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ABSTRACT 

The functional scope of today’s software-defined data centers 

(SDDC) has expanded to such an extent that servers face a grow-

ing amount of critical background operational tasks like load 

monitoring, logging, migration, and duplication, etc. These ancil-

lary operations, which we refer to as management operations, 

often nibble the stringent data center power envelope and exert a 

tremendous amount of pressure on front-end user tasks. However, 

existing power capping, peak shaving, and time shifting mecha-

nisms mainly focus on managing data center power demand at the 

“macro level” – they do not distinguish ancillary background 

services from user tasks, and therefore often incur significant 

performance degradation and energy overhead. 

In this study we explore “micro-level” power management in 

SDDC: tuning a specific set of critical loads for the sake of overall 

system efficiency and performance. Specifically, we look at man-

agement operations that can often lead to resource contention and 

energy overhead in an IaaS SDDC. We assess the feasibility of 

this new power management paradigm by characterizing the re-

source and power impact of various management operations. We 

propose HOPE, a new system optimization framework for elimi-

nating the potential efficiency bottleneck caused by the 

management operations in the SDDC. HOPE is implemented on a 

customized OpenStack cloud environment with heavily instru-

mented power infrastructure. We thoroughly validate HOPE mod-

els and optimization efficacy under various user workload scenar-

ios. Our deployment experiences show that the proposed tech-

nique allows SDDC to reduce energy consumption by 19%, re-

duce management operation execution time by 25.4%, and in the 

meantime improve workload performance by 30%.   

Keywords 

Software-defined data center, power management, management 

workloads. 

1. INTRODUCTION 
The cloud data center today is a colossal system that consists 

of a variety of hardware components and software applications [2, 

27]. Their efficient operations rely on virtualization-based man-

agement frameworks which have evolved into a new concept as 

Software-Defined Data Center (SDDC) [35]. Today the SDDC 

expands virtualization from computing resources to storage and 

networking resources, offering significant improvement in scala-

bility and manageability.  

The fully virtualized computing environment of SDDC relies 

on many important background services that cannot be ignored. 

We refer to these services as Management Operations (MO) that 

mainly consist of system configurations (virtual machine alloca-

tion, virtual networking setting, virtual storage volume assignment, 

etc.) and ancillary service enhancement tasks (data replication, 

data deduplication, anti-virus scanning, load balancer, etc.). The 

execution of the management operations unavoidably introduces 

extra data center burden that we term as management workloads 

in this study. Without appropriate control, the management work-

loads can consume considerable computing resources, power 

budget, and energy in an SDDC, resulting in significant perfor-

mance and cost overhead.  

Taming management operations presents significant chal-

lenge for today’s software-defined data centers. While there has 

been an initial study on characterizing management workloads in 

traditional virtualized data center, it mainly focuses on computing 

virtualization [3]. In fact, SDDC management operations brought 

by extra virtualization layers often manifest distinctive behaviors 

that are not correlated with typical user workloads. In addition, 

most of the SDDC management operations span across compute 

nodes, virtual network, and storage nodes. The performance and 

power impacts of the management operations on distributed het-

erogeneous SDDC components have not been studied thoroughly 

in prior works.  

Although some management operations themselves are not 

resource-hungry, they can adversely affect a large amount of 

compute nodes. A management operation on the critical path, if 

happens to incur an unexpected delay, can have a cascade effect 

on the system, i.e., execution latency on massive related compute 

instances that have complex inter-dependency. In this case, the 

execution latency not only brings performance penalty but also 

results in significant energy overhead we termed as “tail energy”. 

Our characterizations demonstrate that compared to the traditional 

data center, management workloads in SDDC could yield about 

20% additional power demand, and increase the energy consump-

tion of user workloads by almost 15%. 

In this study we investigate the underlying root cause of effi-

ciency bottleneck in a software-defined data center. Prior power 

management schemes largely focus on managing the power de-

mand from the perspective of the entire system or facility, which 
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we term as macro-level power management. Examples include 

server power demand reduction and power capping mechanisms 

that prevent power budget violation. These mechanisms do not 

distinguish user tasks from ancillary tasks, and therefore often 

incur unnecessary performance degradation of user workloads. 

For example, a rack-level power capping decision that intends to 

shave power surge caused by backup services could also throttle 

performance of a critical latency-sensitive user task.  

To achieve the optimal energy efficiency with the slightest 

performance loss in an SDDC, applying micro-level in lieu of 

macro-level power management strategies is necessary, especially 

when data centers are becoming increasingly power-

constrained[15–17, 19–21]. Here, the micro-level power man-

agement strategy refers to analyzing detailed workload interde-

pendency and fine-tuning certain specific set/type of critical work-

loads for the sake of the overall system efficiency and perfor-

mance.  

This study explores the opportunity of applying micro-level 

power management strategies to management workloads in SDDC. 

There are two primary problems. First, what are the most critical 

management operations (MO) during runtime? Second, what 

technical approaches should we apply to minimize the operation 

overhead?  

To understand management workload, we extensively inves-

tigate management operations that prevalently exist in computing, 

networking, storage, and orchestrating systems in an SDDC. We 

broadly classify typical SDDC management operations into four 

groups: compute instance management (either for fault-tolerance 

[43] or load balancing [3]), virtualized storage management [4], 

software-defined network rule processing behaviors [22], and 

intelligent data center log management/analysis (for system 

optimization and troubleshooting purpose [39]). We perform in-

depth characterization of their server-level power behaviors on 

our scaled-down OpenStack-based IaaS data center. 

We propose Holistic Overhead Power Eliminator (HOPE), a 

lightweight system coordination strategy for minimizing energy 

and performance overhead brought by cross-system management 

operations. HOPE presents itself as a tiny system patch that lies in 

the data center middleware. It introduces two new functions in an 

SDDC. First, HOPE can perform global MO auditing through a 

novel structural dependency graph. The dependency graph enables 

data center to identify critical management operations based on 

the collected management workloads distribution information and 

physical server power statistics. Second, HOPE provides data 

center flexible tuning knobs to re-schedule the critical manage-

ment operations in both proactive and reactive manners. This 

intelligent coordination can eliminate potential efficiency bottle-

neck in the SDDC. 

