ ), then we can 

consistently estimate the relevant policy effect using 

 

 
n

i

i 1

pePE
n=

= ∑          (30) 

where 

                                                
7 See the last illustrative example in section 4. 
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  p1 p2 ipe(x , x , w , θ)    for (26) and (29) 

  ipe =   or 
  pi ipe(x , w , θ)    for (27) 

    { }p2 o u p1 o u
p

1 M(x , x , x , τ) M(x , x , x , τ)
Δx

−   for (26) 

 p1 p2 ipe(x , x , w ,θ) =    or 

    [ ]
u

o u o u u u
x

M(1, x , x , τ) M(0, x , x , τ) g(x | w) dx−∫  for (29) 

 

and ppe(x , w,θ) =  p o u

p

M(x , x , x , τ)
x

∂

∂
.      for (27) 

In order to derive the asymptotic properties of (30) we can cast it as a special case of the class of 

two-stage optimization (2SOPT) estimators discussed by White (1994), Newey and McFadden 

(1994), and Wooldridge (2003).8  2SOPT estimators are characterized by two objective 

functions:  Q(   ), a full information objective function whose optimizer is a consistent estimator 

of all parameters of the model;9 and Q1(  ), a first stage objective function whose optimizer is a 

consistent estimator of a subvector of the full set of parameters of interest.  In the 2SOPT 

protocol: Q1 is optimized to obtain an estimate of the relevant subvector of parameters, then Q is 

optimized with the first-stage parameters fixed at their estimated values.  The estimator of the 

generic policy effect (PE) in (30) can be represented as a 2SOPT estimator by specifying the full 

information objective function as 

 
n

i
i 1

Q(θ, PE) q(θ, PE,u )
=

= ∑        (31) 

                                                
8 These authors extend the results Murphy and Topel (1985) for two-stage maximum likelihood estimators to the 
more general class of two-stage optimization estimators. 
9 Here we use the term "full information" to indicate that Q(   ) takes account of all of the available nonsample 
information.  This does not imply that full information maximum likelihood estimation is possible. 
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where θ and pi ipe(x , w ,θ) are defined as in (30) 

 ( )2

i 1 i pi iq(θ, PE, u ) q (θ, u ) pe(x , w ,θ) PE= − −     (32) 

ui = [yi  xpi, wi] and
n

1 1 i
i 1

Q (θ) q (θ, u )
=

= ∑ denotes the appropriate first-stage objective function 

(2SRI, TSM or FIML) for consistent estimation of θ.  The first stage of the 2SOPT protocol in 

this case yields an estimate of θ (2SRI, TSM, or FIML) as discussed in the previous section.  In 

the second stage an estimate of PE is obtained by optimizing Q(θ, PE) where θ denotes the first-

stage estimate of θ.  Given the specification of Q in (31), this second stage is tantamount to 

optimizing 

 

 ( )
n 2

pi i
i 1

pe(x , w ,θ) PE
=

− −∑        (33) 

 
with respect to PE.  It is, however, easy to show that the optimizer of (33) is (30).  Therefore, our 

2SOPT characterization of (30) is valid. 

 Because (30) can be cast as a special case of the generic 2SOPT estimator, its asymptotic 

properties can be easily derived from the general theory.  First we define some notational 

conventions.  For a scalar function “s” of two vector arguments j and t (i.e. s = s(j, t) where s is a 

scalar and j and t are vectors) we define: 

 

j
ss
j

∂
∇ =

∂
 = the gradient vector of s with respect to the elements of j 

          
and 
 

2

jt
ss

j t
∂

∇ =
∂ ∂

= the matrix of cross-partial derivatives of s with respect to the elements of j 
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  and t. 
 
 
We also assume that the former is a row vector, and the latter is a matrix with row dimension 

equal to that of the first subscript on ∇ , and column dimension equal to that of the second 

subscript.  Under the regularity conditions given in Theorem 6.11 of White (1994), (30) is 

consistent and  

 

 
( )

dn (PE PE) n(0,1)
a var PE

− →      (34) 

 
 
where PE is defined in (30), ( )a var PE is the asymptotic variance of PE ,  d→  denotes 

convergence in distribution, n(0, 1) represents the standard normal variate.  In Appendix A we 

show that     

 

 ( ) [ ] [ ] 2
θ θa var PE E pe AVAR(θ)E pe E (pe PE)′  = ∇ ∇ + −  .   (35) 

 
 
Expression (35) directly applies in the context of 2SRI.  Estimates of α are not, however, 

involved in the in the TSM version of (30).  Therefore the relevant form of (35) in this case is 

 

 ( ) [ ] [ ] 2
τ τa var PE E pe AVAR(τ)E pe E (pe PE)′  = ∇ ∇ + − % .   (36) 

 
 
The asymptotic variance given in (35) can be consistently estimated using 
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 ( ) ( )
n n n

2
θ θi i i

i 1 i 1 i 1
pe pe (pe PE)

a var PE n AVAR(θ)
n n n

= = =

′     
∇ ∇ −     

     = +
     
     
     

∑ ∑ ∑
 (37) 

 
where θ ipe∇ denotes θpe∇  evaluated at xpi, wi and θ ; and AVAR(θ)  is the estimated asymptotic 

covariance matrix of θ .  It follows from (37) that 

 
( )

dn (PE PE) n(0,1)
a var PE

− → .     (38) 

 

The asymptotic standard error derived by Basu and Rathouz (2005) for the version of (30) in 

which there are no unobservable confounders is easily seen to be a special case of (37).  

 

 

4.  Examples 

 The following three examples illustrate estimation of each of the three different policy 

effect measures given in (1), (2) and (3).  They are, respectively:  the incremental or “arc” policy 

effect -- relevant in cases in which the policy variable is not binary and the details of the 

prospective policy (xp1 and xp2) are known;  the marginal policy effect – relevant when the policy 

variable is continuous and the prospective policy change is not defined; and treatment effects 

relevant in cases in which the policy variable is binary. 

 

4.1  The Arc Policy Effect of Habit Stock on Smoking  

 Terza, Bradford and Dismuke (2007) re-estimated Mullahy’s (1997) model of cigarette 

consumption (y) focusing on the effect of habit stock (xp).  Habit stock is a measure of the 
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accumulated effects of past smoking on present consumption. Mullahy’s model has implications 

for the potential effectiveness of smoking cessation policies.  Only policies that can sustain 

smoking cessation long enough to drive habit stock to zero are likely to be long-term effective. 

Recent research by Volpp et al. (2006) suggests, for instance, that individuals may be induced to 

stop smoking for 75 days with cash payments of $200 per person.  Such modest payments mean 

that encouraging cessation for periods approaching those needed to reduce the habit stock to zero 

would be feasible for many employers and health systems – and potentially highly cost effective. 

