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Abstract—Network Function Virtualization (NFV) aims to run
software-implemented network functions on general hardware
such as Commodity Off-the-Shelf (COTS) servers to trade the
application-specific performance with generality and re-
configurability. Nevertheless, with the wide adoption of general
accelerator such as GPU, the researchers seek to boost the
performance of software-based network functions while trying
to maintain the reusability and programmability in the
meantime. The Service Function Chain (SFC) is a key enabler
of service flexibility of NFV. The network functions stitch into
a chain to provide differentiated services to multi-tenants.
However, our characterization results show that existing
heterogeneous packet processing frameworks do not handle
NFV SFC well since two new overheads, the aggregated
processing overheads and co-existence interference overheads,
are introduced by SFC.

Motivated by our characterization, we propose NFCompass, a
runtime framework that employs SFC re-organization
technique and graph-partition based task scheduling technique
to conquer the two challenges brought by SFC. By re-
organizing the SFC components, the length and complexity of
processing paths are reduced and the aggregated overheads
are mitigated. By applying the graph-partition based task
allocation, better load balance is achieved and the data transfer
overheads are considerably reduced.
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I. INTRODUCTION

Modern network operators and data center vendors are
continuing to enrich their network functions (NFs) to provide
various additional services, such as TCP optimization, packet
encryption/decryption, NAT, video transcoding, etc. for their
tenants. Traditional network function enrichments are
achieved by deploying hardware based middleboxes on the
network traffic’s path, which requires costly capital and
operational expenditures and is incapable of accommodating
swift on-demand service provisioning.

To tackle the challenges of cost and flexibility of service
provisioning, Service Providers (SPs) such as AT&T,
Verizon, and China Mobile propose to run network functions
as virtual machines or containers on Commercial Off-The-
Shelf (COTS) servers, hence replacing expensive and
inflexible hardware-based middleboxes with software-based
Virtualized Network Functions (VNFs). This revolution is
called Network Function Virtualization (NFV) [1]-[3].
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The core benefit of NFV is to trade the application-
specific  performance (hard-coded middlebox) with
generality and re-configurability (software-implemented
virtual middlebox), since many NFs, such as firewalls,
intrusion detection system, and load balancers process
packets based on whole packet payloads while not only
headers. This will bring additional computation loads to
physical servers.

With researchers are always in hot pursuit of
performance, many hardware acceleration techniques such as
multi-core CPU [4], network processor [5][6], GPU[7]-[10],
FPGA [11]-[13], etc., have been developed to boost the
performance of software-based network functions while
trying to maintain the reusability and programmability in the
meantime. Offloading the network functions to hardware
accelerators such as GPUs can benefit network functions that
involve intensive parallel lookups into large data structures,
such as route lookup [8], deep packet inspection [14], and
encryption [15].

A key enabler of the service flexibility of NFV is the
Service Function Chain (SFC), where the network traffic
traverses a sequence of NFs to provide differentiated services
for multiple tenants. For example, a parent control service
calls for an additional content filtering middlebox on the
service path for target traffic flows.

Though existing heterogeneous hardware-accelerated
packet processing frameworks [16], [17] have well explored
the resource handling issues and may perform well for
certain network functions, the adoption of SFC can pose
several new challenges to heterogeneous packet processing
system. This can result from two root causes.

First, SFC can impose aggregated processing overheads.
These aggregated overheads are resulted from complicatedly
interconnected network functions. Our characterization
demonstrates that the aggregated overheads consist of packet
re-organization overheads and offloading overheads. The
packet re-organization could be caused by the batch split
between packet processing elements such as Click modules
and the packet re-organizing in the stateful processing. The
offloading overheads originate from the frequent GPU kernel
launch and tear down and various offloading ratio for
different NFs. With the increase of the length of SFC, the
aggregated packet re-organization overheads significantly
reduce the system throughputs, and the aggregated
offloading overheads even can offset the GPU acceleration
benefits.
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Figure 2. A typical service function chain in telecommunication data
centers. The user traffic will be processed by firewall, DPI and load
balancer sequentially.

Second, deploying SFC on heterogeneous platform also
brings the resource interference. By characterizing the
performance of three typical software network functions
(IPv4/v6 forwarder, IPsec gateway, and Deep Packet
Inspection) on GPU enabled COTS server, we observe
challenges of running a single NF and co-scheduling/
running of multiple NFs. Different from the traditional
applications on which the prior works of heterogencous
system focus, the performance of a single network function
is collaboratively impacted by packet batch sizes, traffic
characteristics, co-running network functions, and task
offloading ratios between CPU and accelerators. In the NFV
environment with varying traffics, the optimal configurations
for network function task mappings can deviate significantly.
Existing work either is incapable of handling the fast-
switching network traffics[18]—[20], or relies on inefficient
ad-hoc and manual optimizations [7], [9], [17].

