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SUMMARY Hybrid wired/wireless on-chip network is a promising
communication architecture for multi-/many-core SoC. For application-
specific SoC design, it is important to design a dedicated on-chip network
architecture according to the application-specific nature. In this paper, we
propose a heuristic wireless link allocation algorithm for creating hybrid
on-chip network architecture. The algorithm can eliminate the performance
bottleneck by replacing multi-hop wired paths by high-bandwidth single-
hop long-range wireless links. The simulation results show that the hybrid
on-chip network designed by our algorithm improves the performance in
terms of both communication delay and energy consumption significantly.
key words: Network-on-Chip (NoC), on-chip wireless interconnection net-
work, application-specific SoC, multi-core system, design automation

1. Introduction

The on-chip interconnection network (also known as
Network-on-Chip) has been proposed as a promising com-
munication architecture for next generation SoC paradigm
[1]. In conventional on-chip network, the on-chip routers
are connected by metal wires and the data are transfered
in a multi-hop communication manner. Despite the advan-
tages of the on-chip network, the conventional on-chip net-
work faces an important performance limitation that the data
transfer between two distant blocks causes high latency and
power consumption. Several approaches are proposed to al-
leviate this problem. In [2] and [3], the long-range links
and multi-drop global lines are inserted in a standard mesh
network as “shortcuts” to improve the communication per-
formance. However, since these short-cuts are still metal
wires, they also suffer from the fundamental physical lim-
itation of material characteristics. To tackle this problem,
interconnect innovation with optical, radio frequency (RF)
or vertical integration combined with accelerated efforts in
design and packaging will deliver the solution [4].

Recently, with the advances of nanotechnology and
wireless communication, on-chip wireless communication
becomes feasible and can achieve hundreds of GHz to tens
of THz of bandwidth [5]–[7]. Based on these advances,
several hybrid wired/wireless on-chip network architectures
are proposed [9]–[11]. In such hybrid on-chip networks,
high-bandwidth single-hop long-range wireless links are
employed to transfer data between distants blocks instead
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of multi-hop wired paths and hence reduce the interconnect
delay and energy dissipation. The hybrid wired/wireless
on-chip network is a revolutionary on-chip communication
infrastructure, which will provide higher flexibility, higher
bandwidth, lower power and freed-up wiring when com-
pared to conventional NoC [9].

Compared to a macro wireless data network, a hybrid
on-chip network is by far more resource limited. The use
of wireless links will cause some additional area cost for
implementing the on-chip antenna, modulator and demodu-
lator. To satisfy the overall SoC area requirement, the hy-
brid on-chip network has to be designed under a strict wire-
less resource budget (i.e. the number of available wireless
links). Moreover, besides the concern about silicon area,
since the wireless spectrum is a limited resource, the total
bandwidth that can be used in a hybrid on-chip network is
also limited inherently. Therefore, in a hybrid on-chip net-
work design, the wireless resources should be used as effec-
tively as possible. Especially in application-specific SoC de-
sign, since the traffic characteristics vary significantly across
different application, the rare wireless resources have to be
judiciously allocated in the on-chip network by taking the
traffic and communication pattern into account. However, in
most of the previous works [9]–[11], the wireless resources
are uniformly distributed in the on-chip network. In [11],
besides the uniform hybrid on-chip network architecture, a
simple traffic dependent wireless link insertion method is
presented. The experimental results show that although the
method is fairly intuitive, it can improve the hybrid on-chip
network performance notably. This proves the significance
of the wireless resource allocation problem for application-
specific SoC design.

In this paper, we address the design of hybrid
wired/wireless on-chip network, especially the wireless re-
source allocation problem, for application-specific SoC de-
sign. We define the hybrid wired/wireless on-chip network
as a combination of conventional on-chip network and some
long-range wireless links between distant cores in the chip.
Then the key problem is the placement of the wireless links
between a particular pair of source and destination cores,
which will eventually result in performance gains. Although
the problem of bypass channels insertion is well investigated
in wired networks, the problem of wireless links allocation
still has some unique features that should be tackled. First,
in wired network, the distance (or hop-count) between IP
cores is usually used as metric to measure the effect of by-
pass channel insertion. Reducing distance between IP cores
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is always the goal of inserting wired bypass channel. How-
ever, the wireless links always provide higher bandwidth
than wired links, which results in a heterogeneous band-
width on-chip network. Therefore we cannot simply use dis-
tance to measure the effect of wireless link insertion. Oth-
erwise it may cause improper use of wireless links. Some
communication performance based methods are needed for
inserting wireless links. Second, the wireless link is a lossy
channel compared to wired link. To guarantee the reliable
data transmission, a retransmission scheme is required in
hybrid on-chip network. The retransmission data causes
extra communication load in on-chip network. It must be
taken into consideration so that we can get accurate per-
formance estimation and allocate wireless links optimally.
Third, in most wired bypass channel insertion algorithm, the
data flow contention at router is not considered, which im-
pacts the communication performance greatly. Therefore to
allocate wireless links efficiently, we must build an analyti-
cal model of data flow contention.