 The Centers for Disease Control and Prevention (CDC) reports that one of its national 

objectives for 2010 is to decrease the prevalence of cigarette smoking among adults from the 

current 20% level to less than 12% (CDC, 2006). Consider accomplishing this goal through 

effective anti-smoking and cessation programs that prevent smoking initiation and forestall 

relapse for periods sufficient to drive enough individuals' habit stocks to zero.  In this context the 

key question is... What level of exogenous (policy driven) across-the-board habit stock 

depreciation would likely lead to the targeted prevalence rate?  In theory, the answer can be 

obtained by solving the following version of the generic arc policy effect given in (1) for xp12%  

 
 population 88th %-tile of daily smoking

p12%0 xE[y y ]= −    (39) 

 
Here xp2 [as defined in (1)] is set equal zero by definition because we are considering here only 

those policies that are effective – i.e., only those that sustain abstinence long enough for 

individual’s habit stocks to depreciate to zero.10  As a practical matter, we can find the value of 

xp12% at which the following version of (26) is satisfied 

 

                                                
10 In expression (40) we forego division of both sides by Δxp.  It is superfluous in this context. 
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 sample 88th %-tile of daily smoking { }
n

oi ui p12% oi ui
i 1

1 ˆ ˆ ˆ ˆM(0, x , x , τ) M(x , x , x , τ)
n=

= −∑   

           (40) 

 
To define M(  ) and τ, and to facilitate regression estimation, we assume [as did Terza, Bradford 

and Dismuke (2007)] that 

 
( )

( )

*
p

1
2 γ

*
p p o o u u

*
p o ux

*
p p o o u u

γ x β x β x β 1 exp(ε)  if     γ 0
2

y H(x , x , x ,ε, τ) =    

exp x β x β x β ε               if            γ 0

  + + + ≠     =

+ + + =

 

           (41) 
 
where τ = [βp   βo   βu, γ], γ is a scalar parameter with unrestricted in range; and  

E[exp(ε) | xo, xu] = 1.  This a variant of the inverse of the flexible functional form suggested by 

Box and Cox (1964).  The inverse Box-Cox (IBC) conditional mean regression specification was 

first considered and implemented by Wooldridge (1992).  The IBC functional form approaches 

the exponential model as γ → 0.  When γ = 2 and p p o o u ux β x β x β 1+ + > − , it reduces to a simple 

linear regression model.11  Using (12) we obtain 

 
( )

( )

*
p

1
2 γ

*
p p o o u u

*
o u p o ux

*
p p o o u u

γ x β x β x β 1   if     γ 0
2

E[y | x , x ] M(x , x , x , τ) =    

exp x β x β x β               if     γ 0

  + + + ≠     =

+ + =

 

           (42) 
 

                                                
11 When γ = 2, equation (1) becomes p o uE[y | x , x , x ] g(z) | z 1 |= = + , where |a| denotes the absolute value of a and  

p p o o u uz x β x β x β= + + .  In general, g(z) is V-shaped with vertex (-1,0), but if z > -1 then only the positively sloped 
linear portion of the function is relevant.  In this case equation (1) becomes the simple linear regression model. 
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The model includes xu to allow for the potential endogeneity of the habit stock variable xp.  Habit 

stock may be endogenous because it is determined by past smoking, and the unobservable 

determinants of past smoking are likely to be correlated with present smoking.  Terza, Bradford 

and Dismuke (2007) estimated τ using Mullahy’s data and a version of the 2SRI method detailed 

in section 2 [equations (23) – (25)].  In the first stage they estimated the linear version of (24)  

[xp = wα + xu] via OLS.  Then, in the second stage, NLS was applied to the following version of 

the sampling model based on (42) 

 ( )
1

2 γ

i pi p oi o ui u i
γ ˆy  = x β x β x β 1  + v
2

  + + +     
     (43) 

where ui p1 ˆx̂ x wα= −  is the first-stage OLS residual, α̂  is the first-stage OLS estimate of α, vi is 

the regression error term, i = 1, ..., n denotes the ith sample member, and n is the sample size.12  

The definitions of all of the variables included in the analysis are given in Table 1, and Table 2 

shows the descriptive statistics of the sample.  As a basis for comparison, we applied NLS to the 

variant of (43) with βu set equal to zero (no unobservable confounders – i.e. xp assumed 

exogenous).  The results are displayed in the first three columns of Table 3. Columns 4 through 6 

contain the second-stage 2SRI results obtained by Terza, Bradford and Dismuke (2007) for 

equation (43), and the 2SRI first stage results are shown in the remaining three columns.  The 

null hypothesis that xp is exogenous can be tested based on the coefficient of the first stage 

residual [Ho: βu = 0].  As can be seen in the fifth column of Table 3, the t-stat for that coefficient 

is -3.01 which leads to rejection of the exogeneity null at less than a .01 significance level. 

                                                
12 As can be seen in the fourth column of Table 3, the estimated value of γ is 1.77 which is significantly different 
from zero (t = 28.22).  Therefore, the exponential version of (39) is not relevant. 
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 The 88th %-tile daily smoking rate in the sample is 1.25 (25 cigarettes per day).  

Combining the 2SRI-IBC estimates in the fourth column of Table 3 with (40) and (43) we find 

that the target level of habit stock (xp12%) is 270 [accurate to the third decimal – i.e. the right-

hand side of (40) at xp1=270 is equal to -1.257].  Placing the discussion in the notation of section 

3, when xp12% =270, the right-hand side of (40) can be rewritten as 

 

 ¶ µn
i

ARC
i 1

pePE 1.257
n=

= =∑        (44) 

 
where 
 
 µ

ii
ˆpe pe(270,0, w ,θ)=  

 i oi pi i oi pi ipe(270,0, w ,θ) M(0, x , (x w α), τ) M(270, x , (x w α), τ)= − − −  

 
and θ̂  denotes the 2SRI estimate of θ = [ α    τ].  Assuming a habit stock depreciation rate of 

10% per day [the rate used by Mullahy (1979)], this would mean that prevention and cessation 

policies that keep people from smoking for at least 120 days would be required to achieve the 

CDC 2010 12% smoking prevalence goal.  Asymptotic inference for (44) can be drawn from the 

following version of (38) 

  

 · ¶
¶ d

ARC ARC
ARC

n (PE PE ) n(0,1)
a var(PE )

− →     (45) 

 
where 
 
 0 270PE E[y y ]= −  
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 · ¶
µ

·( )
µ µ ¶( )

2n n n

ARCθ θi i i
i 1 i 1 i 1

ARC

pe pe pe PE
ˆa var(PE ) n ACOV(θ)

n n n
= = =

′     ∇ ∇ −    
    = +
    

          

∑ ∑ ∑
 (46) 

  
 · ˆACOV(θ)  is the asymptotic covariance matrix of the 2SRI estimator of θ 
 
 
 µ µ µ µ

θ α β γi i i ipe [ pe pe pe ]∇ = ∇ ∇ ∇  
 
and the details of µ

α ipe∇ , µ
β ipe∇  and µ

γ ipe∇  are given in Appendix B.  To test the conventional 

null hypothesis for PEARC [i.e., Ho:  PEARC = 0] we computed the relevant asymptotic t-stat 

[based on (45)] and obtained 

 

 
¶

· ¶
ARC

ARC

PE 1.257 5.49
.229a var(PE )

n

−
= = − . 

