
Bot Matrix Printer
James Scheppegrell

October 30, 2013
University of Florida

Department of Electrical and Computer Engineering

EEL 4665

Intelligent Machines Design Laboratory

Report 2

Instructors: A. Antonio Arroyo, Eric M. Schwartz

TAs: Josh Weaver, Devin Hughes, Andy Gray

1

Contents
Abstract..3

Introduction..3

Sensors...3

Mobile Platform...3

Actuation..4

Behavior...4

Integrated System...4

Experimental Layout and Results..5

Conclusion ..5

Documentation..6

Appendices..6

2

Abstract
Chalk Matrix Printer's intended operation is to take picture files, convert them into a list of

binary values representing a low resolution black and white copy of the image, and draw it onto a
poster sized piece of paper.

Introduction
As a general rule, printers are large compared to the medium they print on, and require that the

medium pass through it. This works fine for documents, but this scheme practically excludes printing
on large pre-existing surfaces, and results in the need for very large printers to produce posters. The Bot
Matrix Printer is a small printer for large surfaces.

Mobile Platform
The mobile platform consists of a chassis with two hacked analog servos in a differential drive

configuration. Main chassis will house the drive-train, computer board, marker deployment
mechanism, and batteries. Drive wheels are located in the middle of the platform along the front-back
axis, and a skid at the front. The marker will be deployed from the center of the platform, directly
between the drive wheels. This location minimizes visible oscillation of the drawn line that may result
from navigational correction of the robot during operation.

Sensors

The platform houses two distinct sensor systems; a magnetometer, and an array of sonars. Two
sonars are mounted along the right face of the platform, equidistantly ahead of and behind the drive
wheels. Another sonar points ahead of the platform, and the magnetometer is mounted on top of the
platform as far away as reasonably possible from the power supply and servos.

The array of sonars allows the robot to determine its position in 2D space relative to two
perpendicular vertical surfaces, such as the corner of a room. Having sonars on two perpendicular faces
of the platform allows the robot to determine its distance from the two surfaces, while positioning two
of the sonars on the same face allows it to determine its relative rotation or parallelism.

The magnetometer is used to determine the platform's heading relative to magnetic North. By
storing the heading measured when parallelism is established by the sonars, the robot is able to
navigate accurately during maneuvers where the platform's faces are not parallel with the vertical
surfaces that were detected by the sonars. The magnetometer heading is also useful during straight line
navigation when the sonars can detect their intended surfaces, as an additional input to increase
robustness to sensor inaccuracy and environmental factors. This is especially important as the robot

3

moves further from the wall used to establish parallelism, when discrepancies between sonar readings
may increase.

Sonar: Devantech SRF-08
Magnetometer: Honeywell HMC5883L

Actuation
The drive-train's servos are be hacked for continuous rotation. Because this results in the

position of the wheel being unknown, and the servos tend to operate at slightly different speeds,
feedback from the sonars and magnetometer are necessary to to determine completion of turns and tune
straight line driving.

An unmodified servo will actuate the marker deployment mechanism. This will allow position
to be adjusted directly by altering the PWM signal.

Behavior
 The sensors being used to supply feedback for navigation are the sonars and magnetometer.

The magnetometer allows the robot to turn exact angles and helps to drive in a straight line, letting the
robot trace out a path resembling a square wave. Based on the picture supplied to the software, and
subsequent processing of that picture, a marker will be deployed at certain points along that path in
order to “print” the picture. Upon deployment, the marker will be lowered relative to the platform until
the bump switch is triggered, indicating the marker has been lowered with sufficient pressure. If the
bump switch opens while drawing, the pwm signal will be adjusted in order to ensure that the servo
maintains pressure.

Integrated System
On board computer is a BeagleBone Black hosting a Linux OS. 3 sonars, a magnetometer, and a

bump switch will serve as its inputs. 3 servos, 2 hacked for continuous rotation and 1 unmodified, will
enable its movement.

4

Experimental Layout and Results
The magnetometer would ideally pick up only the Earth's magnetic fields, but unfortunately the

low strength of that signal means that the effect of electromagnetic interference from the robot's power
supply, servos, etc is quite significant. Determining true North, or even precise magnetic north, is not of
particular importance for the robot to function correctly. What is important, however, is that it can
accurately determine changes in heading. As such, the raw detected heading must be linearized.