Our characterizations motivate us to design a framework
that is able to efficiently run service function chain on
heterogeneous platform. It employs two novel techniques to
cooperatively ease the task mapping of network functions.
The first technique is a two-level SFC optimization that
parallelizes available NFs at SFC level and synthesizes NFs
at NF level. This is motivated by the aggregated processing
overheads caused by long SFC. Parallelizing available NFs
can help to reduce the length of processing path and reduce
the traffic latency. In addition, synthesizing NFs in each
sequential SFC by eliminating redundant NF elements and
re-ordering certain read and write elements can further
simplify the SFC and save the compute resource. The second
technique is a Directed Acyclic Graph (DAG) based tasking
model that minimizes data transfer across different memory
space, and meanwhile maintains a load balance between
processors. Our graph-partition algorithm partitions the
optimized SFC deployment graph into sub-graphs, which
uses the node execution time and data transfer time as node
weights and edge weights in a data-flow graph. Our
experimental results show that NFCompass can achieve 60%
more throughput improvement, and about 1.4X to 9X lower
than state-of-the-art packet processing framework when
running real world service function chain.
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Our key contributions in this work are as follows.

e To the best of our knowledge, this is the first work
that characterizes running SFC on heterogeneous
platform. We are the first to summarize the two main
overheads caused by SFC, aggregated processing
overheads and co-existence interference overheads.

e Our experiences show that software network
functions can perform extremely diverse under
different configurations. The optimal configuration
is collaboratively determined by packet batch sizes,
traffic characteristics, co-running network functions,
and task offloading ratios between CPU and
accelerators.

e We propose NFCompass, a runtime framework. It
solves the issues of SFC deployment on
heterogeneous platform by exploiting two novel
techniques, the two-level SFC re-organization and
graph-based task scheduling.

The rest of this paper is organized as follows. Section 2
describes essential backgrounds of NFV SFC and GPU
offloading. Section 3 characterizes running the SFC on
heterogeneous platform and summarizes two critical
overheads. Section 4 introduces our main design. Section 5
reports our validation and evaluation results and Section 6
concludes this paper.

IIL.

In this section, we briefly introduce the essential concepts
in NFV, including Click modular router and service function
chaining. We also describe existing heterogeneous packet
processing acceleration implementations.

BACKGROUNDS AND MOTIVATION

A. Network Function Virtualization

NFV implements network functions as software
appliances instead of hardware devices. Traditional network
functions such as routers and firewalls require specialized
devices for different functionalities, and each needs to be
individually deployed. NFV enables service providers to run
NFs on commodity off the shelf servers, thus easing
deployment of services from different vendors. NFV
promises to greatly improve the flexibility with which
services can be deployed and modified, while lowering costs.

Many of the NFV platforms take the advantage of state-
of-the-art I/O libraries such as Inte]l DPDK [21] and Netmap
[22]. Such kinds of data plane acceleration techniques
mitigate the kernel network stack packet processing
overheads through lock optimization, zero-copy and kernel
bypass. However, these libraries only focus on packet
processing between NIC and userspace applications. The
data movement optimization between network function
processing elements is still absent.

1) Packet Processing Style of Network Functions

We introduce Click modular router [23], a framework
that is widely used to model the middlebox abstraction, as
shown in Figure 1. In Click, the basic packet processing
components are defined as elements, which may generate,
process, or receive packets. Developers can construct their
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Figure 3.

A high-level packet processing architecture.

own network functions by connecting a series of elements as
pipeline structures.
2)  Service Function Chain in NFV

The traditional network function processing is
implemented by letting the network traffics traverse a series
of hardware-based proprietary middleboxes. The advent of
NFV improves the total cost of ownership by altering the
hardware-based middleboxes into software-based virtualized
network functions. To provide the on-demand scaling and
provisioning of network services, the Services Function
Chaining should also be implemented in NFV. A typical
example of service function chain is shown in Figure 2. A
packet may traverse a firewall, an Intrusion Detection
System (IDS), and a load balancer to reach its final
destination. A number of challenges arise when addressing
the design of a SFC system. The reduced throughput and
increased latency caused by the increasing length of SFC
may hurt the quality of service of network traffics.