We implement and deploy HOPE on our customized private 

cloud environment. We deploy OpenStack cloud management 

middleware and integrate HOPE as a service in OpenStack. To the 

best of our knowledge, this is the first work that characterizes and 

optimizes the power and energy overhead issues of the SDDC 

management workloads. 

The contributions of this paper are as follows. 

 We characterize the management workloads in software-

defined data centers. Our investigation involves virtualized 

storage and networking subsystems, which lack thorough ex-

plorations in prior work. 

 We identify the “tail energy” issue in SDDC. We demon-

strate that the energy/power overhead caused by critical 

management workloads can be significant and explore the 

opportunity to mitigate their impacts. 

 We present HOPE, a novel system optimization framework 

for mitigating the energy overhead among cross-system 

management operations. We detail a graph-based dependen-

cy analysis tool used by HOPE to eliminate the efficiency 

bottleneck in SDDC.  

 We implement HOPE on a heavily instrumented rack-scale 

cloud system and evaluate its efficacy in optimizing data 

center operation. We show that HOPE allows SDDC to re-

duce energy consumption by 19%, reduce management oper-

ation execution time by 25.4%, and in the meantime improve 

workload performance by 30%. 

The rest of this paper is organized as follows. Section 2 

summarizes the operational workloads in cloud data centers and 

characterizes their energy impact. Section 3 proposes operation 

workloads analysis methodology and our overhead mitigation 

techniques. Section 4 details of our prototype. Section 5 presents 

evaluation results. Section 6 discusses related work, and Section 7 

concludes this paper. 

2. UNDERSTANDING SDDC MANAGE-

MENT SERVICES 
We first introduce the backgrounds and our evaluation meth-

odology. We then characterize representative management work-

loads in SDDC in terms of their efficiency impacts to motivate 

micro-level power management. 

2.1 Backgrounds 
Software-defined system enables flexible configuration and 

maintenance in data centers. However, it also introduces various 

management workloads that demand additional power and energy 

resources, as discussed below:  

Ordinary VM management operations such as VM creation, 

VM snapshot revert, or VM live migrations often causes 

considerable traffics on networking and storage subsystems. 

VMware’s work [32] states that the averaged automated live mi-

gration observed in various data centers occurs 6 times per day 

per VM, and 12% of VMs in a data center are involved in snap-

shot reverting operations. In addition, the energy impact of migra-

tion can offset over 12% of the energy saved through energy-

conscious workload packing [11].  

Storage system management operations can exert considera-

ble pressure on SDDC. For example, data deduplication is widely 

adopted by cloud data centers in backup and archive storage sys-

tems [4][1]. On ZFS file system [42] with inline deduplication, the 

average CPU usage could boost from 20% to 60% due to heavy 

computation and indexing. The inline deduplication causes the 

storage system to consume 10% more power on average [44]. 

Logging and analytic services are essential components of 

modern SDDC. They have been widely adopted by many cloud 

providers [33, 34, 38] for enabling real-time optimization and 

proactive troubleshooting. These services are normally hosted on 

a group of virtual machines within the SDDC and conduct com-

pute-intensive log analysis tasks. According to [37], a log analysis 

VM with 2 vCPU and 4GB memory only supports log volumes of 

3GB a day for about 10 users. It consumes about 10% of the com-

puting resource of a server and 15% of the power consumption. 
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In addition to the non-negligible energy consumption, the 

burstiness of operational workloads presents a more rigorous chal-

lenge to the SDDC power provisioning system. For example, 

Virtual Desktop Infrastructure (VDI) is a base approach to Desk-

top as a Service (DaaS), in which virtual desktops are hosted as 

virtual machines. The “boot storm” is a common scenario that all 

the virtual desktops are powered on within very short time when 

employees come to work. If other co-located tenant applications 

are executing power-hungry tasks in the meantime, the power 

delivery system is susceptible to this burst power demand. 

2.2 Characterization Methodology 

2.2.1 Evaluation Workloads 
We investigate eight representative management operations 

in an SDDC as listed in Table 1. We use a taxonomy in 

accordance with prior work [32].  

We choose typical management operations that are 

introduced by storage and networking virtualization techniques in 

SDDC, such as data deduplication, rule processing, virtual volume 

management, and log processing. In addition, we also select sev-

eral traditional management operations such as basic VM creation, 

live migration, and snapshotting. They are essential in traditional 

data center management workflows, such as periodic snap-

shot/revert, VM patching, boot storm handling, automated load 

balancing, and after-hours maintenance. For these operations, we 

study their power/energy behaviors under both traditional and 

software-defined networking and storage configurations. 

The basic management operations we selected exhibits dif-

ferent detachability and deferability. The detachability represents 

whether a management operation could be migrated to other phys-

ical servers. It reflects the spatial manageability of a management 

operation. For example, a VM creation operation is tightly cou-

pled with user VM assignment. It cannot be executed on other 

machines while the log processing could be executed on any ma-

chine within SDDC. The deferability represents whether a man-

agement operation is mission-critical. It reflects the temporal 

manageability of certain management operation. For example, in 

the VDI boot storm the VM creation operations are non-deferrable. 

While the VM snapshotting for backup could be deferred to a less 

busy time window. 

2.2.2 Experimental Setup 
Our characterizations are conducted based on a scaled-down 

SDDC prototype, which consists of 6 compute nodes, 1 storage 

node with Fiber Channel storage pool, 1 network node, and 1 

cloud controller node. We employ HP DL380 G5 servers as phys-

ical nodes. Each of them uses two Xeon X5450 3.0GHz CPU and 

32G buffered ECC RAM, 1Gbps Ethernet interface and 1TB SAS 

15000RPM HDD. The storage server connects its 2TB storage 

pool (IBM DS4800) through Fiber Channel. The network node 

and cloud controller node all employ HP DL380 G5 servers with 

the same configuration as compute servers.  