To resolve the problem of wireless links allocation,
we build an analytical communication performance model
for hybrid on-chip network based on the theory of Net-
work Calculus. Based on this model, we propose an ef-
ficient algorithm that optimizes the placement of wireless
links in the on-chip network while matching the communi-
cation characteristics of the target application. More pre-
cisely, given the total available wireless links, the traffic pat-
tern between different cores, and other relevant architectural
parameters (e.g., router processing characteristics and rout-
ing algorithm), our algorithm automatically decides the po-
sitions where the wireless links are placed. The proposed
algorithm is applicable to any topology of on-chip network.

The remaining part of this paper is organized as fol-
lows: In Sect. 2, the architecture of hybrid wired/wireless
on-chip network is described. The problem formulation of
wireless resource allocation is presented in Sect. 3. The re-
solving methods and optimization algorithms are proposed
in Sect. 4. In Sect. 5, we discuss the extension of the pro-
posed algorithm to worst case delay guarantee. Simulation
results are described in Sect. 6. Finally, we conclude our
paper in Sect. 7.

2. The Architecture of Hybrid Wired/Wireless On-
Chip Network

2.1 On-Chip Network Architecture

In a hybrid wired/wireless on-chip network, there are two
kinds of communication channels, conventional wired links
and long-distance high-bandwidth wireless links. The
neighboring IP cores are connected by the wired links and
the wireless links are used to connect the distant cores.
These on-chip wireless links enable on-hop data transfer be-
tween distance cores, which reduce multi-hop long-distance
wired communications. Therefore, a hybrid wired/wireless
on-chip network can also be deemed as a combination of
conventional wired on-chip network with an arbitrary topol-

Fig. 1 A hybrid wired/wireless on-chip network.

ogy and some long-range wireless shortcuts.
Figure 1 shows an example of mesh-based hybrid on-

chip network. Basically the cores are interconnected by a
2-D mesh wired on-chip network. And there are two long-
distance wireless links: one connects Router 3 and 5, the
other connects Router 8 and 14. The routers with wireless
links (also called hybrid routers) are equipped with wireless
communication units that transmit and receive data packets
over the wireless channels.

By the state-of-the-art on-chip wireless communication
technology, tens of different frequency channels can be cre-
ated over a single chip. Thus these tens of different frequen-
cies can be assigned to multiple wireless links in the hybrid
on-chip network in such a way that single frequency channel
is used only once to avoid signal interference. This enables
concurrent data transmission over multiple wireless links on
the chip. For example, in [11], 24 different frequency wire-
less links are used in a scalable hybrid on-chip network and
each link provides 10 Gbps bandwidth. The on-chip wire-
less link is also a lossy channel. Within the typical com-
munication range of multi-core SoC (∼1.5 cm), the bit-error
rate (BER) of wireless link is less than 10−9 [10]. It is far
higher than that of RC wires (∼ 10−14). Hence, the data loss
has to be managed in on-chip hybrid routers.

In application-specific SoC, the traffic characteristics in
the on-chip network vary significantly across different appli-
cations. We assume that the application-specific nature en-
ables us to characterize traffic with sufficient accuracy. We
model the on-chip traffic by the arrival curve in network
calculus [12]. And we also model the packet processing of
router by the service curve.

2.2 Hybrid Router Microarchitecture

There are two kinds of routers in hybrid on-chip network,
basic router and hybrid router. The basic router has the same
microarchitecture as conventional on-chip router. And the
hybrid router is the combination of a basic router and a wire-
less communication unit. Figure 2 shows the microarchitec-
ture of a hybrid router in 2-D Mesh based hybrid on-chip
network. It is composed of five bi-directional ports named
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Fig. 2 Hybrid wired/wireless on-chip router microarchitecture.

Fig. 3 The block diagram of the wireless communication unit.

as North (N), South (S), East (E), West (W) and Local (L),
crossbar switch, control logic and a wireless communication
unit. The major control logic components include a routing
logic, a VC (Virtual Channel) allocator and a switch arbiter.
The wireless communication unit is connected to the cross-
bar switch so that the flits from wired ports can be forwarded
to wireless link and vice versa. But the flits from wireless
input is prohibited to be forwarded to wireless output. The
algorithm of routing logic is described in Sect. 2.3.

The block diagram of the Wireless Communication
Unit (WCU) is shown in Fig. 3. It is composed of modulator,
demodulator, checksum generation logic, checksum verifi-
cation logic, input buffer and retransmission buffer. We use a
FDM-like technology in the hybrid on-chip network; several
frequencies are assigned to multiple wireless links and sin-
gle frequency is used only once. Therefore the WCU does
not need media access control. The antenna is controlled by
a switch to switch between the transmitting and receiving
modes. Thus WCU provides a half-duplex wireless channel.
The WCU is connected to routing logic and VC allocator for
packets routing and switching. To manage the data loss of
wireless channel, the error detection codes (parity or cyclic
redundancy check codes) are added into the data flits. In the
process of communication, the WCU of sender accepts data
flits from crossbar switch and after checksum generation and
modulation, transmits the data stream through the antenna.
At the same time, the sender stores the transmitted data flits
into Retransmission Buffer. And the WCU of receiver picks
up the signal using the on-chip antenna, and then demodu-
lates, verifies the checksum. If the checksum is right, the

flit enters the input buffer and then routes to the output port.
Otherwise, an NACK signal will be sent back to the sender.
When the sender receives an NACK signal, it will retransmit
the corresponding flit from the Retransmission Buffer.