B. Heterogeneous NFV Acceleration

Recently the researchers resort to the heterogeneous
accelerators such as general-purpose GPUs (e.g. Intel Xeon
Phi coprocessor [24]) and many-core processors (e.g. Tilera
[6]) to augment the packet processing leveraging the data
parallelism. Recent approach also explores the opportunity to
use FPGA to accelerate software NFs [11]. Prior works have
shown the potential of using GPUs as packet processing
accelerators [7], [8], [14], [15], [17]. In general, GPU can
transparently hide the 60-200ns of latency required to
retrieve data from main memory, thus speeding up the entire
packet processing elements pipeline.

1) GPU Offloading Model for Packet Processing

We first present a packet processing model based on
Receive Side Steering (RSS). A high-level model is shown
in Figure 3. It has two critical threads: packet I/O threads and
offload threads. We adopt a pipelining model in our setup
where each thread is affinitized to an individual CPU core.
The packet 1/O threads reads incoming packet batches using
Intel DPDK [21]. The IO loops of the packet I/O threads
synchronously receive packet batches from the NIC RX
queue, check the validity of each packet, and inform GPU
offload thread or discard. In this paper, we use the batch size
of 32 and 64 packets. The 10 loop also polls offload
completion notifications from the offload thread. Offload
threads manage communications with accelerators such as
GPUs. As packet I/O threads send offload tasks containing
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TABLE 1. PLATFORM CONFIGURATIONS

Item Value
COTS system [SuperMicro 8048B, 4-socket NUMA
Processor Intel Xeon E7-4809 v2, 1.9GHz (IvyBridge)

6 physical cores (12 Threads)/socket

12MB L3 cache for each socket

64KB L1 cache and 256KB L2 cache for each core
Memory 64GB, DDR3 for each socket, 256GB in total
GPU 2x Nvidia Titan X, 3072 CUDA cores, 336.5GB/s
NIC Intel X540 10GBase-T, Mellanox 40GB SFP+

|Associate with socket 0 and 4

packet batches and element information, they execute them
on a pool of command queues for the configured GPUs.

The Dbiggest challenge of heterogeneous packet
processing is to hide the packet offloading details. In this
work, we use a modified offloading mechanism introduced
in [9]. The offloadable Click elements employ CPU-side
functions, GPU-side functions, and the corresponding
input/output data formats. Figure 4 shows a data offloading
process of the IPsec, the data offloading process runs the
accelerator-side functions including preprocessing of the
input data, host-to-device data copies, kernel execution,
device-to-host data copies, and post-processing of the output
data. We employ a persistent kernel design for GPU code.

III. CHALLENGES OF DEPLOYING SFC ON
HETEROGENEOUS SERVER PLATFORM

In this section we explore two root causes that incur the
performance issues of deploying SFC on heterogeneous
server platform, the aggregated processing overheads and
the co-existence interference. Our methodology is to identify
the quantitative performance impacts of these two root
causes by running both single network function and multiple
chained network functions on GPU-equipped COTS server
platform. These root causes motivate our design of re-
organizing SFC process pattern and DAG-based task
scheduling in Section 4.

A. Experimental Setup

1) Platform
Our physical platform configuration is shown in Table 1.

Our heterogeneous platform equips two Nvidia Titan X. The
system uses four Intel X520 SPF+ 10 Gigabit Ethernet NICs
divided into two groups and are associated with two NUMA
nodes respectively. We use Ubuntu Linux 14.04 and DPDK
16.04, and NVIDIA CUDA 8 as GPU framework.

2)  Network Function Workloads



We choose three packet processing network functions,
that present both compute-intensive and memory-intensive
behavior to fully test the heterogeneous platform.

IPv4/IPv6 Packet Forwarding. 1P packet forwarder is the
simplest yet the most deployed service. Upon receiving a
packet, the forwarder uses IP forwarding lookup table to
rewrite the destination IP address for this packet and
transmits it. The IP forwarding table lookup could be
memory-intensive operation. The IPv4 table lookup takes
two memory accesses and IPv6 table lookup takes up to 7
memory lookups. The hashing in IPv6 also makes it
compute-intensive since binary search should be performed
for every destination address.

IPsec Encryption. The Internet Protocol Security (IPsec)
is an encryption protocol suite that is widely used by Internet
applications, VPN, and P2P communications to secure the IP
traffics. Since intensive encryption and hashing operations
are performed, IPsec is highly computation-intensive. The
frequent packet payload copy also makes it an 10-intensive
application. We use HMAC-SHA1 to authenticate the
packets and AES-128CTR to encrypt them in our IPsec
encryption. We implement it to exploit AES-NI for faster
computation AES in recent CPU models.