The sonars are not perfectly accurate, with both over and under reports of 5%. Despite this
slight error in reporting distance, the readings will likely be used uncorrected.

Conclusion
At this point in time, the robot is able to perform basic navigational tasks using input from its

sensors. With the relatively simple navigational software I have implemented, however, the path it
traces has large variations in distance from the surface it is supposed to drive parallel to. A key hurdle
will be writing a program that enables it to maintain its parallelism and distance relative to a surface
much more accurately, while maintaining a relatively constant forward velocity during navigational
corrections.

I'm quite pleased with the precision of the sonars, and am glad that I chose them over infrared
units. Using a magnetometer on the other hand, while satisfactory so far, may have been a worse
decision compared to using a gyro. The main drawback that I've experienced is its sensitivity to
environmental factors, such as what I can only guess is plumbing under the lab's floor. Because my
hardware already contains a gyro, I may try to implement it either in place of, or in addition to, the
magnetometer for detecting relative heading changes.

Another improvement to the platform that could be made is the addition of encoders to the drive
-train. The current setup effectively alters the power sent to each wheel, rather than directly being able
to determine and alter rotational speed.

5

Magnetometer Readings vs Actual Rotation, in Degrees Sonar Readings Vs Actual Distance, in Centimeters

Reported Heading: Chassis Rotation (Clockwise) Reported Range: Actual Distance:
0 0 5 5

-61 45 10 10
-109 90 21 20
-149 135 38 40
-174 180 76 80
145 225
103 270
58 315

Documentation
• BeagleBoard Black: beagleboard.org
• Servo Driver Based on:

http://learn.adafruit.com/controlling-a-servo-with-a-beaglebone-black/writing-a-program
• Sonar: http://www.robot-electronics.co.uk/htm/srf08tech.shtml

Sonar Driver Based on: http://www.instructables.com/id/Raspberry-Pi-I2C-Python/step6/
• Magnetometer: http://www.robot-electronics.co.uk/htm/srf08tech.shtml

Magnetometer Driver Based on:
https://raw.github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code/master/Adafruit_LSM303/Adafrui
t_LSM303.py

Appendices
• Behavioral Program:

import lsm303_5
import smbus
import time
import servo5
import servo7
import servo6
import srf08_2

bus = smbus.SMBus(1)
address = 0x70

#SRF08 REQUIRES 5V

def write(value):
 bus.write_byte_data(address, 0, value)
 return -1

def lightlevel():
 light = bus.read_byte_data(address, 1)
 return light

def range():
 range1 = bus.read_byte_data(address, 2)
 range2 = bus.read_byte_data(address, 3)

6

http://learn.adafruit.com/controlling-a-servo-with-a-beaglebone-black/writing-a-program
https://raw.github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code/master/Adafruit_LSM303/Adafruit_LSM303.py
https://raw.github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code/master/Adafruit_LSM303/Adafruit_LSM303.py
http://www.instructables.com/id/Raspberry-Pi-I2C-Python/step6/
http://www.robot-electronics.co.uk/htm/srf08tech.shtml
http://www.robot-electronics.co.uk/htm/srf08tech.shtml

 range3 = (range1 << 8) + range2
 return range3
orientset = 0
lsm = lsm303_5.Adafruit_LSM303()
bus.write_byte_data(address, 2, 0x06)
servo5.direction(heading = 'back')
while True:
 write(0x51)
 time.sleep(0.7)
 lightlvl = lightlevel()
 rng = range()
 print "lightlevel"
 print lightlvl
 print "rng"
 print rng
 rng2 = srf08_2.srf()
 print rng2

 if rng >= 10:
 if rng == rng2:
 orientset = lsm.read()
servo7.direction(heading = 'straight')
 print orientset
 else:
 print "not parallel"

 if rng > 0:
if rng == rng2:
orientset = lsm.read()
servo7.direction(heading = 'straight')
 servo7.direction(heading = 'stop')
print orientset
else:
print "not parallel"
 elif rng == 0:
 orient = lsm.read()
 print orient
 if orient >= orientset+20:
 servo6.direction(heading = 'right')
 elif orient<= orientset-20:
 servo6.direction(heading = 'left')
 else:
 servo6.direction(heading = 'straight')

7

elif rng >= 22:
servo7.direction(heading = 'right')
elif rng<= 18:
servo7.direction(heading = 'left')
else:
servo7.direction(heading = 'straight')