 
The conventional null is rejected at any reasonable significance level. 

 For the purpose of comparison, we conducted a similar analysis using the NLS-IBC 

results, which are not corrected for the potential endogeneity of the habit stock variable (shown 

in column 1 of Table 3).  Using these uncorrected estimates, we found that in order to bring 

smoking prevalence down to the CDC 2010 target, smoking prevention and cessation policy 

would have to be effective enough to reduce habit stock to zero from a level of 324.  This 

amounts to a 20% bias relative to the endogeneity corrected estimate (270).  Full depreciation of 

a habit stock equal to 324 would require sustained abstinence for a minimum of 140 days. 
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4.2  The Marginal Effect of Prescription Drug Use on In-Patient Hospital Expenditure 

 Stuart et al. (2008) estimated a two-part model of the effect of prescription drug (Rx) 

utilization on inpatient hospital expenditure.  They implemented the 2SRI method (Terza et al., 

2008) to accommodate the potential endogeneity of Rx use.  In the first part of the model (the 

hurdle component), a probit-type specification, as defined in equations (17) and (18), was used 

to regress a binary indicator of any in-patient hospitalization during the year on Rx utilization 

and confounder controls (both observable and unobservable).  In this illustrative example, we 

focus on the second part of the model (the levels component) in which in-patient hospital 

expenditure (y) was regressed on Rx utilization (xp) and confounder controls (xo and xu) using 

the data from the subsample of individuals who experienced at least one hospitalization during 

the year.   For this part of the analysis, Stuart et al. (2008) used the exponential regression 

specification defined in equations (15) and (16).  Although the authors estimated the marginal 

effect of Rx utilization in the full two-part model and found that each additional prescription 

drug used hospital spending reduced by $104 (p-value < .001), they did not report separate 

effects for the hurdle and levels components of the two-part model.  As an illustration of the 

estimation of a marginal policy effect [as defined in (2)] and the use of the methods presented in 

this paper, we focus only on the estimation of the effect of Rx us on inpatient hospital 

expenditure given that the individual has been hospitalized at least once during the year – i.e. the 

levels part of the two-part expenditure model.  In addition to serving its expositional purpose, 

this analysis may shed light on the potential differences in Rx drug effects between those who 

are hospitalized vs. those who are not.  This may be of interest because it is likely that adherence 

to Rx regimens is more closely monitored in an inpatient setting.  This would lead to higher 

observed cost offsets for those who are hospitalized vs. those who are not.   
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 We estimated the marginal policy effect of Rx use on hospital expenditure for the 

hospitalized subpopulation using the following version of (30)  

 

 ¶ µ1n
i

MARG
i 1 1

pePE
n=

= ∑         (47) 

 
where 
 

 µ pi p oi o ui u
p pi p oi o ui ui

p

ˆ ˆ ˆˆexp(x β x β x β ) ˆ ˆ ˆ ˆˆpe β exp(x β x β x β )
x

∂ + +
= = + +

∂
 

u p ˆx̂ x exp(wα)= − ; α̂ , p o u
ˆ ˆ ˆβ ,β andβ  are the 2SRI estimates obtained by Stuart et al. (2008); and 

n1 denotes the size of the hospitalized subpopulation.  The relevant versions of (24) and (25) for 

2SRI estimation are, respectively   

 
 xp = exp(wα) + xu        (48) 

and 

 i pi p oi o ui u iˆy exp(x β x β x β ) + e= + + .      (49) 
 

Definitions of the variables used in the regression analyses are given in Table 4 and the 

descriptive statistics of the sample are in Table 5.  The 2SRI results are displayed in columns 4 

through 9 of Table 6 – first stage results for α in columns 7 through 9, and second stage results 

for βp, βo and βu in columns 4 through 6.  The null hypothesis that xp is exogenous can be tested 

based on the coefficient of the first stage residual [Ho: βu = 0].  As can be seen in the fifth 

column of Table 6, the t-stat for that coefficient is -2.56 which leads to rejection of the 

exogeneity null at the .01 significance level.  The 2SRI estimates yielded a marginal policy effect 

estimate of -339.14 indicating that a filling one more prescription leads to a $339 reduction in 
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inpatient hospital expenditure.  As expected this is much higher than the $104 effect found by 

Stuart et al. (2008).  

 Asymptotic inference for (47) can be drawn from the following version of (38) 

  

 · ¶
¶ d

MARG MARG
MARG

n (PE PE ) n(0,1)
a var(PE )

− →     (50) 

 
where 
 

 p o u u
MARG

p

exp(x β x β x β )
PE E

x
 ∂ + +

=  
∂  

 

 

 · ¶
µ

·( )
µ µ ¶( )

2n n n

MARGθ θi i i
i 1 i 1 i 1

MARG

pe pe pe PE
ˆa var(PE ) n ACOV(θ)

n n n
= = =

′     ∇ ∇ −    
    = +
    

          

∑ ∑ ∑
 

  
 · ˆACOV(θ)  is the asymptotic covariance matrix of the 2SRI estimator of θ 
 
 
 µ µ µ

θ α βi i ipe [ pe pe ]∇ = ∇ ∇  
 
 
β = [βp   βo   βu] and the details of µ

α ipe∇ and µ
β ipe∇  are given in Appendix C.  To test the 

conventional null hypothesis for PEMARG  [i.e., Ho:  PEMARG = 0] we computed the relevant 

asymptotic t-stat which follows from (50) and obtained 

 

 
¶

· ¶
MARG

MARG

PE 339.14 2.49
136.21a var(PE )

n

−
= = − . 

 
The corresponding p-value is .01. 
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 For the purpose of comparison, we conducted a similar analysis using the NLS 

exponential regression results, which are not corrected for the potential endogeneity of the Rx 

utilization variable (shown in column 1 of Table 6).  This yielded a very small positive (.96) and 

insignificant (p-value = .96) estimate of the marginal effect, indicating that Rx utilization has 

virtually no effect on hospital expenditure. 