Deep Packet Inspection. Deep packet inspection (DPI) is
an essential security approach that is adopted in network
traffic processing applications such as network intrusion
detection systems (IDS) [25], traffic classification [26], and
Web application firewalls [27]. These applications perform
pattern matching to select flows or packets for stateful
inspections. For the string matching we use Aho-Corasick
algorithm [28] that is implemented in Snap [17]. For the
regular expression we use a Deterministic Finite Automata
(DFA) implementation. DPI tends to exhaust the compute
and memory resource due to its heavy pattern matching
operations. The host-to-device packet copy operations also
make it [O-intensive.

3) Test Traffics

In this paper, we use network intensive micro-benchmark
Netperf [29] to generate traffic loads. Unless otherwise
specified, we use a randomly generated IP traffic with UDP
payloads and offer 40 Gbps load from two separate packet
generator machines, 80 Gbps in total. For IPv6 router
application, we use IPv6 headers and IPv4 headers for other
cases.

B. Impacts of Aggregated Processing Overheads

To demonstrate the impacts of aggregated processing
overheads, we first evaluate the performance of network
traffics and quantitatively analyze the packet processing
overheads on a single network function setup. We then run
chained network functions on heterogeneous platform and
vary the length of SFC to compare the performances with
their counterparts running on general COTS platform. Our
experiment results show that the benefits of GPU
acceleration could be offset by the aggregated overheads
with the increase of NFs.

1) Aggregated Packet Re-organization Overheads

To guarantee the functional correctness and improve the

efficiency, existing packet processing frameworks involve
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several approaches that maintain the packet sequence and
process packets in batch. However, the parallelism of GPU
processing does not support packet order preservation well.

a) Re-organization Caused by Branching

Modern heterogeneous framework employs batching
method [9] to increase packet processing throughput and
reduce the per-packet overheads. However, the batching
method is not intrinsically compatible with the Click
module’s element abstraction. Since the output packets from
one element may be diverted to different Click elements, a
larger batch of packets have to be re-organized and pushed to
different elements as smaller batches. Such re-organizing
incurs extensive memory operation and batch management
overheads. We demonstrate this in Figure 5. We design a
simple branch test element. We test the throughputs of
with_split and without split by running the branch test
elements as service chain. The results show that the
throughput of with_split drops from 36.5Gbps to 15.8Gbps

In addition, the branch condition in Click also incurs the
control-flow divergence on the GPU-based platform when
block-level parallelism is employed, where the blocks of
threads are cooperatively executing packet processing. When
the packets that are belonged to different traffic flows are
scheduled in the same warp, they may take different
execution paths and can cause control-flow divergence. With
the increase of SFC length, the aggregated idle condition can
consume a significant amount of processing time.

b) Re-organization Caused by Stateful Processing

It is necessary to maintain stateful processing for traffics
in intrusion detection system and traffic classification. The
stateful processing ensures the in-order processing of packet
in the same connection. To guarantee the stateful processing,
the incoming packets are buffered and then offloaded to
heterogeneous acceleration hardware. The processed data is
finally resembled as traffic stream for further process. Such
buffering-based approach requires a large amount of memory
budget and may significantly increase the latency of traffics.

2) Aggregated Offloading Overheads

For discrete GPU platform, the data transfers among NIC,
CPU memory, and GPU memory are one of the main
overheads and have been discussed in prior work [7], [9],
[17]. Several solutions such as shared buffer for NIC and
GPU [7], analogous element for reduced memory copy [17],
and partial offloading [9] have been proposed. We
characterize three typical NFs under different offload ratios,



as shown in Figure 6. Our experiment results show that the
best offloading ratios varies for different NFs.

Note that in the GPU acceleration of IPsec encryption,
offloading all tasks to GPU does not yield the best
performance. Figure 6 shows that offloading 70% of input
packets to GPU while processing the rest packets on CPU
can yield the best performance. This indicates that offloading
all workloads to GPU can saturate the computing resource.
The reason is that the un-optimized framework employs
frequent small Click element kernel launch and teardown.
This will incur extensive packet data loading and thread
synchronizations. If we choose small batch size to mitigate
the overheads of element branch, the number of kernel calls
will be further increased and the kernel re-establish
overheads could be aggravated.