• Sonar Driver
def srf():
 import smbus
 import time
 bus = smbus.SMBus(1)
 address = 0x71

#SRF08 REQUIRES 5V

 def write(value):
 bus.write_byte_data(address, 0, value)
 return -1

 def lightlevel():
 light = bus.read_byte_data(address, 1)
 return light

 def range():
 range1 = bus.read_byte_data(address, 2)
 range2 = bus.read_byte_data(address, 3)
 range3 = (range1 << 8) + range2
 return range3

#set sensitivity
 bus.write_byte_data(address, 2, 0x06)
 while True:
 write(0x51)
 time.sleep(0.1)
lightlvl = lightlevel()
 rng = range()
print "lightlevel"
print lightlvl
print "rng"
print rng

8

 return rng
 return rng

• Magnetometer Driver
#!/usr/bin/python

Python library for Adafruit Flora Accelerometer/Compass Sensor (LSM303).
This is pretty much a direct port of the current Arduino library and is
similarly incomplete (e.g. no orientation value returned from read()
method). This does add optional high resolution mode to accelerometer
though.

Copyright 2013 Adafruit Industries

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

from Adafruit_I2C import Adafruit_I2C
import math

class Adafruit_LSM303(Adafruit_I2C):

 # Minimal constants carried over from Arduino library
LSM303_ADDRESS_ACCEL = (0x32 >> 1) # 0011001x
 LSM303_ADDRESS_MAG = (0x3C >> 1) # 0011110x

9

 # Default Type
LSM303_REGISTER_ACCEL_CTRL_REG1_A = 0x20 # 00000111 rw
LSM303_REGISTER_ACCEL_CTRL_REG4_A = 0x23 # 00000000 rw
LSM303_REGISTER_ACCEL_OUT_X_L_A = 0x28
 LSM303_REGISTER_MAG_CRA_REG_M = 0x00
 LSM303_REGISTER_MAG_CRB_REG_M = 0x01
 LSM303_REGISTER_MAG_MR_REG_M = 0x02
 LSM303_REGISTER_MAG_OUT_X_H_M = 0x03

 # Gain settings for setMagGain()
 LSM303_MAGGAIN_0_9 = 0x00 # +/- .88
 LSM303_MAGGAIN_1_3 = 0x20 # +/- 1.3
 LSM303_MAGGAIN_1_9 = 0x40 # +/- 1.9
 LSM303_MAGGAIN_2_5 = 0x60 # +/- 2.5
 LSM303_MAGGAIN_4_0 = 0x80 # +/- 4.0
 LSM303_MAGGAIN_4_7 = 0xA0 # +/- 4.7
 LSM303_MAGGAIN_5_6 = 0xC0 # +/- 5.6
 LSM303_MAGGAIN_8_1 = 0xE0 # +/- 8.1

 def __init__(self, busnum=-1, debug=False, hires=False):

 # Accelerometer and magnetometer are at different I2C
 # addresses, so invoke a separate I2C instance for each
self.accel = Adafruit_I2C(self.LSM303_ADDRESS_ACCEL, busnum, debug)
 self.mag = Adafruit_I2C(self.LSM303_ADDRESS_MAG , busnum, debug)

 # Enable the accelerometer
self.accel.write8(self.LSM303_REGISTER_ACCEL_CTRL_REG1_A, 0x27)
 # Select hi-res (12-bit) or low-res (10-bit) output mode.
 # Low-res mode uses less power and sustains a higher update rate,
 # output is padded to compatible 12-bit units.
if hires:
self.accel.write8(self.LSM303_REGISTER_ACCEL_CTRL_REG4_A,
0b00001000)
else:
self.accel.write8(self.LSM303_REGISTER_ACCEL_CTRL_REG4_A, 0)

 # Enable the magnetometer
 self.mag.write8(self.LSM303_REGISTER_MAG_MR_REG_M, 0x00)

 #set test mode: off set output rate: 30Hz
 self.mag.write8(self.LSM303_REGISTER_MAG_CRA_REG_M, 0x14)

10

 # Interpret signed 12-bit acceleration component from list
def accel12(self, list, idx):
n = list[idx] | (list[idx+1] << 8) # Low, high bytes
if n > 32767: n -= 65536 # 2's complement signed
return n >> 4 # 12-bit resolution