2.3 Routing Mechanism

The key point of routing in the hybrid on-chip network is de-
termining whether to use the wireless link in current hybrid
router or not. Since the wireless long-range link always pro-
vides much higher bandwidth than the wired link, we cannot
just use hop-count as the routing metric. Assuming the cur-
rent router i is connected to router k by the wireless link and
the destination is router j, we need to determine whether use
wireless link (i, k) in the path to j. From the performance
point of view, if wireless link produces a shorter communi-
cation delay, it should be used in current router. Therefore
we compare the transmission delay from router i to router j
with the wireless link and without the wireless link. If the
wireless link (i, k) is used, the transmission delay is

M(i, j) =
1

Bwl
+

HC(k, j)
B

(1)

where Bwl and B are the bandwidth of wireless link and
wired link respectively, and HC(k, j) is the hop-count from
router k to router j. Otherwise the transmission delay is
HC(i, j)/B. If M(i, j) < HC(i, j)/B, we determine to use
the wireless link in router i. Since this method only uses
the hop-count information, it is applicable to any topology
and scalable enough. Therefore we can extend the tradi-
tional routing algorithm (e.g. XY routing, Odd-Even rout-
ing, etc.) with the above mechanism for an arbitrary topol-
ogy hybrid on-chip network. It should be noted that since
the inserted wireless link may cause some irregular direc-
tion links, such as NE-SW direction link in mesh network,
the deadlock should be concerned in hybrid path.

For example, in a 2-D Mesh based hybrid on-chip net-
work, we use XY routing as default routing algorithm. Since
the wireless links may cause NE-SW and NW-SE direction
links, we use South-East routing [2] for the hybrid routers
to guarantee a deadlock-free path. The overall routing algo-
rithm is shown in Fig. 4. The algorithm first checks whether
there exists a wireless link in the current router i. If there is
no such link, the XY routing algorithm is used. Otherwise,
the algorithm evaluates the transmission delay to destination
j when using the wireless link. If the wireless link produces
a shorter delay, the wireless link is selected and South-East
routing algorithm is used to guarantee freedom from dead-
lock. Otherwise, the XY routing algorithm is used.

2.4 Implementation Cost of Hybrid On-Chip Network

The use of wireless links in on-chip network causes some
implementation cost. First, the regularity of the conven-
tional on-chip network is altered. In conventional network,
each router has the identical architecture and silicon area;
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and each port has the same bandwidth. In contrast, the hy-
brid router has more complex architecture than basic router
and the wireless link can provide higher bandwidth. There-
fore more effort is needed in placement and routing to han-
dle the two kinds of heterogeneous routers. Moreover, to
route the packets efficiently in heterogeneous bandwidth
network, the routing algorithm cannot just use hop-count as
routing metric. The bandwidth difference should be taken
into account and link (or path) quality based routing algo-
rithm (e.g. the algorithm proposed in Sect. 2.3) is necessary.
In our approach, we limit the maximum number of wire-
less links which can be added to the conventional on-chip
network. It will control the irregularity of hybrid on-chip
network in some extent.

Second, the implementation of wireless links causes
silicon area overhead. The hybrid router needs an additional
WCU and each WCU requires antenna, modulator, demod-
ulator, checksum logic and retransmission buffer. The on-
chip antenna always consumes the dominant portion of the
total area. Table 1 summarizes the area overhead of imple-
menting one wireless link by different wireless technologies
[8]–[11]. We can see the area overhead scales down with the
operating frequency increasing. Since the proposed hybrid
on-chip network employs FDM-like wireless technology at
sub-THz or THz frequency, the area overhead of implement-
ing one wireless link should be around 200 μm2. However,
considering a SoC spreading typically over a die area of
10 mm × 10 mm, the area overhead of a wireless link is very
tiny, while enjoying significant performance improvements.

Fig. 4 Routing algorithm for 2-D mesh based hybrid on-chip network.

Table 1 Total area overhead of implementing one wireless link.

Wireless Frequency Antenna Area
Technology (Hz) Type Overhead

MM-Wave [8] 60 G Metal ZigZag 2.24 mm2

UWB [9] 90 G Metal ∼ 0.1 mm2

FDMA [10] 300 G Metal ∼ 200 μm2

FDM [11] 1T Carbon Nanotube 151 μm2

3. Problem Formulation of Wireless Link Allocation in
Hybrid On-Chip Network

In the hybrid wired/wireless on-chip network, the wire-
less links are the powerful and rare resources. They are
significantly more power and delay efficient compared to
their wired counterparts. Replacing multi-hop wired paths
in an on-chip network by high-bandwidth single-hop long-
distance wireless links results in both reduction of intercon-
nect delay and energy dissipation. On the other hand, the
amount of wireless links which can be used in a chip is
very limited due to both the silicon area concern and wire-
less spectrum limitation. Therefore how to effectively use
these resources to improve the on-chip communication per-
formance is the essential problem for hybrid on-chip net-
work design.