 

4.3  The Treatment Effect of Advice on Alcohol Use Among Hypertensive Men  

 For illustrative purposes we revisit the study conducted by Kenkel and Terza (2001) [KT] 

in which the authors explore the role that physician advice plays in the prevention of alcohol-

related problems.  They seek to estimate the impact that physician counseling to decrease alcohol 

consumption has on drinking practices.  Their results indicate that policies promoting such brief 

interventions can be effective.  This is important given that, compared to alcohol taxation, 

physician advice is a more precisely targeted policy that does not impose extra costs on 

responsible drinkers.  Moreover, compared to the resource costs of arresting, processing, and 

punishing drunk drivers, physician advice may be a lower cost policy alternative.  The binary 

advice variable (xp) considered by KT is based on survey respondents’ answers to the following 

question: “Have you ever been told by a physician to drink less?”  In their study, the estimation 

objective was the treatment effect of xp on the amount of drinking.  In the present illustration, we 

estimate the effect of physician advice on the likelihood of drinking at all.  Here the outcome of 

interest (y) is binary (1 if a non-zero amount of drinking is observed, 0 otherwise). We assume 

that *
px

y  (the counterfactual outcome as it would be at the universally mandated value *
px  

[1 or 0]) follows the probit-type parametric process defined in (17) from which the 

counterfactual conditional mean regression specification in (18) follows. 
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  The model includes xu to allow for the potential endogeneity of advice.  For example, 

health-minded individuals may have a higher than average propensity to seek advice, and a 

simultaneously higher than average likelihood of avoiding potentially unhealthy behaviors like 

drinking.  On the other hand, it may be that unobservable influences on drinking are positively 

related to advice.  For example, in the data used in the study (the 1990 National Health Interview 

Survey) alcohol consumption is observed alcoholism is not. Diagnosed alcoholics may be more 

likely to receive advice from their doctors.  

 Following KT and Terza (2008), we formalize the relationship between xp and xu by 

assuming that 

 
 p ux I(wα x 0)= + >         (51) 

 
where w = [xo   w+], (xu | w) is standard normal distributed, and w+ is the vector of identifying 

instrumental variables related to health insurance status, physician contacts, and health problems.  

If xo and xu are comprehensive (i.e. 
px o u p o uE[y | x , x ] E[y | x , x , x ]= ), using results from Terza 

(2008), we can show that consistent full information maximum likelihood (FIML) estimates the 

parameters of the model, θ = [α   τ] can be obtained by optimizing the following log-likelihood 

function 

 

{ }
n

p i pi 11i i pi 10i i pi 01i i pi 00i
i 1

L(θ | y, x , w) y x ln(P ) y (1 x ) ln(P ) (1 y ) x ln(P ) (1 y ) x ln(P )
=

= + − + − + −∏  

           (52) 

where 
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i

11i pi p oi o u u u u
w α

P Φ(x β x β x β ) φ(x ) dx
∞

−

= + +∫  

 
iw α

10i pi p oi o u u u uP Φ(x β x β x β ) φ(x ) dx
−

−∞

= + +∫  

 
i

01i pi p oi o u u u u
w α

P 1 - Φ(x β x β x β ) φ(x ) dx
∞

−

 = + + ∫  

 
iw α

00i pi p oi o u u u uP 1 - Φ(x β x β x β ) φ(x ) dx
−

−∞

 = + + ∫  

 
and φ(   ) denotes the standard normal probability density function. The correct estimator of the 

treatment effect as given in (3) is, in this case, the following version of (30) 

 

 ± ±n
i

TREAT
i 1

pePE
n=

= ∑         (53) 

 
where 
 
 ±

iipe pe(0,1, w ,β)= %  

and 

 
u

i p oi o u u oi o u u u u
x

pe(0,1, w ,β) Φ(β x β x β ) Φ(x β x β ) φ(x )dx = + + − + ∫ . (54) 

The data for the analysis came from the 1990 Health Interview Survey -- the same data set used 

by KT.  The definitions of all variables included in the model can be found in Table 7, and the 

descriptive statistics of the sample are displayed in Table 8.   The FIML results for  
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β = [βp   βo βu ] and α, obtained from (52), are shown in columns 4 and 9 of Table 9, 

respectively.13  Combining these results with (53) we estimated the policy effect of physician 

advice to be -.39. This point estimate indicates that nearly a 4 point decrease in the probability of 

being a drinker could be attributed to the receipt of advice from a physician to drink less.  The 

null hypothesis that xp is exogenous can be tested based on the coefficient of xu [Ho: βu = 0].  As 

can be seen in the fifth column of Table 9, the t-stat for that coefficient is 3.65 which leads to 

rejection of the exogeneity null at less than a .01 significance level. 

 Asymptotic inference for (53) can be drawn from the following version of (38) 

  

 ² ±
± d

TREAT
TREAT

n (PE PE) n(0,1)
a var(PE )

− →     (55) 

 
 
where 

 ² ±
±

²( )
± ± ±( )

2n n n

TREATβ βi i i
i 1 i 1 i 1

TREAT

pe pe pe PE
a var(PE ) n ACOV(β)

n n n
= = =

′     ∇ ∇ −    
    = +
    

          

∑ ∑ ∑
%  

 
 ²ACOV(β)% denotes the estimated asymptotic covariance matrix of β%  -- the  FIML   

  estimate of β obtained from (52) 

 
 ± ± ± ±

p o uβ β β βi i i ipe [ pe pe pe ]∇ = ∇ ∇ ∇  
 
 
and the details of ±

pβ ipe∇ , ±
oβ ipe∇ and ±

uβ ipe∇ are given in Appendix D. 
 

                                                
13 The integrals required for the likelihood function (52) can be evaluated using quadrature or simulation methods.  
We used the GAUSS INTQUAD1 procedure for this purpose.  
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 For the purpose of comparison, we estimated the drinking equation with simple probit 

analysis ignoring the potential endogeneity of the advice variable.  In this case the relevant probit 

model and policy effect estimator are, respectively, 

 
 p p o oy I(x δ x δ ζ 0)= + + >        (56) 

 ± ±n
i

i 1

pePE
n=

= ∑          (57) 

 
where 
 
 ±

iipe pe(0,1, x ,δ)= %  

 i p oi o oi ope(0,1, x ,δ) Φ(δ x δ ) Φ(x δ )= + −% % % % .  

 p ux I(wα x 0)= + >  

 
where (ζ | xp, xo) is standard normal distributed.  The results from estimating the probit model in 

(56) are given in the first column of Table 9.  Combining these results with (57) we estimated the 

policy effect of physician advice to be 0.078 with asymptotic t-stat value of 4.58 (p-value < 

.0001).  This point estimate is counterintuitive, indicating that nearly an 8 point increase in the 

probability of being a drinker could be attributed to the receipt of advice from a physician to 

drink less.   