We deploy OpenStack Havana cloud service suites to im-

plement a software defined data center [27]. The basic VM man-

agement operations could be obtained from computing service 

OpenStack Nova with KVM/libvirt. We deploy Open Stack Cin-

der block storage service as virtual volume support and VM live 

migration support. To enable inline deduplication we deploy ZFS 

filesystem on storage node and use ZVOL to provide volume 

service for Cinder. We deploy networking service OpenStack 

Neutron to enable software-defined networking functionality such 

as firewall rule processing and load balance as a service. Specifi-

cally, the NFV is based on Open vSwitch 1.2.0. We employ WTI 

VMR-8HD20-1 Outlet switched/metered PDUs to collect the 

power and energy readings of each server. 

2.3 Energy Overheads Analysis 

2.3.1 Traditional DC vs. SDDC 
We first evaluate the power and energy behaviors of basic 

VM management operations by comparing power traces of VM 

live migration and snapshotting under SDDC environment and 

traditional virtualized data centers, as shown in Figure 1. In the 

traditional virtualization case, we use Linux Bridge as networking 

backend and do not use any storage virtualization. In the SDDC 

case, we use Open vSwitch as software-defined networking and 

use OpenStack Cinder volume with ZFS as storage virtualization. 

The test VM is configured as 2 vCPUs with 4GB RAM.  

Figure 1(a) demonstrates the power consumption of source 

machine in the VM live migration scenario. It shows two power 

demand peaks A and B, which are introduced by live migration 

under traditional environment and SDDC environment, respec-

tively. Notice that peak-B gains 29% more peak value, 65% more 

duration, and 53% more energy consumption than peak-A does.  

Figure 1(b) shows the compute node power consumption of 

VM snapshotting. The VM snapshotting consists of three stages, 

image creation, live snapshotting, and image uploading. Our 

measurement shows that the region-B (SDDC) costs 2.1X more 

time and consumes 1.53X more energy than region-A (traditional). 

The extra power consumption of management operations in the 

SDDC is mostly resulted from the additional processing over-

heads introduced by networking virtualization such as Open 

vSwitch. The software packet processing incurs high CPU utiliza-

tion on the compute nodes. Therefore, the power issue of man-

agement workloads in a SDDC should be paid more attention than 

in traditional virtualized data centers. 

Operations Resource Intensive Detachable Deferrable 

  

Deduplication CPU,  I/O Yes Yes 

Rule processing CPU Yes No 

Volume backup CPU, Network No Yes 

Volume migration CPU, Network No Yes 

Log processing CPU Yes Yes 

VM creation CPU, Network No Yes 

VM live migration CPU, Network No Yes 

VM snapshotting CPU, Network No Yes 

Table 1. List of basic management operations in SDDC 
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Figure 1. Power consumption caused by management work-
loads under traditional and SDDC configuration 
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2.3.2 Impact on User Workloads 
We investigate how management workloads affect the power 

and energy consumption of physical servers running user work-

loads. 

Our results show that management workloads could consume 

considerable amount of peak power budget. Figure 2 presents the 

power demand trace of servers deploying software testing work-

load, in which a compute node hosts three software testing VMs. 

The compute node periodically commits snapshots for testing 

VMs. If user applications are the only running workloads, the 

power demand is about 380W (Region A). However, when the 

three VMs begin to commit snapshot, the peak power reaches 

420W (10% additional power demand). Therefore, without appro-

priate control, the management workload can easily exacerbate 

contention for power budget resource.  

We further evaluate the energy consumption of the above 

management operations in a power under-provisioned data center. 

We deploy a lead-acid battery for pear power shaving purpose as 

described in recent work [10, 40][18] and measure the capacity of 

energy storage devices. We conduct this experiment on our 24V 

battery equipped SDDC testbed and set two power capping 

thresholds as 355W and 375W, respectively. We measure that the 

snapshotting workloads cost 1.98X more stored energy consump-

tion than software testing workloads. Specifically, the manage-

ment operations consume 112Ah stored energy while the user 

workloads consume 37.69Ah with a power cap value of 375W. 

For a more aggressive power cap value of 355W, the management 

workloads consume 192.98Ah while the user workloads consume 

140.79Ah.  

To quantify the power impact of management workloads, we 

use a new metrics call peak impact factor (PIF). It is defined as 

the ratio between peak power caused by MO alone and the idle 

power of the server. We measure the PIF value of various man-

agement operations on our platform and present the results in 

Table 2. We observe that the PIF of certain management opera-

tion is mainly determined by the number of concurrent executing 

operations with similar resource intensity. Although the absolute 

value of PIF depends on the underlying hardware, such trend still 

maintains. This is because the management operations normally 

lead to extreme resource utilizations. 

2.3.3 Tail Energy 
We observe that management workloads, especially in 

consolidated computing environment, can cause undesirable clus-

ter-wide execution delay and energy overhead. We refer to the 

additional energy overhead as “tail energy”.  

We demonstrate the tail energy issue by studying a real sce-

nario that involves multiple management operations, as shown in 

Figure 3. In the figure, VM1 (compute instances hosted on com-

pute node 2; image file hosted on a volume storage node) is com-

mitting a VM image snapshot to the cloud image storage node in 

the SDDC. The data deduplication service is running on the vol-

ume storage node as another management operation. In the mean-

time, VM2 (hosted on compute node 1) is migrating to compute 

node 2. Thus we have three management operations in this scenar-

io. Figure 4 compares the power behaviors of different nodes with 

and without management workloads. We report the power con-

sumption traces of the compute node and VM volume node using 

red curves. We then disable the deduplication management opera-

tion on volume node and show the re-produced power traces using 

blue curves. Along with the traces, we also provide the CPU utili-

zation value and networking traffic of compute node 2 in Figure 5. 