Running NFs as a SFC can pose extra challenges to
handle the aggregated offloading overheads. Identifying and
configuring the best offload ratio for each NF could be
troublesome, while a one-size-fits-all offload ratio may harm
the SFC performance. We conduct an experiment to
demonstrate how the acceleration benefit is offset along with
the increase of SFC length. In this experiment, we test four
cases, single IPsec (A), IPsec + IPv4 forwarding (B),
Firewall + IPv4 forwarding + IPsec (C), IPv4 forwarding +
IPsec + IDS (D). We report three offloading ratios: CPU
only, GPU only, and 70% offload to GPU. As shown in
Figure 7, the same offload ratio cannot always keep the
consistent performance in different scenarios.

3) Findings

In this subsection, we can learn that both packet re-
organization overheads and offloading overheads are caused
by the complexity of Click elements and the redundancy of
long service function chain. This motivates us to devise a
framework that is able to reduce the complexity and
redundancy of SFC at both NF granularity and element
granularity.
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C. Impacts of Co-existence Interference

To demonstrate the impacts of co-existence interference,
we first explore the challenges of running single network
function on GPU-based server. We investigate the
performance and architectural behaviors under impacts of
various packet batch sizes, NF traffic patterns, and co-
running traffic flows. We draw several observations and thus
motivating our design.

Batch Size: The throughput usually improves with the
increase of batch size though it also relates to the packet size.
The maximum throughput should be achieved by setting up a
different batch size for different NFs. Large batch sizes are
good for memory intensive NFs such as the IPv4 forwarder.
Small batch size is better for compute intensive applications
such as IDS and IPSec. The bigger batch size may lead to
higher cache miss rate for CPU. In Figure 8 (d), we can
observe that a CPU throughput drop occurs to DPI when the
batch size is larger than 256 packets. Worse, increasing the
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batch size after this threshold will only lead to latency
increase.

NF Traffic Patterns: The intrinsic traffic patterns also
impact the throughput and latency of network functions. For
example, the performance of DPI is strongly determined by
the input traffic flows. As shown in Figure 8 (d) and (e), the
CPU/GPU throughputs of no-match are significantly higher
(4X~5X) than the throughputs of full-match. DPI/IDS rely
on Aho-Corasick multi-string pattern matching algorithm.
This algorithm scans the incoming packet payloads and
looks up DFA table to match any string patterns. This
memory intensive application can lead to at least five
memory accesses. Hence, an incoming packet flow with low-
match profile will reduce the cache and memory access and
reduce the cache contention with other applications, while
this will convert to an increased throughput.

Co-running Traffic Flows: We further investigate how
co-running traffic flows affect the system throughputs. We
measure the throughput drops of five typical NFs when
another four NFs are co-running with them, as shown in
Figure 8 (e). We can observe that IDS is the most exclusive
application, with the highest average performance drop as
22.2%. In contrast, firewall is the least sensitive application
when co-runs with other NFs. On CPU platform, the
bottleneck of co-running NFs is the cache. If an NF causes a
high cache hit number during the solo run, there is a high
possibility that it will be suffered by the high throughput
drop in the co-run. On GPU platform, the main bottleneck is
that the co-run incurs frequent kernel launch and context
switch. Therefore, the GPU acceleration for a complicated
SFC with various NFs is not beneficial.

IV. RE-ORGANIZING THE SERVICE FUNCTION CHAINING
PROCESSING PATTERNS

We propose NFCompass, a service function chain
acceleration framework that targets heterogeneous COTS
platform. NFCompass exploits two novel designs to
guarantee the best latency for network traffics. First,
NFCompass adopts a two-level SFC re-organization
technology to reduce the redundancy and complexity of SFC.
The aggregated packet processing overheads could be
significantly mitigated by parallelizing the NFs at the SFC
level and re-building the NF elements at element level.
Second, NFCompass adopts a DAG-based task allocation
scheme to ensure that all processing resources (CPU and
GPU in our case) are balanced, the offloading overheads are
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Flowchart of NFCompass runtime framework

TABLE II. NF ACTIONS ON PACKET
HDR/PL Rd | HDR/PL Write | Add/Rm bits | Drop
Probe Y/N N/N N N
DS Y/Y N/N N Y
Firewall Y/N N/N N N
NAT Y/N Y/N N N
LB Y/N N/N N N
WAN YIY YIY Y Y
Optimization
Proxy Y/Y NY N N
TABLE III. NF PARALLELIZATION CRITERIA
HDR/PL Read | HDR/PL Write Drop

HDR/PL Read N * N

HDR/PL Wrt X * N

Drop N/A N/A N

The NF operations in the column are performed on the former NF in the SFC and the operations in
the top row are performed on the later NF. Two parallelizable NFs are marked with “V”.

minimized, and the overall packet processing latency is
minimized. To avoid the issue of frequent kernel launch
mentioned in Section 3, NFCompass employs a persistent
GPU kernel design. The core idea is to keep a portion of
GPU threads continuously running to process the input
network packet stream.