 

5.  Discussion 

 This paper offers a generic and unified framework for the use of nonexperimentally based 

regression results for policy analysis paying particular attention to correcting for the potential 

endogeneity of the policy variable.  We introduce a PDOM estimator that is easy to implement 
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and derive its asymptotic properties as a special case of the general class of 2SOPT estimators.  

Empirical applications demonstrating the implementation of the incremental, marginal, and 

treatment effect versions of the PDOM are discussed.  In all three of these examples, the policy 

variable is found to be endogenous.  The results indicate that ignoring the presence of 

unobservable confounders can lead to substantial bias.   
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Appendix A 

From Theorem 6.11 of White (1994), we have 

 

 ( ) 1

PE PE PE θ PE θa var PE E q E q AVAR(θ)E q
−  ′     = ∇ ∇ ∇     

 

  [ ] [ ] [ ]1 1
PE θ 1 θθ 1 PE θ PE θ θθ 1 θ 1 PEE q q E q E q E q E q E q q− − ′′  ′   − ∇ ∇ ∇ ∇ − ∇ ∇ ∇ ∇     

 

  
12

PE PE PEE q E q
−   + ∇ ∇          (A-1) 

 
 
Moreover, PEq 2(pe PE)∇ = − , PE PEq 2∇ = , [ ]PE θ θE q 2E pe ∇ = − ∇   and 

 2 2
PEE q 4E (pe PE)   ∇ = −    , where pe is shorthand notation for pi ipe(x , w ,θ) .   Therefore,  

(A-1) can be written 
 
 

 ( ) θ θa var PE E pe AVAR(θ)E pe ′   = ∇ ∇     

  [ ] [ ] 1
θ 1 θθ 1 θE (pe PE) q E q E pe− ′ + − ∇ ∇ ∇   

   [ ] [ ]1
θ θθ 1 θ 1E pe E q E (pe PE) q− ′ + ∇ ∇ − ∇   

    2E (pe PE) + −        (A-2) 
 
 
Now q1(θ, u), defined in (32) in the text, can always be written as r1(θ1, ω(θ2,w,xp), u), where 

ω(θ2,w,xp) denotes a function of a subvector of θ and observable variables w and xp that itself 

becomes parametric conditional on these observable variables.  Now the true value of θ is 

defined such that ( )1 1 1 p pE r θ ,ω(θ ,w,x ), u | w,x    is maximized with respect to θ1 and ω(θ2,w,xp).  

So that 

 
 ( )

1θ 1 1 2 p pE r θ ,ω(θ ,w,x ), u | w,x 0 ∇ =   
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and 
 
 ( )ω 1 1 2 p pE r θ ,ω(θ ,w,x ), u | w,x 0 ∇ =  .     (A-3) 

 
Now note that we can write 

 
 ( )θ 1 p θ 1 1 2 p pE q (θ, u) | x , w = E r θ ,ω(θ ,x , w), u | x , w  ∇ ∇     

  
( )

( )
1

2

θ 1 1 2 p p

ω 1 1 2 p p θ 2 p

E r θ ,ω(θ ,w,x ), u | x , w

E r θ ,ω(θ ,w,x ), u | x , w ω(θ ,w,x )

  ∇  =
  ∇ ∇   

. 

 
so using (A-3) we have 

 
 θ 1 pE q (θ, u) | x , w = 0 ∇  .       (A-4) 

 
In the notation of (A-2), it follows from (A-4) that 

 
 [ ]θ 1 θ 1 pE (pe PE) q E E (pe PE) q | x , w  − ∇ = − ∇    

  θ 1 pE (pe PE) E q | x , w  = − ∇    

  = 0.         (A-5) 

 
In light of (A-5), (A-2) can be rewritten as 

 

 ( ) 2
θ θa var PE E pe AVAR(θ)E pe E (pe PE)′     = ∇ ∇ + −      .  (A-6) 
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As an example, consider the nonlinear regression formulation implemented section 4.1.  In this 

case we have 

 ( )2

1 p o pq (θ, u) y M(x , x , x wα, τ)= − − −  

where p o p pM(x , x , x wα, τ) E[y | x , w]− =  is defined as in (43).  Here θ1 has no elements,  

θ2 = [α   βp   βo   βu   γ]  

  
 2 p p o pω(θ ,w,x ) = M(x , x , x wα, τ)− ,  

and  

 ( ) ( )2

1 1 2 p 2 pr θ ,ω(θ ,w,x ),u = y ω(θ ,w,x )− −  . 
 
Because 2 pω(θ ,w,x ) is defined in this case as the mean of (y |  xp, w), it is the optimizer of 

  ( ) ( )2

1 p 1 1 2 p p p 2 pE[q (θ, u) | x , w] E r θ ,ω(θ ,w,x ),u | x , w E (y | x , w) ω(θ ,w,x )  = = − −    
 . 

Therefore 

 ( )ω 1 1 2 p p p 2 pE r θ ,ω(θ ,w,x ),u | x , w 2E (y | x , w) ω(θ ,w,x ) 0   ∇ = − =    

and  

 ( )θ 1 p θ 1 1 2 p pE q (θ, u) | x , w = E r θ ,ω(θ ,x , w), u | x , w  ∇ ∇     

  ( )
2ω 1 1 2 p p θ 2 pE r θ ,ω(θ ,w,x ), u | x , w ω(θ ,w,x ) = ∇ ∇   

  = 0. 
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Appendix B 
 
Recall 
 
 µ

ii
ˆpe pe(270,0, w ,θ)=  

 i oi pi i oi pi ipe(270,0, w ,θ) M(0, x , (x w α), τ) M(270, x , (x w α), τ)= − − −  

 θ̂  is the 2SRI estimate of θ = [ α     τ] 

and 
 µ µ µ µ

θ α β γi i i ipe [ pe pe pe ]∇ = ∇ ∇ ∇ . 
 