From Figures 4 and 5, we can see that the data deduplication 

service not only result in high power consumption on the volume 

node, but also degraded snapshotting speed due to CPU resource 

contention. It can also slow down the snapshotting process on 

volume node. The execution delay on the volume node can further 

affect the snapshotting progress on compute node 2 since the 

CPUs on the compute node 2 must wake up frequently to calcu-

late the checksum for snapshot. This causes 16.5% additional 

energy consumption on the compute node 2. Similarly, the ex-

tended snapshotting process on compute node 2 further procrasti-

nates the VM live migration processes and result in 91% addition-

al energy consumption on compute node 1. 

Once the deduplication process is disabled, the task execu-

tion time and energy consumption on both compute nodes can be 

saved, as shown in Figures 4(b) and 4(c).  

AA BB
375W375W

355W355W

380W380W

63 min63 min

VM snapshotting stageVM snapshotting stage

420W420W

W 1.98X more energy consumption1.98X more energy consumption

112Ah112Ah

37.69Ah37.69Ah
140.8Ah140.8Ah 192.98Ah192.98Ah

Figure 2. The power and energy impacts of management work-
loads in data centers. 
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Figure 3. Task mapping of multiple management operations 

 

Operations 
PIF under different concurrent tasks (CT) 

1 CT 2 CT 3 CT 
  

Deduplication 22.9% (volume) 37.1% 44.9% 

Rule processing 29.7% 38% 54% 

Volume backup 23.6% 37.6% 44% 

Volume migration 18.9%  33.1% 35.7% 

Log processing 33% 45% 51% 

VM creation 20.6% (compute) 34.2% 38.3% 

VM live migration 16.5% (source) 18.7% 22.4% 

VM snapshotting 28.8% (compute) 37.1% 42.8% 

Table 2. Measured PIF of different management operations 
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Figure 4. Power traces of related servers. 
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Figure 6. The architecture and workflow of HOPE 

 

Two factors lead to energy tails. First, consolidation of mul-

tiple management operations introduces intra-node interference 

and performance degradation on the initiating nodes. Second, the 

inter-node management operations (such as VM migration and 

snapshotting) may propagate the intra-node interference caused 

slowdown to the involved nodes that are influenced by the inter-

node management operations. We term this phenomenon as inter-

node dependency/correlation.  

To solve the energy tail issue, we further investigate the in-

ter-node correlation and resource interference in SDDC to provide 

preliminary knowledge. We summarize the initiating node and 

involving node pairs as shown in Table 3. Each correlation pair 

(connected by an arrow) represents a basic cloud operation (e.g. 

cloud image copy). The associated operational workloads of each 

correlation pair have similar PIFs and resource utilization charac-

teristics. Based on the models that proposed in [12][10], we define 

an initiating node’s tail energy impact to an involving node as: 

T(1+d)n-1, where T is the execution time of management operation, 

d is the performance degradation factor (PDF) of the management 

operation, and n is the number of management operation between 

these two nodes. Based on intensive characterization, the perfor-

mance degradation factors (PDF) and execution time T of 

management operations are shown in Table 3. For the manage-

ment operations only residing on single node, T is not available. 

We will provide in-depth discussion in Section 3. 

Summary: We have comprehensively investigated the pow-

er/energy characteristics and manageability of basic management 

operations in Section 2. We can observe the diversity of the man-

agement operations poses great challenge for designing effective 

power management scheme in modern SDDC. It is critical to 

apply a fine-grained micro-level power tuning strategy to improve 

efficiency. 

3. MANAGING OPERATIONAL OVER-

HEADS IN SDDC 
We develop holistic overheads power eliminator (HOPE), a 

software-based coordination framework tailored to the pow-

er/energy characteristics and manageability of SDDC manage-

ment workloads (MO). HOPE employs two novel technical ap-

proaches to mitigate the management workloads power/energy 

issues and tail energy issues.  

First, HOPE employs a graph-based correlation analysis 

mechanism to analyze the distribution of management operations 

and locate critical management operations. Second, HOPE ex-

ploits software-based critical management operation scheduling 

(CMOS) method to re-schedule critical management operations 

based on the guidance of graph-based analysis. We elaborate our 

system architecture and policy design in this section. 

3.1 HOPE System Architecture 
Figure 6 depicts the full system architecture and workflow of 

our proposed design. HOPE is deployed as a lightweight coordi-

nation framework in the SDDC middleware layer. It consists of 

three functionality modules, namely system auditing module, data 

analysis module, and committing modules. They process incom-

ing management operations consequentially in our system. 

3.2 System Auditing Module 
The system auditing module (SA) is the information collect-

ing unit of HOPE. It monitors the physical server power status and 

management operation distribution in the SDDC through various 

cloud APIs and hardware communication interfaces. For example, 

HOPE uses a switched intelligent PDU array to support flexible 

power budget allocation. The collected information is used in the 

decision-making process of the data analysis module. 

The SA module supports two operating modes, proactive 

mode and reactive mode, as shown in Figure 6. The proactive 

mode is the default operating mode. It processes the routine man-

agement workloads initiated by the SDDC administrator which 

have a relative fixed agenda. The routine management workloads 

include after-hour maintenance, periodic snapshot/revert, boot 

storm handling, etc. In the proactive mode, a light-weight daemon 

named MO sensor periodically inspects the scheduled manage-

ment operations on the MO agenda. It generates several “MO 

snapshots” by dividing the SDDC operating time into small time 

windows. The MO snapshot is the basic analysis object for the 

data analysis module. Each snapshot depicts the distribution of 

management operation in SDDC during this time window. The 

length of time window should be tuned according to the frequency 

of management operations and average management operation 

Operations 
Involved Nodes 

(sequentially) 
PDF T 

   

Deduplication V 0.59 N/A 

Rule processing Networking 0.53 N/A 

Volume backup VI 0.22 11 

Volume migration VsVd 0.29 9.2 

Log processing C 0.66 N/A 

VM creation IVC 0.25 8.7 

VM live migration CsCd 0.21 6 

VM snapshotting CVI 0.38 20 

Table 3. Node inter-dependency and the value of performance 
degradation factor (PDF) and execution time T in a SDDC. (C: 
compute node, V: volume node, I: image node, s: source, d: 
destination). 
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Network traffic of compute node 2

30.8% performance degradation

Figure 5(a)
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Figure 5. Network traffic and CPU utilization of compute node 
2. Traces of two scenarios are demonstrated sequentially. 
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duration in the SDDC. The default time window length is 15 

minutes. 