As mentioned above, the overall interconnect infras-
tructure of the hybrid on-chip network is the combination of
wired conventional on-chip network and some long-distance
wireless shortcuts. For the hybrid on-chip network design,
the procedure can be split to two step: firstly a conventional
wired on-chip network with an arbitrary topology is used
to provide the underlying interconnection of the cores; sec-
ondly some wireless links are allocated into the wired on-
chip network to connect the distant cores [11]. The wireless
link allocation aims to find the particular pairs of source and
destination IP cores to place wireless links, which will result
in performance gains as much as possible.

In this paper, the traffic pattern of an application-
specific SoC is modeled by data flows between source and
destination cores. Each flow is abstracted by an arrival
curve. Each router is abstracted by a service curve. The
end-to-end packet delay is used as the metric for communi-
cation performance.

For convenience, we summarize the basic parameters
in Table 2. With these notations, the problem of wire-
less link allocation for performance optimization under total
wireless links budget can be formulated as follows:
Given:
• Total wireless links budget Nwl;
• Application communication flows F and arrive curve α f

of each flow;
• Service curve β of each router;
• Routing algorithm R;

Table 2 Parameter notation.

Param. Description
Nwl The total number of available wireless links
V = {v} The set of routers in network
F = { f } The set of traffic flows in network
N The conventional wired on-chip network,

e.g. m × n mesh
R The routing scheme, e.g. XY routing
HN The hybrid wired/wireless on-chip network
D The average packet delay
Fv The set of traffic flows traversing router v
V f The set of routers traversed by flow f
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• The underlying wired on-chip network N ;
Determine:

The particular pairs of routers (vx, vy) to place Nwl wire-
less links that can minimize the average packet delay D
and at most one wireless link is added per router.

4. Wireless Link Allocation Algorithm for Hybrid On-
Chip Network

In this section, we present a novel wireless link allocation
algorithm that iteratively places the wireless links into the
performance bottleneck area of the on-chip network until
the specified value of the wireless link budget is reached.

4.1 Hybrid Path Performance Analysis

To allocate the wireless links effectively, the key is to de-
tect the performance bottleneck in the on-chip network.
More specifically, given the traffic characteristics and net-
work configuration, the algorithm should be able to identify
the most congested path in the network. Hence we need to
build an analytical model for a hybrid wired/wireless path.
To solve this problem, we resort to the theory of Network
Calculus.

We use a typical hybrid wired/wireless path shown in
Fig. 5 to illustrate the analysis procedure. The path con-
sists of three wired links and one wireless link. And there
are two flows: f1 traverses all five routers and f2 traverses
router R1 and R2. Since the wireless link is a lossy chan-
nel, the packets retransmission will cause some extra data
flows. According to the theory of Stochastic Network Cal-
culus [13], the packets loss process can be modeled by a
scaling function with scaling curve. Then the lost packets
are modeled as a scaled version of the output flow of the
wireless link. Assuming the arrival curve at the sender of
wireless link is α(t) = γr,b(t) = rt + b, the service curve
is β(t) = βR,T (t) = R(t − T )+ and the scaling curve is
S̄ ε̄(x) = Cx + B, the arrival curve of the one-retransmission
flow is

α(1) = γCr,b∞ , where

b∞ = (R − Cr)
RT + Cb + B

R − 2Cr
− RT (2)

The arrival curve of multiple retransmissions can also be
calculated similarly [13]. Therefore the hybrid path can
be transformed to an equivalent form shown in Fig. 6. For
simplicity, only one-transmission flow f (1)

1 over the wire-
less link is shown. Thus the problem is transformed to the
performance evaluation of several contention flows over the
path.

Considering a general case shown in Fig. 7(a), n flows
with arrival curves (α1, α2, ..., αn) traverse a router with ser-
vice curve β. In [14], the case of n = 2 has been discussed.
Here we extend it to general case. Considering fn is the con-
tention flow of the other n − 1 flows, according to [14], the
equivalent service curve for the flow-set ( f1, f2, ..., fn−1) can
be computed as follows:

Fig. 5 A typical hybrid wired/wireless path.

Fig. 6 Equivalent form of hybrid wired/wireless path.

Fig. 7 Equivalent service curve computation for general case.

β
eq
fn−1,..., f2 , f1

= ε(β, αn)

= δT+ bn
R +s ⊗ γR·s,R−rn , (s ≥ 0) (3)

where s is an intermediate argument for computing the least
upper delay bound, ε(·, ·) is a function to compute the equiv-
alent service curve [14]. And so on we can computer the
equivalent service curve for the flows set ( f1, f2, ..., fn−2) as
follows:

β
eq
fn−2,..., f2 , f1

= ε(ε(β, αn), αn−1) (4)

Recursively we can get the equivalent service curve for flow
f1 as:

β
eq
f1
= ε(...ε(ε(β, αn), αn−1)..., α2) (5)

Then the output arrival curve of f1 can be derived as:

α∗1 = α1 � βeq
f1

(6)

and its delay bound is

Df1 = H(α1, β
eq
f1

) (7)

where H(·, ·) is the function to compute the maximum hor-
izontal distance between the arrival curve and the service
curve. By this method, we can compute the equivalent ser-
vice curve, the output arrival curve and delay bound for any
flow.