 
To simplify the notation, let us write 
 

2
γ* * *

p oi pi i p pM(x , x , (x w α), τ) k(β,α, γ; x ) ψ(β,α, γ; x )
 
 
 − = =  

 

( )*
p

γψ(β,α, γ; x ) xβ 1
2

= +  

 
*
p p o o p uxβ  =  x β x β (x wα)β+ + −  

 
x = [xp*   xo   xu] 
 
xu = xp - wα 
 

and 
 

p o uβ ' [β    β '   β ]= . 
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So 
 
 α α αpe k(β,α, γ; 0) k(β,α, γ; 270)∇ = ∇ − ∇  

  
2 21 1
γ γ

uβ ψ(β,α, γ; 0) - ψ(β,α, γ; 270) w
   

− −   
   

 
 = −
  

 

  β β βpe k(β,α, γ; 0) k(β,α, γ; 270)∇ = ∇ − ∇  

  
2 21 1
γ γ

o u o uψ(β,α, γ; 0) [0 x x ] - ψ(β,α, γ; 270) [270 x x ]
   

− −   
   =  

 and 

 
  γ γ γpe k(β,α, γ; 0) k(β,α, γ; 270)∇ = ∇ − ∇   

  ( )2o o u u
2

x β x β1 1k(β,α, γ; 0) ln ψ(β,α, γ; 0)
γ ψ(β,α, γ; 0) γ

     +
= −     

     
 

   ( )p o o u u 2
2

270β x β x β1 1k(β,α, γ; 270) ln ψ(β,α, γ; 270)
γ ψ(β,α, γ; 270) γ

 + +     
− −     

     
. 
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Appendix C 
Recall 
 
 µ ( )( )p pi p oi o pi i ui

ˆ ˆ ˆ ˆˆpe β exp x β x β x exp(w α) β= + + −  

 p *
ˆ ˆθ̂ = [β β ]  is the 2SRI estimate of p *β = [β β ]  where * o uβ = [β β ]  

and 
 
 µ µ µ µ

p *θ α β βi i i ipe [ pe pe pe ]∇ = ∇ ∇ ∇ . 
 
 
In this case 
 
 µ ( )( )α p u pi p oi o pi i u i ii

ˆ ˆ ˆˆ ˆpe β β exp x β x β x exp(w α) β exp(w α)w∇ = − + + −  

 
 µ ( )( )pβ pi p oi o pi i u p pii

ˆ ˆ ˆ ˆˆpe exp x β x β x exp(w α) β (1 β x )∇ = + + − +  

 
 µ ( )( )*β p pi p oi o pi i u *ii

ˆ ˆ ˆ ˆˆpe β exp x β x β x exp(w α) β x∇ = + + −  

 
where *i oi uiˆx [x x ]=  and  ui pi i ˆx̂ x exp(w α)= −  
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Appendix D 
 
Recall 
 
 ±

iipe pe(0,1, w ,β)= %  

 
u

i p oi o u u oi o u u u u
x

pe(0,1, w ,θ) Φ(β x β x β ) Φ(x β x β ) φ(x ) dx = + + − + ∫  

 p o uβ = [β β β ]% % % %  is the FIML estimate of p o uβ = [β β β ]  

and 
 ± ± ± ±

p o uβ β β βi i i ipe [ pe pe pe ]∇ = ∇ ∇ ∇ . 
 
 
In this case 
 

 ±
pβ p oi o u u u uipe λ(β x β x β ) λ(x )dx

∞

−∞

∇ = + +∫ % % %  

 

 ± { }oβ p oi o u u oi o u u u u oiipe λ(β x β x β ) λ(x β x β ) λ(x )dx x
∞

−∞

 
∇ = + + − + 

 
∫ % % % % %  

 

 ± { }uβ p oi o u u oi o u u u u uipe λ(β x β x β ) λ(x β x β ) x λ(x )dx
∞

−∞

∇ = + + − +∫ % % % % %  
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 Table 1 -- Cigarette Demand Model: Variable Definitions 

Variable Definition 
Outcome Variable (y) 

Number of cigarettes consumed per day 

Potentially Endogenous Policy Variable (xp) 

HABITSTOCK* An index of the habit-forming effects of prior cigarette 
consumption. 

Observable Confounders (xo) 
PRICE After-tax cigarette tax price (statewide or regional) 

REST79 State price index 

INCOME Family income (midpoint of interval) in thousands 

AGE Age at time of interview 

AGE2  Square of Age at time of interview 

EDUCATION  Education completed in years at time of interview 

EDUCATION2 Square of Education completed at time of interview  

FAMSIZE Number of individuals in Household 

RACE Binary Variable=1 if individual is white 

Instrumental Variables (w+) 

RESTOCK Interaction between state price index and habit stock 

LAGPRICE Last period after-tax cigarette price 

AGE3 Age at interview cubed 

EDUCATION3 Education completed at interview cubed 

AGE×EDUCATION Interaction between age and education level at interview 

*This variable is an index based on accumulated smoking levels over time for current smokers 
and depreciated smoking levels for former smokers.  See Mullahy (1985), Appendix 4-B for 
details.  
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 Table 2 – Cigarette Demand Model:  Descriptive Statistics for the Sample 

Variable Mean Min Max 

Outcome Variable (y) 

y 0.412 0.000 4.900 

Potentially Endogenous Policy Variable (xp) 

HABITSTOCK 104.071 0.000 977.300 

Observable Confounders (xo) 

PRICE 61.180 46.300 69.800 

REST79 0.241 0.000 1.000 

INCOME 19047.240 500.000 30000.000 

AGE 41.707 17.000 96.000 

AGE2 2041.312 289.000 9216.000 

EDUCATION 12.298 0.000 18.000 

EDUCATION2 162.193 0.000 324.000 

FAMSIZE 3.189 1.000 13.000 

RACE 0.895 0.000 1.000 

Instrumental Variables (w+) 

RESTOCK 0.904 0.000 6.000 

LAGPRICE 57.878 41.778 67.052 

AGE3 112886.638 4913.000 884736.000 

EDUCATION3 2245.499 0.000 5832.000 

AGE×EDUCATION 499.563 1530.000 0.000 
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Table 3:  Cigarette Demand Model:  Nonlinear Regression Results 

NLS-IBC Estimates of 
Cigarette Consumption 

Parameters (Not Corrected 
for Endogeneity) 

2SRI-IBC Estimates of 
Cigarette Consumption 

Parameters (Corrected for 
Endogeneity) 

OLS Estimates of Habit 
Stock Parameters Variable 

Estimate  t-stat p-val Estimate t-stat p-val Estimate t-stat p-val 

HABITSTOCK 0.01 29.48 <0.001 0.01 8.61 <0.001 -- -- -- 
PRICE -1.8×10-3 -1.26 0.21 -8×10-4 -0.50 0.62 -0.76 -0.60 0.55 

RESTAURANT -0.01 -0.80 0.43 0.01 0.58 0.56 -16.54 -1.47 0.14 
INCOME 1.9×10-7 0.24 0.81 8.8×10-7 0.96 0.34 -2.7×10-4 -1.43 0.15 