The reactive mode is designed to handle the newly deployed 

management operations that cause power emergencies. Once the 

MO sensor receives a power alert generated by SDDC monitoring 

components, it interrupts the current running proactive mode and 

pre-empt the data analysis module to execute emergency MO 

analysis. It requests the updated SDDC status for building a new 

MO snapshot. The information includes SDDC management 

workload distribution, power consumption of physical hosts, 

power state of physical hosts, and intelligent PDU port status. The 

advantages of using event notification in the SA module instead of 

cyclic polling are two-fold: First, event notification pushes all the 

interested system events while polling may miss them, especially 

when a long loop period is adopted. Second, event notification 

significantly reduces the communication overhead. 

3.3 Data Analysis Module 
The Data Analysis (DA) module processes the management 

operation distribution snapshots sent by the SA module and pro-

vides critical management operation scheduling guidance for the 

committing module.  

The core software component in the DA module is called 

MO analyzer. It can be activated by the SA module. During op-

eration, the MO analyzer first employs a graph-based analytics 

method to inspect the physical server hot spots and locate the 

critical management operations. It then executes critical manage-

ment operation scheduling (CMOS) based on the analysis and the 

manageability of critical MOs. Finally it calls commit module to 

apply the corresponding execution to eliminate the hot spots and 

tail energy issue. 

3.3.1 Management Operation Correlation Network 
The MO analyzer features a graph-based analysis method 

that can construct management operation correlation graph and 

identifies critical management operations.  

Our graph-based analytics first builds management operation 

correlation network (MOCN) of a given MO snapshot to model 

the tail energy impacts among management operations. The 

MOCN is defined as a directed weighted graph G= (V, E), where 

the vertices V are physical machines in SDDC. A typical example 

of MOCN is shown in Figure 7. There is an edge ek (vi , vk) 

between vi and vk if all the following conditions are met:  

① At least one type of management operation MOia initiated 

by the physical machine vi involves another physical machine vk;  

② There is another management operation MOka residing on 

the involved vertex vk with the same resource intensity as MOia.  

We define the weight of the edge wk as the energy overhead 

that MOia exerts on vk, which is also termed as MO tail energy 

impact factor (MO-TEF). Based on the discussion in section 2.3.3 

and prior work [18][19], the weight wk is represented as: 

 MO-TEFia,k  = 1*(1 )n

k a aw T d   ,  

where da is the PDF of management operations MOia, and Ta 

is the energy impact duration of MOia, as listed in Table 3. The 

tail energy impact factor of vertex vi (vTEF) is represented as a 

weighted sum of MO-TEFs of vi. The weight represents the effi-

ciency impacts of co-located management operations MOim on 

MOia. Specifically, MOim could be local management operation 

such as log processing, deduplication or management operations 

involving other vertices vl…vn. The vTEF is defined as: 

( * (1 ))
k ia

i k me E m MO
vTEF w d

 
   , 

where E is the set of edges of vs, and dm is the PDF of co-

located management operations MOim. We validate the MO-TEF 

and vTEF models in the evaluation section. 

3.3.2 Critical Management Operation Scheduling 
Given the MOCN, MO analyzer can locate the critical man-

agement operations and assign the highest re-scheduling priority 

to them. Figure 8 demonstrate the decision-making flow chart for 

critical management operation scheduling.  

MO analyzer first manages the hotspots in current MO snap-

shot. Here the physical server with the highest vTEF and PIF is 

treated as a hotspot. The MO analyzer first tries to find detachable 

MOs with highest PIF on the hotspot.  

In our design, MO analyzer prefers migrating management 

operations on the hotspot than deferring them to minimize the 

interference of management operation scheduling agenda. The 

detachable MOs with the highest PIF will be migrated to physical 

nodes (in the same function group, i.e. compute nodes group, 

volume nodes group, or image nodes group) with the lowest vTEF. 

Note that the post-migration vTEF and PIF of the destination 

vertex must not be the highest in the MOCN. This situation im-

plies that the current MO snapshot has evenly distributed man-

agement operations. In this case, the current decision-making 

period will be interrupted.  

MO Exec time PDF
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Figure 7. The demonstration of graph based analytics 
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Figure 8. Critical MO scheduling flow chart. 
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If MO analyzer fails to detect detachable MOs, it instead 

searches deferrable MOs on the hotspot. The deferrable manage-

ment operations with highest MO-TEF will be deferred to the next 

MO snapshot control period. If none of the MO could be deferred 

on the selected vertex, this vertex will be tagged as unavailable. 

And MO analyzer re-starts the procedure from the vertex with 

second highest vTEF.  

If all MOs in current MO snap could neither be migrated nor 

be deferred, MO analyzer will change the power states of hot spot 

to maximum performance. This is because the hot spot is the root 

cause of the global tail energy issue. Though increasing the per-

formance of hot spot incurs extra power consumption, it helps 

shortening the tail energy duration and saving global energy con-

sumption in SDDC. In emergency cases, the temporary power 

budget violation could be handled by energy storage devices 

3.4 Committing Module 
The committing module of HOPE receives the critical man-

agement operation scheduling decisions and executes correspond-

ing operations through various cloud APIs and hardware man-

agement interfaces. It features a software-based MO handling 

agent and a hardware-based MO handling agent. The SW-based 

MO handling agent communicates with the SDDC management 

framework. It forwards the MO migration instructions to the cor-

responding control agents of computing service (e.g. OpenStack 

Nova), software-defined network service (e.g. OpenStack Neutron 

and Open vSwitch), and software-defined storage service (e.g. 

OpenStack Cinder and ZFS). The HW-based MO handling agent 

directly communicates with the physical servers in SDDC to 

change the power states. We elaborate our implementation in 

Section 4. 

4. SYSTEM IMPLEMENTATION 
We implement HOPE in 8KLOC of python and C on our 

lab’s scaled-down IaaS data center. The IT hardware configura-

tions are discussed in Section 2.2.2. In this section, we describe 

primary modules of the HOPE prototype. 