Based on the above derivation, we can analyze all the
routers in Fig. 6 in turn. Firstly we compute the equivalent
service curves for f1 and f2 at R1; then the output arrival
curves of f1 and f2 at R1 can be computed, which are just
the arrival curves at R2. The delay bounds of f1 and f2 at R1
can also be computed. Repeating the analyzing procedure
until R5, the performance of the hybrid wired/wireless path
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is achieved.
This analysis method can be easily extended to the case

of on-chip network. We scan the routers in on-chip net-
work iteratively. For a certain router, if all arrival curves are
known, we compute the equivalent service curve, the output
arrival curve and the delay bound for each flow. Otherwise
this router is skipped in this round iteration. After all routers
are scanned, one-round iteration is finished. Then we start
another round iteration to scan the routers that are not com-
puted in last iterations. This procedure will be repeated until
all the routers have been computed. The algorithm is shown
as follows:

Algorithm 1: Analyze each router in on-chip network
Input: V , F, {Fv|∀v}
Output: {βv,eq

f , α
v
f ,D

v
f |∀v,∀ f }

Initial:
U = V;
foreach v ∈ V do

foreach f ∈ F do
if v is the source of f then
αvf = α f ;

else
αvf = ∅;

end
end

end
While U � ∅ do

foreach v ∈ U do
if ∀ f ∈ Fv, αvf � ∅ then

foreach f ∈ Fv do
Compute βv,eq

f by Eq. (5);
Compute αv+f by Eq. (6);
Compute Dvf by Eq. (7);

end
U = U − v;

end
end

end
return {βv,eq

f , α
v
f ,D

v
f |∀v,∀ f }

where βv,eq
f is the equivalent service curve of router v for flow

f ; αvf is the arrival curve of f at v; Dvf is the delay bound of
f at v and αv+f is the output arrival curve of f at v.

4.2 Wireless Link Allocation Algorithm

The goal of wireless link allocation is to replace the con-
gested wired paths by wireless links so that the interconnect
delay is reduced.

To measure the congestion of a certain path (e.g. from
vp to vq), we define a congestion factor b(p,q)

f :

b(p,q)
f =

∑q
i=p Dvif

HC(p, q)
(8)

where f is a flow traversing this path; HC(·, ·) is the function

to calculate the hop count from p to q. The physical meaning
of b(p,q)

f is the delay increasing rate of f from vp to vq.

In the on-chip network, if b(p,q)
f is the largest congestion

factor, it indicates that the path (vp, vq) is the most congested
path. Therefore we should bypass the flow f by wireless
link to avoid it entering (vp, vq) so that the congestion can be
alleviated. Thus vp should be the start point of the wireless
link. For the end point, we choose the lightest-loaded down-
stream router which is traversed by f . Injecting flow f to the
lightest-loaded router is to avoid an unintentional congestion
caused by wireless link insertion. We use Dvf to measure the
router’s load. Thus we choose the router with smallest Dvf
as the end point of wireless link. After the new wireless link
is allocated, the topology and routing of on-chip network is
changed. Then we should calculate new congestion factors
to detect the new performance bottleneck. This procedure is
repeated until the number of wireless links used across the
chip reaches the wireless links budget.

Based on the above discussion, we propose an efficient
heuristic algorithm for wireless link allocation. The algo-
rithm is shown as follows:

Algorithm 2: Allocate wireless links
Input: N , V , F, Nwl, {Fv|∀v}, {Dvf |∀v,∀ f }
Output: HN
While Nwl � 0 do

foreach f ∈ F do
foreach

(
(x, y)| f ∈ Fvx ∩ Fvy

)
do

b(x,y)
f =

∑y
i=x D

vi
f

HC(x,y) ;
end

end
b(p,q)

f ∗ = max
(
b(x,y)

f |∀(x, y),∀ f
)
;

D
vq′
f ∗ = min

(
Dvxf ∗ |∀x, q→ x

)
;

Place Wireless Link between (p, q′);
Generate newHN and re-route the flows;
Compute the retransmission-flows of Wireless Link;
Compute {Dvf |∀v,∀ f } forHN by Algorithm 1;
Nwl = Nwl − 1;

end
returnHN

where max(·) and min(·) are the functions to get the maxi-
mum and minimum value respectively, q → x means vx is
vq’s downstream router.

The algorithm starts from the underlying wired on-chip
network N . For each communication flow f , the conges-
tion factor b(x,y)

f of any path (vx, vy) which is traversed by f
is computed. Then we can find the largest congestion fac-
tor b(p,q)

f ∗ over the network. Next we find the smallest Dq′
f ∗

where vq′ is vq’s downstream router. Then we place a wire-
less link between p and q′. Since a new wireless link is
placed, a new hybrid on-chip network HN is generated. In
the next step, the flows are re-routed and the retransmission
flows are computed. Thereafter the delay bounds {Dvf } are
computed. The previous procedure is repeated until all the
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wireless links are placed.
In Algorithm 1 and Algorithm 2, there is no any topo-

logical assumption of the on-chip network. The perfor-
mance analytical model and congestion factor are derived
from a general case of hybrid wired/wireless path. The
procedure of allocation algorithm is also topology indepen-
dent. Therefore the proposed algorithms are applicable to
any topology of on-chip network.