AGE -0.02 -7.93 <0.001 -0.05 -4.72 <0.001 22.42 12.64 <0.001 
AGE2 1.2×10-4 5.09 <0.001 4.6×10-4 4.16 <0.001 -0.35 -8.71 <0.001 

EDUCATION -0.01 -1.09 0.28 -0.04 -3.13 0.002 6.70 1.12 0.26 
EDUCATION2 5.4×10-5 0.16 0.87 1.9×10-3 2.80 0.01 -0.41 -0.70 0.48 

FAMSIZE 1.3×10-3 0.32 0.75 3.1×10-3 0.69 0.49 -0.75 -0.81 0.42 
RACE -0.01 -0.39 0.70 1×10-3 0.04 0.97 -3.45 -0.68 0.50 

RESTOCK -- --  -- --  1.70 0.59 0.56 
LAGPRICE -- --  -- --  0.29 0.23 0.81 

AGE3 -- --  -- --  1.5×10-3 5.27 <0.001 
EDUCATION3 -- --  -- --  -0.01 -0.67 0.50 

AGE×EDUCATION -- --  -- --  0.06 2.00 0.05 
CONSTANT -0.36 -3.32 <0.001 0.09 0.49 0.62 -256.72 -6.25 <0.001  

First-Stage Residual -- --  -2.4×10-3 -3.01  -- --  
γ (Ho: γ = 0) 1.76 28.05 <0.001 1.77 28.22 <0.001 -- --  
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Table 4 -- Hospital Expenditure Model:  Variable Definitions 

Variable Definition 
Outcome Variable (y) 

Hospital expense for the sample as a whole 

Potentially Endogenous Policy Variable (xp) 
RXUSE Prescription fills 

Observable Confounders (xo) 
DISABLED Medicare entitlement status -- SSDI Disabled (<65) 

DISAGED Medicare entitlement status -- Aged/previously disabled (>65) 

AGE74 Age 70-74 

AGE79 Age 75-79 

AGEGT80 Age 80+ 

MARRIED Binary Variable=1 if individual is married 

FEMALE Binary Variable=1 if individual is female 

RURAL Urban residence 

HSGRAD Educational attainment -- High school graduate 

MIDWEST Census region -- Midwest 

SOUTH Census region – South 

WEST Census region -- West 

INC20 Annual income between $10,001 - $20,000 

INC30 Annual income between $20,001 - $30,000 

INCGT30 Annual income > $30,000 

WHITE Binary Variable=1 if individual is white 

RISKADJ DCG/HCC risk adjuster 

Instrumental Variables (w+) 

RXCOVRD Full-year drug coverage 

Source: 1999 and 2000 MCBS 
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Table 5 – Hospital Expenditure Model:  Descriptive Statistics for the Sample 

Variable Mean Min Max 

Outcome Variable (y) 

y 2097.841 95251.360 0.000 

Potentially Endogenous Policy Variable (xp) 

RXUSE 30.052 229.000 0.000 

Observable Confounders (xo) 

DISABLED 0.162 1.000 0.000 

DISAGED 0.071 1.000 0.000 

AGE74 0.243 1.000 0.000 

AGE79 0.188 1.000 0.000 

AGEGT80 0.284 1.000 0.000 

MARRIED 0.484 1.000 0.000 

FEMALE 0.571 1.000 0.000 

RURAL 0.339 1.000 0.000 

HSGRAD 0.643 1.000 0.000 

MIDWEST 0.213 1.000 0.000 

SOUTH 0.406 1.000 0.000 

WEST 0.176 1.000 0.000 

INC20 0.263 1.000 0.000 

INC30 0.199 1.000 0.000 

INCGT30 0.269 1.000 0.000 

WHITE 0.865 1.000 0.000 

RISKADJ 1.007 8.068 0.206 

Instrumental Variable (w+) 

RXCOVRD 0.773 1.000 0.000 
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Table 6 – Hospital Expenditure Model:  Nonlinear Regression Results 
NLS Exponential 

Regression Estimates of 
Hospital Expenditure 

Equation (Not Corrected 
for Endogeneity) 

2SRI Exponential 
Regression Estimates of 
Hospital Expenditure 

Equation 
(Corrected for Endogeneity) 

NLS Exponential 
Regression Estimates of Rx 

Usage Equation Variable 

Estimate t-stat p-val Estimate t-stat p-val Estimate t-stat p-val 
RXUSE 9.5×10-5 0.05 0.96 -0.04 -2.48 0.01 -- -- -- 
DISABLED 0.32 1.53 0.13 0.68 2.28 0.02 0.22 2.98 0.003 
DISAGED 0.38 2.16 0.03 0.75 2.98 0.003 0.27 4.10 <0.001 
AGE74 0.06 0.38 0.71 0.10 0.53 0.60 -0.04 -0.53 0.60 
AGE79 0.21 1.06 0.29 0.14 0.69 0.49 -0.06 -0.87 0.38 
AGEGT80 0.04 0.23 0.82 -0.12 -0.53 0.60 -0.04 -0.53 0.60 
MARRIED 0.09 0.99 0.32 0.19 1.70 0.09 0.04 0.97 0.33 
FEMALE -0.25 -2.60 0.01 0.02 0.16 0.88 0.23 6.21 <0.001 
RURAL -0.01 -0.04 0.97 -2.2×10-3 -0.01 0.99 0.01 0.26 0.80 
HSGRAD -0.34 -3.10 0.002 -0.43 -3.08 0.002 -0.08 -2.13 0.03 
MIDWEST -0.53 -3.48 <0.001 -0.43 -2.55 0.01 0.10 1.86 0.06 
SOUTH -0.36 -2.55 0.01 -0.31 -2.14 0.03 0.02 0.46 0.64 
WEST 0.06 0.36 0.72 -3.2×10-3 -0.02 0.99 -0.09 -1.60 0.11 
INC20 -0.16 -1.30 0.19 -0.33 -1.94 0.05 -0.06 -1.18 0.24 
INC30 -0.41 -2.71 0.01 -0.54 -2.90 0.004 -0.10 -1.68 0.09 
INCGT30 0.30 2.05 0.04 0.02 0.10 0.92 -0.22 -3.88 <0.001 
WHITE 0.10 0.76 0.45 0.39 2.00 0.05 0.20 3.75 <0.001 
RISKADJ 0.14 3.85 <0.001 0.48 3.82 <0.001 0.19 9.48 <0.001 
RXCOVRD -- -- -- -- -- -- 0.29 7.01 <0.001 
CONSTANT 9.29 37.02 <0.001 9.70 26.91 <0.001 2.73 28.78 <0.001 
First Stage Residual -- -- -- 0.04 2.56 0.01 -- -- -- 
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Table 7 -- Drinking Model:  Variable Definitions 
Variable Definition 

Outcome Variable (y) 
Total drinks 

Potentially Endogenous Policy Variable (xp) 
ADVICE Drinking advice 

Observable Confounders (xo) 
EDITINC Monthly income ($1000) 

AGE40 40 < age ≤ 50 

AGE50 50 < age ≤ 60 

AGE60 60 < age ≤ 70 

AGEGT70 70 < age 

EDUC Years of schooling 

BLACK Black d.v. 