 # Interpret signed 16-bit magnetometer component from list
 def mag16(self, list, idx):
 n = (list[idx] << 8) | list[idx+1] # High, low bytes
 return n if n < 32768 else n - 65536 # 2's complement signed

 def read(self):
 # Read the accelerometer
list = self.accel.readList(
self.LSM303_REGISTER_ACCEL_OUT_X_L_A | 0x80, 6)
res = [(self.accel12(list, 0),
self.accel12(list, 2),
self.accel12(list, 4))]

 # Read the magnetometer
 list = self.mag.readList(self.LSM303_REGISTER_MAG_OUT_X_H_M, 6)
res.append((self.mag16(list, 0),
res = [(self.mag16(list, 0),
self.mag16(list, 2),
self.mag16(list, 4))]

 x = self.mag16(list, 0)
 y = self.mag16(list, 4)
 res = math.degrees(math.atan2(x, y))

ToDo: Calculate orientation

 return res

 def setMagGain(gain=LSM303_MAGGAIN_0_9):
 self.mag.write8(LSM303_REGISTER_MAG_CRB_REG_M, gain)

11

• Servo Driver (servo7)
def direction(heading):

 import Adafruit_BBIO.PWM as PWM

 servo_pin = "P9_14"
 servo_pin1 = "P8_13"
 duty_min = 3
 duty_max = 14.5
 duty_span = duty_max - duty_min

PWM.start(servo_pin, ((float(90) / 180) * duty_span + duty_min), 60.0)
PWM.start(servo_pin1, ((float(90) / 180) * duty_span + duty_min), 60.0)

while True:
 # heading = raw_input("Angle (0 to 180 x to exit):")
 if heading == 'x':
angle = 90
angle1 = 90

PWM.stop(servo_pin)
PWM.stop(servo_pin1)
 PWM.cleanup()

 return
break

 elif heading == 'straight':
 angle = 180
 angle1 = 180
 elif heading == 'left':
 angle = 180
 angle1 = 100
 elif heading == 'right':
 angle = 100
 angle1 = 180
 elif heading == 'back':
 angle = 0
 angle1 = 0
 else:
 angle = 90
 angle1 = 90

12

 angle_f = float(angle)
 angle_f1 = float(angle1)

 duty = ((angle_f / 180) * duty_span + duty_min)
 duty1 = ((angle_f1 / 180) * duty_span + duty_min)

PWM.start(servo_pin, ((float(90) / 180) * duty_span + duty_min), 60.0)
PWM.start(servo_pin1, ((float(90) / 180) * duty_span + duty_min), 60.0)

 PWM.set_duty_cycle(servo_pin, duty)
 PWM.set_duty_cycle(servo_pin1, duty1)

 return

• Magnetometer Test Software
#!/usr/bin/python

Python library for Adafruit Flora Accelerometer/Compass Sensor (LSM303).
This is pretty much a direct port of the current Arduino library and is
similarly incomplete (e.g. no orientation value returned from read()
method). This does add optional high resolution mode to accelerometer
though.

Copyright 2013 Adafruit Industries

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY,

13

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

from Adafruit_I2C import Adafruit_I2C
import math

class Adafruit_LSM303(Adafruit_I2C):

 # Minimal constants carried over from Arduino library
LSM303_ADDRESS_ACCEL = (0x32 >> 1) # 0011001x
 LSM303_ADDRESS_MAG = (0x3C >> 1) # 0011110x
 # Default Type
LSM303_REGISTER_ACCEL_CTRL_REG1_A = 0x20 # 00000111 rw
LSM303_REGISTER_ACCEL_CTRL_REG4_A = 0x23 # 00000000 rw
LSM303_REGISTER_ACCEL_OUT_X_L_A = 0x28
 LSM303_REGISTER_MAG_CRA_REG_M = 0x00
 LSM303_REGISTER_MAG_CRB_REG_M = 0x01
 LSM303_REGISTER_MAG_MR_REG_M = 0x02
 LSM303_REGISTER_MAG_OUT_X_H_M = 0x03

 # Gain settings for setMagGain()
 LSM303_MAGGAIN_0_9 = 0x00 # +/- .88
 LSM303_MAGGAIN_1_3 = 0x20 # +/- 1.3
 LSM303_MAGGAIN_1_9 = 0x40 # +/- 1.9
 LSM303_MAGGAIN_2_5 = 0x60 # +/- 2.5
 LSM303_MAGGAIN_4_0 = 0x80 # +/- 4.0
 LSM303_MAGGAIN_4_7 = 0xA0 # +/- 4.7
 LSM303_MAGGAIN_5_6 = 0xC0 # +/- 5.6
 LSM303_MAGGAIN_8_1 = 0xE0 # +/- 8.1

 def __init__(self, busnum=-1, debug=False, hires=False):

