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Part I 
 

A) Spring stiffness at the limit of stability,  

 

klim = 2*m*g/l 

        = 2*0.5*9.81/0.3 

        = 32.7 N/m 

 

 

B)  

 

Now using this above values we plot the system behavior at different k values. Here we have plotted 

the angle theta vs the time for 0.1*klim, 0.5*klim, 0.9*klim, 0.99*klim, klim, 5*klim, 10*klim. The 

code for the time domain simulation for the system is as shown in the appendix 1.  

 In the code the value of k can be changed to get different system behavior. Simulation step size is dt = 

0.005; seconds and total steps are, step = 1/0.005*10 = 2000. The angular acceleration in the terms of 

velocity and angular dis[placement used in the code is, 

 

angacc = (-theta*(k*l^2/2-m*9.81*l)-(l^2*angvel/2))/(m*l^2); 

 

using the initial conditions we find the angular velocity, then we perform the euler integration to find 

the corresponding velocity and displacement and update the simulation.  

 

    angvel = angvel + angacc*dt; 

    theta = theta + angvel*dt; 
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C) As we see that wen k < klim, the pendulum falls off as the spring less stiff than required to support 

the mass. As the stiffness approaches klim, the time to drop off increases as the spring could resist the 

mass more. At k = klim, the stiffness of the spring is just enough to support the mass and it remains 

stable at the same position. When k > klim, the spring stiffness is more than required to support the 

mass. So the spring oscillates initially and gets to a stable condition. The time to reach stability 

decreases as k increases.  
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Part II 
 

A) clim = gamma  

             =10^7 N/m 

 

B) using the same steps described above we do the time domain simulation for the system using the 

code mentioned in appendix 2.  Here we have used the time steps of 0.002 seconds and 2500 steps,  

 

using the given initial conditions, we fing the acceleration,  

  accx = (-k*x-(c-gamma)*velx)/m; 

    

Euler integration steps for updating the system are, 

 velx = velx + accx*dt; 

    x = x + velx*dt; 
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C) Here we see that as c increases the system stability increases. Specifically when c < clim, the 

system is extremely unstable and the flutter increases gradually with time. At c= clim, this is the 

critical damping limit and at this point the the flutter is constant. As c increases and it gets more 

than clim, the system gets stable. Initially there is some flutter and it gets stable gradually with 

time. 
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Appendix 1 
 

clc 

clear all 

close all 

l = 0.3; %m 

c = 1; %N/m 

m = 0.5; %kg 

klim = 32.7; %N/m 

k = 0.5*klim; 

dt = 0.005; 

theta = 5; angvel = 0; 

%toal steps 

step = 1/0.005*10 

for n = 1:(step) 

    theta1(n) = 0; 

end 

% performing euler integration 

for n = 1:(step) 

    angacc = (-theta*(k*l^2/2-m*9.81*l)-(l^2*angvel/2))/(m*l^2); 

    angvel = angvel + angacc*dt; 

    theta = theta + angvel*dt; 

    theta1(n) = theta; 

    t(n) = n*dt; 

end 

 

%Plotting the results 

figure(1) 

plot(t, theta1) 

ylim([-15 15]) 

xlim([0 10]) 

xlabel('time (s)') 

ylabel('angular deflection (degrees)') 

title('For k = 0.5*klim') 
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Appendix 2 
 

clc 

clear all 

close all 

k = 1e7; 

gamma = 1e4; 

m = 500; 

clim = 1e4; 

c = 0.5*clim; 

dt = 0.002; 

x = 1; velx = 0; 

step = 1/0.002*5 

for n = 1:(step) 

    x1(n) = 0; 

end 

 

for n = 1:(step) 

    accx = (-k*x-(c-gamma)*velx)/m; 

    velx = velx + accx*dt; 

    x = x + velx*dt; 

    x1(n) = x; 

    t(n) = n*dt; 

end 

 

figure(1) 

plot(t, x1) 

xlim([0 5]) 

ylim([-5 5]) 

xlabel('time (s)') 

ylabel('displacement(flutter) (MM)') 

title('For c = 0.5*clim') 