A. System Overview

We present the system architecture in Figure 9. The
NFCompass runtime consists of three critical components,
the SFC orchestrator, the NF synthesizer, and task allocator.
The core idea of NFCompass is to model the network
processing elements in the service chains as a dataflow
graph. Based on current data-flow graph, the SFC
orchestrator analyzes the order-dependency of NFs in a SFC
and examines if certain NFs could be processed in parallel.
Then the NF synthesizer analyzes each parallelized SFC to
remove the redundant elements and re-build the optimized
NFs in each SFC. Finally the task allocator exploits a graph-
partitioning based scheme to meet the various compute
budget and real-time demands.

B. Exploring Parallelism and Composability of Service
Function Chain

1) Exploring Parallelism at SFC level
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We have shown that the increasing length of SFC can
significantly increase the traffic latency in Section 3. An
intuitive approach is to explore the parallelism of packet
processing of SFC. We define two NFs are parallelizable if
they do not have dependency with each other. Network
traffics could be duplicated and input to parallelizable NFs
for processing. For example, whether a packet is processed
by IDS system or WAN proxy does not affect the output
functional correctness of the other NF. So IDS and
WANDroxy are parallelizable.

Parallelizing network functions calls for the packet action
independency between NFs. To evaluate the dependency of
NFs in a SFC, we consider following criteria. First, the read
and write operations of different NFs can impact the
dependency of them. Normally the packet header or payload
could be overwritten by some NFs. For example, the
Network Address Translation (NAT) always changes the
packet header. Second, a packet drop in an NF can also
affect the correctness or efficiency of the SFC. If a packet
could be dropped by a former NF, the operation based on
that packet could be emitted on the latter NF. We investigate
the packet actions of most typical NFs and list them in Table
2.

Similar to the hazards in the instruction pipeline,
different NFs can have four situations in which read or write
operations are conducted sequentially. Read after read, read
after write, write after read, and write after write. NFs with
RAW and WAW dependency cannot be parallelized to keep
the packet data coherency, while the RAR and WAR cases
are safely parallelized. We show the criteria of whether two
consequential NFs can be parallelized in Table 3. Note that
in the WAW and WAR cases, we need to further locate the
changed fields in header and payloads. There exist certain
cases in which only header or payloads are changed while
the payloads or header of this packet will be read or written
in the latter NF. Under such circumstance, the WAW and
WAR cases are safely to be parallelized.

After analyzing the SFC order dependency, the SFC
orchestrator needs to duplicate input traffics to several
parallelizable NFs. It just creates the copy of network
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packets and distributes them. The merge function is designed
base on classical exclusive or logic. The xor operation is
leveraged to identify the difference of processed packets
from parallel NFs. The original packet will be xor-ed to each
output packet to get the modified bits. All the modified
results from each NF will be or-ed to generate an aggregated
modified result. This aggregated result will be xor-ed with
the original packet again to get the final output of parallel
NFs.
2)  Reducing the Redundancy at Element Level

Having solved the long chain issue at SFC level, we
continue to explore within the NFs and would like to further
eliminate the redundancy at the NF element level. Many NFs
adopt similar steps to process the packets [30]. We
summarize following source of redundancy in existing Click
module based NF. First, multiple NFs in a SFC incur
multiple network I/O operations. It would be beneficial to
combine the elements in multiple NFs into a synthesized NF.
Second, a packet drop occurs at the later elements may
unnecessarily consume computing resource. Third, some
general elements may be used multiple times in each NF,
such as IP lookup element that reads IP address. Combining
the NFs at element level helps to control the redundancy of
these kinds of elements by placing it at former stage and only
using it once. Fourth, some elements overwrite the same
field of a packet.

We design our processing graph engine using a directed
acyclic graph (DAG) based scheme. The goal is to eliminate
the four sources of redundancy. As shown in Figure 10, a
simple SFC consists of a fire wall and an IDS system. In this
case the redundant header classifier element is desired to
remove and two graphs could be merged into a synthesized
graph. The principles to merge redundant graph are listed as
follows. First, the packet processing path must not be
modified in the merged graph compared to in the individual
graph. Second, the stateful processing must be guaranteed for
each packet. The alert or log operation should be executed in
the same packet state compared to in the individual graph.
Our NF synthesizing algorithm makes the rule for changing



the order of elements and removing elements according to
each element’s traffic class. For example, to keep the
correctness of classification, the classifiers are not allowed to
move across modifiers or shapers. Based on the original NF
connection order, the NF synthesizer first parses the Click
module DAG of each NF and generates a processing tree by
concatenating them together. The depth from root to leaf
equals to the length of processing path in the NF. The
synthesizer then re-orders and de-duplicates elements. The
decision making flow is shown in Figure 11.