To analyze the complexity of the proposed wireless link
allocation algorithm, we assume there are n routers and p
flows in the on-chip network. For algorithm 1, the worst
case is all p flows traverse all n routers. Then algorithm 1
has a complexity of O(n × p). For algorithm 2, the condi-
tion “foreach

(
(x, y)| f ∈ Fvx ∩ Fvy

)
do” will run C2

n (= n(n−1)
2 )

times in worst case that the topology is a chain. Therefore
algorithm 2 has a complexity of O(Nwl × p × n(n−1)

2 ). Hence
the complexity of the wireless link allocation algorithm is
O(Nwl × p × n2) in worst case.

5. Wireless Link Allocation Algorithm Extension to
Worst Case Delay Guarantee

In some applications, especially real-time applications,
there are explicit delay constraints for communications of
IP cores. This means the on-chip network should provide
the worst case delay guarantee; otherwise the applications
may break down. For these cases, the problem of wireless
link allocation is formulated as a constrained optimization:
Given:
• Total wireless links budget Nwl;
• Application communication flows F and arrive curve α f

of each flow;
• Service curve β of each router;
• Routing algorithm R;
• The underlying wired on-chip network N ;
• The delay-constrained flows FC and the delay constraints
of each flow D̂ f ;
Determine:

The particular pairs of routers (vx, vy) to place Nwl wire-
less links that can minimize the average packet delay D
Subject to:

Df ≤ D̂ f , ∀ f which is delay-constrained (9)

and at most one wireless link is added per router.
To resolve this problem, the key point is to estimate the

worst case delay accurately. Based on the theory of Net-
work Calculus, the least upper bound of delay in on-chip
network can be calculated [14]. As mentioned above, we
have already calculated the least upper delay bound of flow
f at router v (Dvf ) by Algorithm 1. Therefore the end-to-end
worst case delay of flow f can be calculated as

Df =
∑

v∈Vf

Dvf (10)

Based on this description, we can extend the wireless link

Fig. 8 Wireless link allocation algorithm extension to worst case delay
guarantee.

allocation algorithm to worst case delay guarantee. The ex-
tended algorithm evaluate the worst case delay of the con-
strained flows first. If there are some delay-violated flows,
it attempts to insert some wireless links to eliminate delay
violation as much as possible. The basic rule of determin-
ing where to insert a wireless link is to compare the number
of delay-violated flows that can be eliminate when this wire-
less link is inserted in different position and find out the most
beneficial position. The overall extended algorithm (Algo-
rithm 3) flow is shown in Fig. 8.

The algorithm starts with a standard wired on-chip net-
work (N) and takes the application parameters (communi-
cation flows F and their arrival curve α f ), architecture pa-
rameters (routers V , service curve β and routing algorithm
R) and the amount of wireless links allowed to use (Nwl) as
inputs. First, the algorithm computes the worst case delay
(Df ) of each delay-constrained flow. If there exists delay vi-
olation (i.e. ∃Df > D̂ f ), the algorithm inserts wireless links
iteratively to eliminate the delay violation. More specifi-
cally, the algorithm selects all possible pairs of routers (i.e.,
C(||V ||, 2) pairs, where ||V || is the number of router in the
on-chip network) and inserts wireless links between them.
After inserting each wireless link, the resulting network is
evaluated to find out the number of delay-violated flows that
can be eliminated. After the most beneficial wireless link
(which means this wireless link can eliminate the maximum
number of delay-violated flows) is found, the information
about this wireless link is stored and the amount of avail-
able wireless links updated. This procedure repeats until all
delay-violated flows are eliminated or all available resources
are used. If all wireless links are used and there is still some
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Table 3 Simulation parameters.

Param. Description
Clock frequency 2.5 GHz
Number of cores on chip 16
Baseline topology 4 × 4 2-D Mesh
Routing algorithm Deterministic routing
Switching technique Wormhole
Number of wireless links 10
Wired link bandwidth 2.5 Gbps
Wireless link bandwidth 10 Gbps [11]

BER of wireless link 10−9 [10]

delay violation, it means it is impossible to satisfy the delay
constraints with the given wireless resources. We have to
adjust the design goal. If there are some wireless links left
after eliminating all delay violation, we use Algorithm 2 to
allocate the remaining wireless links. Finally, the resulting
hybrid on-chip network and routing files are output.

6. Simulation Results

In this section, we analyze the characteristics of the pro-
posed wireless links allocation algorithm and evaluate the
performance of the hybrid on-chip network designed by the
proposed algorithm. The hybrid on-chip network is simu-
lated by a cycle accurate simulator [15] which models the
progress of data flits accurately per clock cycle. We use two
traffic patterns: synthetic random traffic and E3S realistic
traffic. The synthetic random traffic is generated randomly
by the simulator and the E3S realistic traffic is extracted
from audio-video benchmark of E3S benchmark suites.

We consider two performance metrics: delay and en-
ergy dissipation. Delay refers to the number of clock cycles
between the injection of a packet header flit at the source
node and the reception of the tail flit at the destination. En-
ergy dissipation per bit is the average energy dissipated for
transferring one bit of data from the source to destination
node. For a simulation scenario, tens of thousands times
simulation are carried out and we average the results of per-
formance metrics.