We build a hierarchical monitoring framework that oversees 

system status and collects data from the power delivery architec-

ture level to cloud middleware level. In our design, we deploy sub 

monitoring modules at different levels and collect data inde-

pendently. All these sub-modules store data in MySQL database. 

They also expose RESTful API for access of resources from ex-

ternal services. The central monitor sends on-demand requests to 

these sub-modules to fetch the information. Various components 

in the power delivery architecture level use different communica-

tion protocols from Modbus to SNMP. We leverage OpenStack 

Kwapi [28] communication interface and design our own drivers 

to encapsulate communication APIs of the power system. We 

collect status data such as: peak power budget, daily energy used, 

battery voltage, battery charge/discharge current, iPDU port status, 

iPDU port readings, etc. 

At the IT resource level monitoring we choose industry-

grade monitoring software Zabbix [41] to collect cloud data. We 

monitor runtime performance information such as CPU utilization, 

network bandwidth, disk bandwidth and RAM of each server node. 

We also use Zabbix to sample the process information of man-

agement workloads on cloud control nodes, compute nodes and 

storage nodes. 

At the cloud middleware level monitoring we leverage 

OpenStack Telemetry (Ceilometer) [26] metering service as our 

cloud monitoring tool. It is capable of collecting various metrics 

with the goal of not only metering but also monitoring and alarm-

ing. We use Ceilometer to capture the events of cloud components 

such as compute service, network service and storage service. 

The design of HOPE is practical and scalable. The HOPE is 

scalable in accordance with the cloud controller node number in 

the cloud platform. Since OpenStack supports multiple cloud 

controllers that manage several sub-clusters in a cloud environ-

ment (e.g. 1 controller node administrates a sub-cluster of 200 

compute nodes), we could deploy multiple HOPE controllers to 

manage the management operations within each sub-cluster.   

5. EVALUATION 
We comprehensively evaluate the efficiency of HOPE opti-

mization. We first validate our graph-based analysis mechanism 

and critical management operation scheduling mechanism using 

various user workloads. After that, we deploy various workloads 

on guest VMs to reproduce an IaaS production environment. We 

choose SoftwareTesting, GraphAnalytic and DataAnalytic from 

CloudSuite [8] to mimic cloud user behaviors. We also deploy 

OpenStack Rally benchmark [29] to stress the cloud platform with 

concurrent management operations. Table 4 summarizes configu-

ration details of these workloads used in our experiments. 

5.1 Model Validation 
We first validate two models that are discussed in Section 3.3: 

MO tail energy impact factor (MO-TEF) and tail energy impact 

factor of vertex (vTEF). They are the crux of designing effective 

management operation control. We compare our model prediction 

value with real measurements. 

5.1.1 Validation of MO-TEF 
In the MO-TEF test case, we construct tail energy scenarios 

manually. We examine the MO-TEF of management operation 

and the measured energy consumption on all the involved nodes. 

We vary both management operation consolidation degree and 

management operation distribution on physical servers. We evalu-

ate different management operations and report the results in Fig-

ures 9 and 10. We report the relative model error (RME) as 𝜂̅ =

Benchmark Description 

 SoftwareTesting Cloud based software testing benchmark 

GraphAnalytic Machine learning and data mining benchmark 

DataAnalytic Hadoop MapReduce framework 

OpenStack Rally Cloud platform stressing benchmark 

Table 4. User workloads on our guest VMs 
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|𝑀𝑑 − 𝑀𝑒′| 𝑀𝑒′⁄ , where 𝑀𝑑 is the calculated MO-TEF, and 𝑀𝑒 

real measured energy consumption on the image node. 

In the first scenario, we initially commit three VM snapshot-

ting operations from one compute node to three volume nodes (a, 

b, c), respectively. We deploy a volume backup MO on volume 

node a. It backs up a 100G volume to image node. The MO-TEF 

and energy consumption values are normalized for clear presenta-

tion. In this scenario, the duration T is 20 and the PDF of VM 

snapshotting is 0.38. The real measured energy values are shown 

in Figure 9. From Figure 9(a), we can see that the MO-TEF accu-

rately reflects the induced extra energy consumption on the in-

volved image node. The model error is within ±5%. Apart from 

varying the MO consolidation on involved node, we further add 

interference MO (log processing) on compute node as the second 

scenario. The MO setups are shown in Figure 9(b). The PDF of 

log processing is 0.66. We can notice the model error is controlled 

within ±10%.  

We then change the VM snapshotting scenario to volume 

migration scenario and re-evaluate the accuracy of MO-TEF. 

Three VM volumes perform volume migration from one volume 

node to three volume nodes (a, b, c) respectively, while the vol-

ume node a still runs a 100G volume backup service. Similarly, 

we gradually consolidate migrations on volume node a. In this 

scenario, the duration T is 9.2 and PDF of volume migration is 

0.29. We also incorporate data deduplication as interference MO 

on source volume node and report the evaluation results in Figure 

10(b). The PDF of data deduplication is 0.59. We can notice the 

relative model errors of volume migration (within ±5%) are bet-

ter than VM snapshotting. This is because the VM snapshotting 

and log processing have more fluctuating performance and power 

characteristics than volume migration and data deduplication. 

Summary: MO-TEF effectively indicates the severity of tail 

energy, which is brought by critical MO. 

5.1.2 Validation of vTEF 
We continue to validate the design of vTEF. In this test case, 

we construct a comprehensive SDDC scenario and demonstrate a 

10-minute-long MO snapshot in Figure 11(a). The MO distribu-

tion details are described in the caption. Our goal is to 

demonstrate that vTEF is capable of locating the hotspots. We 

compare the vTEF of each node in this MO snapshot to the sum of 

induced energy of this node’s MOCN neighbors. The rationale is 

that, if a node has the highest vTEF, the sum of its neighbor’s 

induced energy in this snapshot should also be highest. For exam-

ple, the value of vTEF of host[b] implies the sum of induced ener-

gy on host[a] and host[d]. To better understanding the MO corre-

lation in this snapshot, we illustrate the MOCN structure in Figure 

11(b).  