C. Graph Partitioning-based Task Allocation

Our initial input workloads graph is the synthesized Click
element graph. An example is shown in Figure 10 (c). The
task allocator runtime is responsible for mapping the SFC
element dataflow graph to CPU-GPU heterogeneous
platform. The mapping runtime aims to maximize the system
throughput while minimizing the data movement among
CPUs and GPUs. Existing works [31][32] employ the queue-
based scheduling method which fails to leverage the global
dataflow dependency. We choose a graph partitioning based
algorithm to solve this issue in this work.

1) Fine-grained Element Graph Generation

The original element graph generated by our SFC
reorganization technique only includes the essential Click
elements in the SFC. Note that the offloadable Click
elements could be either executed on CPU or GPU or both as
discussed in Section 3.2. Therefore, it is hard to assign the
appropriate weight to a single element to sufficiently
represent the offloading scenarios with various load-balance
ratios. For example, the cases of no offloading, full
offloading, and different offloading ratios present different
weights for an element with certain function. Moreover, the
combinations of different offloading configurations can
further complicate the problem size. These uncertainties
challenge the graph partitioning stage since it is impossible
to generate all partition results for each offloading ratio and
different offloading combinations.

To accommodate the number and construction of Click
elements graph to the graph partitioning phase, we employ a
fine-grained element expansion scheme for the offloadable
elements, as shown in Figure 12. Our goal is to incorporate
full potential offloading configurations in the graph. The key
idea is to create virtual instances of real element, where each
virtual instance represents a portion of offloaded task
(offload ratio increases as 6 =10% in our design) or CPU-
side task of original element so that the following
partitioning phase can directly partition elements to different
processors. Note that this method results in a dependent task
allocation weights for CPU-side element. The weights must
be accommodated correspondingly in the graph partition
stage.

To conquer the challenge of packet reordering as
discussed in Section 3.2.1, we leverage the design of
GPUCompletionQueue element in Snap [17] that only
releases a batch until all packets in this batch are processed.

2)  Runtime Profiling

To build accurate graph for Click element allocation, the

system characteristics are needed as the weights of the
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original element graph, which only shows dependency and
connectivity information. As we studied in Section 3, the
various processing capability of heterogeneous processors
and the network traffic characteristics synergistically impact
the performance of SFC deployment. In particular, the fast-
changing network services can generate diverse network
traffic types and processing requirements with different data-
dependency. So we choose a run-time plus offline profiling
to collect two types of system operating information: the
traffic-related statistics and the performance-related statistics.
The traffic-related statistics depict the network traffic
intensity and distribution among current Click element graph.
We measure this by sampling the next element destination of
packets at each element over time (1000/10K packets in our
case). By collecting the packet flow distribution on each
edge, we can obtain the time-dependent traffic intensities on
each edge, and the utilization of each element. The offline
profiling collects the processing rates (packets/second) of all
Click elements on CPU and GPU under various input traffic
intensities (packet-per-second: 1K~14M, increased by 10K;
packet sizes: 64B~1500B, increased by 64B). It also collects
the data transfer overheads for various traffics. The traffic
intensity information will be factored in the processing time
on each element and be used as the weights for graph
partitioning. NFCompass uses a dictionary to store the
profiling information and indexed by vertex ID and edge ID.
This dictionary provides performance guides to scheduler.
3) Mapping Elements to Heterogeneous Processors

Assigning the packet processing elements to appropriate
processing units (CPU or GPU) while preserving the system
throughput is NP hard. We employ two graph partition-based
algorithms to find the best tradeoff between practicality and
accuracy. The Max-Flow/Min-Cut (MFMC) is widely used
to model flow-based clustering problems [33] to find the
graph partitions with the least inter-cluster communication
costs. This feature intuitively complies with our task
mapping goals of maximizing resource utilization and
throughput while minimizing communication costs. Our first
graph partitioning algorithm is implemented as a modified
Kernighan-Lin (KL) Algorithm [34] using METIS [35]. The
core idea of our algorithm is: Given an initial graph G = G, +
G, where G; and G are initial partitioned graphs. The
algorithm iteratively swaps X, and Y, which are two subsets
of elements that belong to G, and Ga, respectively, and then
examines the gain function determined by the removed edges
and balanced tasks between two graphs.