We use a 4× 4 2-D Mesh as our baseline topology, and
on top of that, we construct the hybrid on-chip network with
at most 10 wireless links. Table 3 summarizes a list of the
simulation parameters we used.

6.1 Evaluation under Synthetic Random Traffic

In the first set of simulations, we consider the scenarios of
synthetic random traffic. We randomly choose 16 pairs of
source and destination cores. From each source core, a traf-
fic flow with arrival curve α f (t) = γ2,r(t) is injected, which
means that the core generates r packets every ten cycles on
average and the burstness is two packets. For each router,
the service curve is β(t) = 1 · (t − 1)+, which represents that
router forwards one packet per cycle per link and the pro-
cessing delay is one cycle. For this traffic pattern, we use
the proposed wireless link allocation algorithm to generate

Fig. 9 Average flit delay with different flit injection rates.

Fig. 10 Average flit delay with different numbers of wireless links.

the hybrid on-chip network with different numbers of wire-
less links. The 2-D mesh network is used as performance
baseline.

Figure 9 shows the average flit delay plots as a function
of injection rate (r). As can be seen, when the wireless links
are inserted into the 2-D Mesh network, the average flit de-
lay is significantly reduced. This performance gain is due
to two reasons. Firstly the wireless link has comparative
high bandwidth and it reduces the end-to-end hop counts.
Therefore the average flit delay is shortened. Secondly our
proposed algorithm is a congestion-aware method. It detects
the most congested path in the on-chip network and places
the wireless link to eliminate the congestion. This feature
benefits not only the bypassed flows by the wireless links
but also the flows transferred by the wired multi-hop paths.

It can also be observed that with increasing number
of wireless links, the performance is improved but the im-
provement is more and more slight. In Fig. 9, the vertical
distance between the curves is decreased from the top down.
To show it more clearly, we compare the average flit delay
with different numbers of wireless links at injection rate of
0.7 flits/core/cycle in Fig. 10. The average flit delay is re-
duced 25 cycles when inserting two wireless link into the
wired mesh network. But it only reduced 6 cycles when in-
creasing the number of wireless links from 6 to 10. This
is because when the wireless links are sufficient enough to
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Fig. 11 Average flit delay comparison between application-specific and
uniform hybrid on-chip network with 2 wireless links.

alleviate most network congestion, allocating more wireless
links can only get little gain. Thus the designer can make a
trade-off between the performance demands and area over-
head of deploying wireless links.

We also compare the performance of application-
specific hybrid on-chip network (denoted by AS-Hybrid)
to a uniform hybrid on-chip network [11] (denoted by U-
Hybrid). The U-hybrid is constructed based on the theory
of “small world ”. The baseline topology is a ring which
connects the routers and some wireless links are inserted
between the selected routers by “small world ” approach.
Under the same traffic pattern and wireless links budget (2
wireless links), the performance comparison is shown in
Fig. 11. As can be seen, the AS-Hybrid outperforms U-
Hybrid. Although U-Hybrid employes the wireless links to
replace multi-hop wired path, it is not aware of the traffic
pattern and the congestion in the network. Therefore some
heavily congested paths may still exist which exacerbate
the network performance. In AS-Hybrid, the wireless links
allocation algorithm guarantees to eliminate the congested
paths in the order of congestion extent. Hence AS-Hybrid
achieves better performance than U-Hybrid in a given appli-
cation scenario.

In [11], the authors also proposed a simple traffic-
dependent wireless link insertion algorithm as the extension
to U-Hybrid. The probability of inserting a wireless link
between routers i and j is

Pi j =
hi j · fi j∑
i, j hi j · fi j

(11)

where fi j is the frequency of communication between the ith
source and jth destination; hi j is the distance measured in
the number of hops from the ith source and jth destination.
To the best of our knowledge, this is the only algorithm for
hybrid wired/wireless on-chip network which takes traffic
pattern into account. Therefore we compare our proposed
algorithm to this algorithm in the case of different wireless
links budget. The average flit delay comparison is shown in
Fig. 12. As can be seen, the AS-Hybrid outperforms traffic-
dependent U-Hybrid in both cases. The reason is, in traffic-

Fig. 12 Average flit delay comparison between our proposed algorithm
and the algorithm in [11].

Fig. 13 16-core SoC for audio-video application. (A–ASIC, D–DSP, M–
MEM, C–CPU)

dependent U-hybrid, only traffic rate fi j between source and
destination is considered; it is not able to detect the conges-
tion path which is caused by two contention flows. In con-
trast, our proposed algorithm does not care about the traffic
rate from source to destination but the congested paths. It
can also be observed that in the case of 10 wireless links, the
two plots are really close. This result illustrates that when
the wireless links are sufficient enough for the overall traffic,
the allocation algorithm will become not important.

From the above results, it is clear that the application-
specific hybrid on-chip network generated by the proposed
algorithm outperform their corresponding uniform counter-
part.