We measure the average power in current MO snapshot, the 

sum of its neighbors’ induced energy, and vTEF of each physical 

node. The results are shown in Figure 12. For better demonstra-

tion we report the normalized value of vTEF and induced energy. 

It shows that the vTEF effectively reflects the energy impacts of a 

given physical host.  

Note that the induced energy and vTEF of compute node 1 

and image node is 0. This is because they do not have direct edge 

in the MOCN. Though volume node 1 has higher out-degree in 

the MOCN, the average weights of its edges are lower than 

compute node 2’s. Moreover, as a local interference MO, log 

processing has higher PDF (0.66) than data deduplication (0.59). 

The host[b] (compute node 2) is thus identified as a hotspot in this 

snapshot.  

Summary: vTEF effectively indicates the hotspots in a given 

management operation snapshot. 
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Figure 11. The evaluated management operations scenario (volume backup of VM1 from host[d] to host[f]; volume of VM5 migra-
tion from host[e] to host[d], offline deduplication on host[d], volume backup on host[e], log processing task on host[b], VM4 live mi-
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5.2 Effectiveness of Software Based Handling 
We first examine the effectiveness of hotspot/critical MO 

elimination based on the management operation snapshot shown 

in Figure 11(a). To isolate the impact of critical management op-

eration scheduling, we deactivate the power state tuning function 

in data analysis module to fully represent the effectiveness of the 

CMOS mechanism. 

Note that the compute node 2 has been identified as a hotspot 

in the prior evaluation. HOPE takes further step to locate the criti-

cal management operation on this node and re-schedule it. We 

compare the measured energy consumption during the MO snap-

shot and average power of each host in Figure 13. The average 

host power drops from 367W to 353W. The energy consumption 

of whole cluster drops from 0.37kWh to 0.34kWh. We further 

explore the CMOS execution and find that the MO1 (Log pro-

cessing) on this host is located as critical MO since it is detacha-

ble. HOPE then re-schedules it to host[c]. Note that although the 

vTEF of host[a] is 0, HOPE does not choose it as the MO migra-

tion destination node. This is because HOPE detects that there are 

isolated MOs residing on this node and they cause high PIF on 

this node. Consequently, HOPE migrates the critical MO to com-

pute node 3. We can observe the power consumption of host[b] 

drops from 430W to 375W, and the power consumption of host[c] 

increases from 355W to 372W.  

Furthermore, both the power and energy of the image node 

decrease. Though the host[f].MO2 may be delayed due to the 

performance degradation of host[c], the execution time of 

host[f].MO3 in fact has been boosted due to the performance im-

provement of host[d] that was caused by the boosted host[b].MO3 

(VM2 snapshotting). In addition, detaching host[b].MO1 im-

proves the performance of host[d], and also benefits host[f] due to 

the correlation of host[d].MO2. 

Summary: Our software based critical management opera-

tion scheduling mechanism can effectively eliminate the energy 

tails and hotspots in the SDDC, thereby reducing the energy and 

power consumption of an SDDC. 

5.3 Full System Evaluation 
We evaluate the HOPE in a typical SDDC production envi-

ronment. We deploy various workloads on guest VM to reproduce 

an IaaS production environment, as listed in Table 4. We also 

deploy OpenStack Rally benchmark [29] to stress the cloud plat-

form with concurrent management operations. Specifically, 

OpenStack Rally automates the benchmarking and functional 

testing for OpenStack based cloud platform. It generates cloud 

management operations such as VM creation, VM snapshotting, 

VM live migration, and etc. in the user defined pattern. We host 

workloads in CloudSuite on virtual machine instances with the 

same configuration in Section 2. 

5.3.1 Full System Power Trace Analysis 
We start by analyzing the effectiveness of HOPE using real 

traces obtained from our 8-node prototype SDDC as described in 

Section 2. The results are shown in Figure 14. In this experiment 

we deploy three VMs on each node. The VMs repeatedly run 

SoftwareTesting, GraphAnalytic and DataAnalytic, respectively. 

We also deploy OpenStack Rally to randomly generate manage-

ment operations among the SDDC physical servers. We mark two 

representative regions (A, B) that reflect the typical management 

operation behavior.   

First we observe a power demand drop in Region A. This 

represents a typical critical management operation deference initi-

ated by HOPE. By zooming in to see the power trace of volume 

node 1, we can notice a peak power surge of up to 320W, as 

pointed by arrow A. Event log shows that two volume creation 

operations are committed on volume node 1, which makes it the 

hotspot in current MO snapshot. As a result the deduplication 

operation is identified as critical MO and is deferred to re-execute 

at night. The CMOS handling frees up the system resource and 

accelerates the rest of the management workloads. This also re-

duces global power consumption from 2745W to 2652W. 

Region B represents a typical critical MO migration event. 

By viewing the zoomed power trace of compute node 2 and 3, we 

can notice a nearly 50W power boost on compute node 3 caused 

by two VM snapshotting operations. As a result, the compute 3 

exhibits the highest PIF in the current MO snapshot and makes it 

the hotspot. HOPE is able to identify the log processing task on 

compute 3 as critical MO and migrates it to the cold spot compute 

node 2. 

5.3.2 Performance Benefits of HOPE 
We examine the effectiveness of power/energy management 

of HOPE by comparing it to a baseline SDDC system that does 

not adopt management operation handling mechanism. In this 

experiment we deploy 2 VMs on each compute node. All VMs 

host the same user workloads (SoftwareTesting, GraphAnalytic, 

and DataAnalytic) at a time. Figure 15 shows the results. 

Deduplication on volume node 1 is deferred 
to 12 hours later, thus accelerating the 
volume creation operations

Power trace on 
volume node 1

Power on 
Compute2 and Compute3

Critical MO is migrated from 
compute 3 to compute 2A B

800 1600 2400 3200 4000 Seconds  
Figure 14. A 1-hour long full system power trace collected from HOPE power monitor 
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Our results demonstrate that HOPE significantly reduces the 

execution time of management operations in SDDC. Software-

Testing gains the best management operation execution time sav-

ing (25.4%) due to its relatively flat power consumption profile.  