OTHER Non-white, non-black 

MARRIED Married 

WIDOW Widowed 

DIVSEP Divorced or separated 

EMPLOYED Employed 

UNEMPLOY Unemployed 

NORTHE Northeast 

MIDWEST Midwest 

SOUTH South 

Instrumental Variables (w+) 
MEDICARE Insurance through Medicare 

MEDICAID Insurance through Medicaid 

CHAMPUS Military insurance 

HLTHINS Health insurance 

REGMED Reg. source of care 

DRI See same doctor 

MAJORLIM Limits on major daily activ. 

SOMELIM Limits on some daily activ. 

HVDIAB Have diabetes 

HHRTCOND Have heart condition 

HADSTROKE Had stroke 
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Table 8 – Drinking Model: Descriptive Statistics for the Sample 
Variable Mean Min Max 

Outcome Variable (y) 
y 0.786 0.000 1.000 

Potentially Endogenous Policy Variable (xp) 
DADLALC 0.279 0.000 1.000 

Observable Confounders (xo) 
EDITINC 2.579 -0.900 100.800 

AGE40 0.179 0.000 1.000 

AGE50 0.195 0.000 1.000 

AGE60 0.183 0.000 1.000 

AGE70 0.199 0.000 1.000 

AGEGT70 0.122 0.000 1.000 

EDUC 12.926 0.000 18.000 

BLACK 0.133 0.000 1.000 

OTHER 0.018 0.000 1.000 

MARRIED 0.645 0.000 1.000 

WIDOW 0.052 0.000 1.000 

DIVSEP 0.160 0.000 1.000 

EMPLOYED 0.666 0.000 1.000 

UNEMPLOY 0.029 0.000 1.000 

NORTHE 0.218 0.000 1.000 

MIDWEST 0.275 0.000 1.000 

SOUTH 0.295 0.000 1.000 

Instrumental Variables (w+) 
MEDICARE 0.252 0.000 1.000 

MEDICAID 0.031 0.000 1.000 

CHAMPUS 0.059 0.000 1.000 

HLTHINS 0.815 0.000 1.000 

REGMED 0.821 0.000 1.000 

DR1 0.720 0.000 1.000 

MAJORLIM 0.086 0.000 1.000 

SOMELIM 0.076 0.000 1.000 

HVDIAB 0.061 0.000 1.000 

HHRTCOND 0.146 0.000 1.000 

HADSTROK 0.036 0.000 1.000 
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Table 9 -- Drinking Model:  Nonlinear Regression Results 
Simple Probit Estimates of 

Drinking Equation (Not 
Corrected for Endogeneity) 

Joint FIML Estimates of 
Drinking Equation 

(Corrected for Endogeneity) 

Joint FIML Estimates of 
Advice Equation Variable 

Estimate z-stat p-val Estimate z-stat p-val Estimate z-stat p-value 
DADLALC 0.29 4.31 <0.001 -1.78 -3.08 0.001 -- -- -- 
EDITINC 0.01 0.80 0.42 0.01 0.67 0.25 -2.5×10-3 -0.43 0.66 

AGE40 -0.14 -1.21 0.23 -0.02 -0.13 0.45 0.24 2.26 0.02 
AGE50 -0.21 -1.81 0.07 -0.16 -0.91 0.18 0.15 1.33 0.18 
AGE60 -0.25 -2.16 0.03 -0.23 -1.32 0.09 0.11 0.98 0.33 
AGE70 -0.13 -1.04 0.30 -0.09 -0.48 0.32 0.10 0.79 0.43 

AGEGT70 -0.03 -0.22 0.83 -0.03 -0.16 0.44 0.15 0.92 0.36 
EDUC 0.04 3.54 <0.001 0.02 1.59 0.06 -0.03 -3.38 <0.001 

BLACK -2.3×10-3 -0.03 0.98 0.22 1.53 0.06 0.28 3.41 <0.001 
OTHER 0.11 0.46 0.64 0.31 0.91 0.18 0.22 1.10 0.27 

MARRIED -0.03 -0.27 0.78 1.8×10-3 0.01 0.50 0.16 1.80 0.07 
WIDOW 0.01 0.05 0.96 0.17 0.71 0.24 0.28 1.84 0.07 
DIVSEP 0.01 0.06 0.95 0.14 0.83 0.20 0.30 2.85 0.002 

EMPLOYED 0.26 3.14 0.00 0.22 1.87 0.03 3.2×10-4 3.7×10-3 1.00 
UNEMPLOY 0.37 1.94 0.05 0.54 1.90 0.03 0.21 1.22 0.22 

NORTHE -0.13 -1.43 0.15 -0.12 -0.91 0.18 0.08 0.92 0.36 
MIDWEST -0.16 -1.82 0.07 -0.24 -1.83 0.03 -0.03 -0.35 0.73 

SOUTH -0.15 -1.74 0.08 -0.21 -1.65 0.05 -0.04 -0.44 0.66 
Intercept 0.35 1.85 0.07 1.24 3.21 <0.001 -0.59 -3.16 <0.001 

MEDICARE -- -- -- -- -- -- -0.02 -0.15 0.88 
MEDICAID -- -- -- -- -- -- 0.13 0.92 0.36 
CHAMPUS -- -- -- -- -- -- 0.15 1.41 0.16 
HLTHINS -- -- -- -- -- -- -0.15 -1.99 0.05 
REGMED -- -- -- -- -- -- 0.09 0.92 0.36 

DR1 -- -- -- -- -- -- 0.06 0.67 0.50 
MAJORLIM -- -- -- -- -- -- 0.16 1.53 0.13 
SOMELIM -- -- -- -- -- -- 0.13 1.41 0.16 
HVDIAB -- -- -- -- -- -- 0.24 2.35 0.02 

HHRTCOND -- -- -- -- -- -- 0.15 2.04 0.04 
HADSTROK -- -- -- -- -- -- 0.03 0.26 0.80 

xu    1.23 3.65 <0.001    
 