6.2 Evaluation under Realistic Traffic

We also evaluate the performance of AS-Hybrid under real-
world traffic pattern. The traffic pattern is extracted from
audio-video benchmark of E3S benchmark suites [16]. We
manually assign the tasks onto a 16-core SoC shown in
Fig. 13. The traffic pattern is shown in Table 4. The wire-
less links budget is 4. We evaluate the performance of pure
Mesh, U-Hybrid and AS-Hybrid in terms of both average
flit delay and energy dissipation. In simulation, energy dis-
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Table 4 Flow rates of core pairs in the audio-video application.
(flits/core/cycle).

Pair Rate Pair Rate Pair Rate
(A1,A2) 0.001 (A1,D8) 0.001 (A2,A1) 0.002
(A2,A3) 0.016 (A2,M2) 0.013 (A3,D4) 0.003
(A3,D8) 0.013 (A4,D1) 0.677 (A4,C1) 0.004
(D1,D2) 0.677 (D1,C1) 0.407 (D2,A2) 0.677
(D2,D1) 0.407 (D3,A4) 0.760 (D3,D5) 0.141
(D3,D6) 0.141 (D4,D1) 0.073 (D4,C1) 0.004
(D5,D6) 0.538 (D6,A2) 0.565 (D7,M2) 0.141
(D8,A1) 0.002 (D8,D7) 0.565 (M1,A4) 0.998
(M1,C1) 0.995 (M2,A3) 0.154 (M3,C1) 0.996
(C1,M1) 0.760 (C1,M3) 0.760

Table 5 Performance under realistic traffic.

Architecture Average Flit Delay Energy Consumption
(cycles) (pJ/bit)

2-D Mesh 31.62 1.226
U-Hybrid 30.43 1.150
AS-Hybrid 26.20 1.121

sipation per bit, Ebit, is calculated as follows:

Ebit = nR
hops × ER

bit + nL
hops × EL

bit + nWL
hops × EWL

bit (12)

where nR
hops, nL

hops and nWL
hops are the number of router, wired

links and wireless links that the bit passes respectively; ER
bit

is the average energy consumption of transferring one bit of
data through a router; EL

bit and EWL
bit are the average energy

consumption of transferring one bit of data through a wired
link and a wireless link of 1 mm length respectively. And in
our parameters setting, ER

bit = 0.4 pJ, EL
bit = 0.02 pJ/mm and

EWL
bit = 0.01 pJ/mm [11].

The average flit delay and energy dissipation per bit
are shown in Table 5. As can be seen, the performance of
AS-Hybrid is better than U-Hybrid and pure Mesh in terms
of both average flit delay and energy consumption per bit.
And the performance improvement is even better than some
cases of random traffic pattern. Indeed, the realistic traffic
pattern is even more unbalanced compared to random traf-
fic pattern in some cases, which results in heavier network
congestion. Therefore the congestion-aware feature of AS-
Hybrid is more beneficial than U-Hybrid and pure Mesh.
This result shows that the proposed wireless links allocation
algorithm is indeed beneficial for application-specific SoC
design.

6.3 Evaluation for Worst Case Delay Guarantee

To evaluate the extended algorithm (Algorithm 3) for worst
case delay guarantee, we also use the realistic traffic pattern
in Table 4. We set the delay constraints as follows: the worst
case delay from MEM cores to DSP or ASIC cores must be
less than 30 cycles. These constraints are used to mimic the
Memory Wall Effect. Since the Memory Wall always ex-
acerbate the program performance greatly, there are usually
the explicit time constraints to memory access. Therefore,
four flows, (A2, M2), (M1, A4), (M2, A3) and (D7, M2),

Table 6 Worst case delay (cycles) comparison between 2-D mesh and
AS-hybrid network.

Communicaton Flow 2-D Mesh AS-Hybrid
(A2, M2) 16 12
(M1, A4) 27 23
(M2, A3) 18 15
(D7, M2) 48 9

are delay-constrained. And the number of available wire-
less links is still 4.

Table 6 shows the worst case delay comparison be-
tween 2-D Mesh (before wireless links insertion) and AS-
Hybrid network which is generated by Algorithm 3. We can
see, before wireless links insertion, the worst case delay of
flow (D7, M2) exceeds 30 cycles. The algorithm detected
this delay violation and inserted the first wireless link be-
tween IP core D7 and M2. Then the worst case delay is de-
creased dramatically and satisfies the delay constraint. Then
the algorithm allocated the other 3 wireless links and gen-
erated the final AS-Hybrid on-chip network. The results in
Table 6 show that there is no any delay violation in the final
AS-Hybrid on-chip network.

7. Conclusions

Hybrid wired/wireless on-chip network is a promising so-
lution for the complex on-chip communication problems in
multi-/many-core SoC design.

In this paper, we investigate how to design a effec-
tive hybrid on-chip network for application-specific SoC.
We build a network performance analysis model based
on Network Calculus and propose a heuristic congestion-
aware wireless link allocation algorithm. This algorithm can
achieve the optimum placement of the wireless links in the
on-chip network according to the status of network conges-
tion. The algorithm can also be extended to the worst de-
lay guarantee problem. The simulation results show that the
hybrid on-chip network which is designed by the proposed
algorithm improves the performance in terms of both delay
and energy consumption significantly.

In the future, we will revise the proposed algorithm to
reduce the computational complexity.
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