 # Accelerometer and magnetometer are at different I2C
 # addresses, so invoke a separate I2C instance for each
self.accel = Adafruit_I2C(self.LSM303_ADDRESS_ACCEL, busnum, debug)
 self.mag = Adafruit_I2C(self.LSM303_ADDRESS_MAG , busnum, debug)

 # Enable the accelerometer
self.accel.write8(self.LSM303_REGISTER_ACCEL_CTRL_REG1_A, 0x27)
 # Select hi-res (12-bit) or low-res (10-bit) output mode.

14

 # Low-res mode uses less power and sustains a higher update rate,
 # output is padded to compatible 12-bit units.
if hires:
self.accel.write8(self.LSM303_REGISTER_ACCEL_CTRL_REG4_A,
0b00001000)
else:
self.accel.write8(self.LSM303_REGISTER_ACCEL_CTRL_REG4_A, 0)

 # Enable the magnetometer
 self.mag.write8(self.LSM303_REGISTER_MAG_MR_REG_M, 0x00)

 #set test mode: off set output rate: 30Hz
 self.mag.write8(self.LSM303_REGISTER_MAG_CRA_REG_M, 0x14)

 # Interpret signed 12-bit acceleration component from list
def accel12(self, list, idx):
n = list[idx] | (list[idx+1] << 8) # Low, high bytes
if n > 32767: n -= 65536 # 2's complement signed
return n >> 4 # 12-bit resolution

 # Interpret signed 16-bit magnetometer component from list
 def mag16(self, list, idx):
 n = (list[idx] << 8) | list[idx+1] # High, low bytes
 return n if n < 32768 else n - 65536 # 2's complement signed

 def read(self):
 # Read the accelerometer
list = self.accel.readList(
self.LSM303_REGISTER_ACCEL_OUT_X_L_A | 0x80, 6)
res = [(self.accel12(list, 0),
self.accel12(list, 2),
self.accel12(list, 4))]

 # Read the magnetometer
 list = self.mag.readList(self.LSM303_REGISTER_MAG_OUT_X_H_M, 6)
res.append((self.mag16(list, 0),
res = [(self.mag16(list, 0),
self.mag16(list, 2),
self.mag16(list, 4))]

 x = self.mag16(list, 0)
 y = self.mag16(list, 4)

15

 res = math.degrees(math.atan2(x, y))

ToDo: Calculate orientation

 return res

 def setMagGain(gain=LSM303_MAGGAIN_0_9):
 self.mag.write8(LSM303_REGISTER_MAG_CRB_REG_M, gain)

Simple example prints accel/mag data once per second:
if __name__ == '__main__':

 from time import sleep
 import servo6
 import servo5

 lsm = Adafruit_LSM303()

print '[(Accelerometer X, Y, Z), (Magnetometer X, Y, Z, orientation)]'
 print '[(Magnetometer X, Y, Z, orientation)]'
 servo5.direction(heading = 'back')
 sleep(2)
 while True:
 orient = lsm.read()
 print orient
 if orient >= 20:
 servo6.direction(heading = 'right')
 elif orient<= -20:
 servo6.direction(heading = 'left')
 else:
 servo6.direction(heading = 'straight')

 sleep(.01) # Output is fun to watch if this is commented out

• Sonar Test Software
import smbus
import time

16

bus = smbus.SMBus(1)
address = 0x70

#SRF08 REQUIRES 5V

def write(value):
 bus.write_byte_data(address, 0, value)
 return -1

def lightlevel():
 light = bus.read_byte_data(address, 1)
 return light

def range():
 range1 = bus.read_byte_data(address, 2)
 range2 = bus.read_byte_data(address, 3)
 range3 = (range1 << 8) + range2
 return range3

#set sensitivity
bus.write_byte_data(address, 2, 0xA2)
while True:
 write(0x51)
 time.sleep(0.7)
 lightlvl = lightlevel()
 rng = range()
 print "lightlevel"
 print lightlvl
 print "rng"
 print rng

17