Correspondingly, HOPE reduces the energy consumption of 

management operations (up to 33%) by eliminating the tail energy. 

We refer to the saving of energy consumption of MO as MO en-

ergy efficiency. Note that the improvement of MO energy effi-

ciency is higher than the improvement of MO execution time. 

This is because the average power consumption of physical nodes 

decreases.  

The elimination of tail energy frees up precious system re-

source to run user workloads. Our results show that it can increase 

the throughput of user workloads by up to 30%. In our experiment, 

the throughput of ST is calculated by the reported progress. The 

throughput of GA and DA could be calculated by the processed 

data size. The average system energy efficiency is improved by 

19%. 

5.3.3 Impact on Power Constrained Data Centers 
We evaluate HOPE under a power-constrained SDDC sce-

nario to further illustrate the benefits of HOPE. In recent years, 

many power-constrained data centers start to tap into additional 

energy sources and energy storage devices to improve data center 

sustainability and efficiency. 

In this work we leverage an on-site power generation set for 

shaving the peak power of a SDDC. Our power generation set 

includes an OutbackPower FLEXMax 80 charge controller, an 

OutbackPower GVFX3524 inverter, and 200Ah 24V lead-acid 

battery system. We also deploy battery array monitor FLEXnet 

DC to monitor parameters of battery voltage, current and state of 

charge for better managing battery life. The battery system con-

nects one of the dual supplies of SDDC servers through inverter. 

This promises the on time peak shaving. We set three power cap-

ping thresholds as 380W, 400W, and 420W. Power spikes over 

the threshold will be shaved by battery system. We measure the 

state-of-charge of battery system after 1-hour running of three 

user workloads. The results are shown in Figure 16. On average, 

HOPE provides nearly 20% capacity saving of energy consump-

tion. 

5.3.4 Overhead Analysis 
Finally we discuss the operation overheads of HOPE. The 

overhead of re-scheduling a detachable management operation is a 

one-time virtual machine live migration. The overhead of defer-

ring a management operation is a pausing operation of a running 

VM or service. The impact of deference to the performance of 

management operations is negligible since most of the deferrable 

management operations are not mission-critical. In fact, all these 

re-scheduling operations are designed for mitigating the tail ener-

gy and eliminating the hot spots in system. The overall perfor-

mance is improved and the overall energy consumption is reduced 

in the real system experiments, as shown in Figure 15. 

Though the fast generated logs may affect the scalability and 

maintainability of a cloud in the presence of relational database 

such as MySQL[23]. Leading cloud platform such as OpenStack 

now supports NoSQL databases such as MongoDB[7] to provide 

the horizontal scalability and high performance in DBMS. Con-

sidering modern SDDC increasingly adopts real-time log analytics 

to provide troubleshooting, dynamic provisioning and high per-

formance, HOPE can intuitively leverage the log management 

infrastructure in current SDDC without incurring additional data 

management issues. 

Summary: HOPE can significantly benefit the energy effi-

ciency, user workloads throughput, and lifetime of energy storage 

devices of a SDDC, while only introduce negligible overheads. 

6. RELATED WORK 
Data center management workload: VMware [32] charac-

terize five typical management workloads present in virtualized 

data center: snapshot/revert, VM patching, boot storm, after-hours 

maintenance and automated live migration. They study the re-

source usage of each scenario and provided the summarized im-

plications for computer architectures. In this work we propose 

fine-grained management workload operations in cloud data cen-

ters from the power perspective. We also propose graph-based 

analysis method for managing workload in cloud data centers and 

mitigation approach. 

Data center power management: Prior works make at-

tempts to management power and energy as a resource of data 

center infrastructure. Power Container [31] implements a fine-

grained power management mechanism for application requests. 

vPower [40] virtualizes the entire power hierarchy in a software-

based approach, including both power source end and power 

demand end. VirtualPower [24] coordinates the power demands of 

co-located virtual machines on a virtualized server.  

Overhead and interference analysis: Several prior works 

proposed interference analysis in data centers, while they only 

consider the interference among workloads or VMs. We study the 

power impact of consolidated management workloads in cloud 

data centers. These prior contributions would be well complemen-

tary to our work. DeepDive [25] uses mathematical models and 

clustering techniques to detect interference in cloud data centers. 

DejaVu [36] employs VM clone technique to run it in a black box 

to detect interference. DejaVu also handles new applications and 

allocates resource according to demands.  Paragon [5] estimates 

the impact of interference on performance and uses that infor-

mation to assign resources to incoming workloads. Quasar [6] is a 

cluster management system that uses classification technique to 

analyze the unknown workloads and makes decisions on allocat-

ing and assigning resources.  

Unconventional power provisioning: Power routing [30] 

proposes shuffled power distribution topologies to reduce the 

opportunities of coordinated power spikes, thus saving the per-

formance throttling and capital expenditure of power delivery 

system. There has been recent work integrating additional green 

energy and onsite stored energy into data centers [9, 13, 14]. Our 

study is orthogonal to these hardware/facility aware power man-

agement schemes and can help improve the overall efficiency on 

these data centers. 
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7. CONCLUSION 
Large-scale data centers have complex ancillary management 

workloads with a substantial amount of power budget and re-

sources dedicated to them. In this paper we investigate a micro-

level power management that fine tunes the power behavior of 

ancillary management workload sets and user’s computing tasks. 

Our technique employs management workload clustering tech-

niques to analyze correlation between management operations. It 

uses software based management workload scheduling to balance 

the power demand caused by consolidated management workload. 

We evaluate our design under various deployment scenarios of 

user workloads. We also evaluate our design under power-

constrained scenario. Our deployment experiences show that the 

proposed technique allows SDDC to reduce energy consumption 

by 19%, reduce management operation execution time by 25.4%, 

and in the meantime improve workload performance by 30%. 
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