We also design a light-weight and highly scalable naive
graph partitioning scheme to cope with the challenge when



the complexity of system increases, such as extreme diverse
traffics and complicated SFCs are presented. This algorithm
is a seed-based agglomerative node clustering. It starts with
single element graphs with seed elements. In our design we
select a random GPU element and a CPU element in each
SFC as the seed vertices for two initial graphs. With n SFCs
we have 27 initial graphs. The algorithm then merges two
graphs at each step by choosing two vertices with lowest
communication overheads. The complexity of this algorithm
is O(klogk), where k is the edge number of global graph. This
light-weight partition may result in unbalanced throughput
on different processing units. We still need to apply the
dynamic task adaption.

V.

In this section, we evaluate NFCompass by breaking
down the performance improvements (throughputs and
latency) gained by our SFC re-organization technique and
graph-partition based task allocation technique. We then
demonstrate the overall performance gain brought by
NFCompass compared to baseline CPU-only and current
GPU-based baselines.

EVALUATION

A. Evaluation Setup

Our experimental platform is configured as described in
Section 3. We implement NFs as Docker containers [33] and
run them on dedicated CPU core. We also install Nvidia
driver [36] to enable the GPU-offload support. To effectively
evaluate NFCompass, we choose a DPDK-based packet
generator that runs on a client server. It produces up to 40
Gbps network traffic that contains packets with various types
of lengths, such as fixed lengths, uniform random lengths,
and lengths that follow a specific network traffic distribution
pattern.

B. Effectivenss of SFC Re-organizing Technology

We first demonstrate the effectiveness of SFC re-
organization technology (SFC parallelization and SFC
merging) by evaluating the throughput improvement and
latency reduction on both CPU and GPU platform. Towards
this goal, we explore the performance of SFCs under various
complexity and parallelism configurations on both traditional
CPU-only platform and GPU-only platform. We disable our
graph-partition based task allocation in this part.

1) Effectiveness of SFC Paralleling Technique

We first evaluate effectiveness of our SFC parallelization
technique. Towards this goal, we compose three simple
sequential service function chains with different NF types
respectively (firewall, IPSec, or IDS). Each SFC consists of
four identical NF, as shown in Figure 13 (a). By applying
SFC parallelization, the sequential SFC could be re-
organized into two SFC structures with different parallelism
degrees, as shown in Figure 13 (b) and (c). We can observe
that the effective length of SFC configuration (a) is 4, while
the length of configuration (b) and (c) are reduced to 1 and 2
respectively. Note that the IDS and IPSec have higher
complexity than firewall since they involve complicated
forwarding rules and intensive computation of pattern
matching.
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We choose TCP stream with 64B packet as test load for
the SFCs and evaluate the throughput and latency. To obtain
the accurate throughput, the rules of firewall are modified to
never drop packets. We measure the average packet traveling
time from its arrival to test machine NIC until its departure
from the out NIC.

Evaluation results shown in Figure 14 demonstrate
several key benefits. First, our SFC parallelization technique
can effectively reduce the packet latency for both CPU-based
and GPU-based platforms, and maintain the system
throughput in a reasonable range (with less than 10%
throughput reduction in all configurations).

Second, for NFs with higher computation complexity
such as IDS and IPSec, the SFC parallelization can bring
more significant latency reduction. For example, the
maximum latency reduction for a simple NF such as firewall
is 24% on CPU. In contrast, for complicated NF such as IDS
who involves intensive pattern matching computation, the
maximum latency reduction is 54% on CPU platform.

Moreover, SFC parallelization benefits GPU-based NFs
more significantly than CPU-based NFs in terms of latency.
We can observe that the maximum SFC latency of
configuration a on GPU-only platform is around 24 ms,
while it is reduced to 5 ms in configuration b. The biggest
improvement is 79% while the biggest improvement on CPU
is 54%. We can also note that the throughputs of IPSec and
IDS gained by GPU-only platform are considerably higher
than the throughputs of CPU-based platform.

2) Effectiveness of NF Synthesizing Technique

We then evaluate the effectiveness of our NF
synthesizing/merging technique. We test this case by
applying the NF merging to SFC configuration ¢, and obtain
the synthesized SFC structure as shown in Figure 13 (d).
With NF synthesizing technique, the two pipelined NFs are
merged into a single NF. According to the throughput and
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latency results shown in Figure 14, we have following
observations.

First, we can observe that the NF synthesizing can
achieve nearly the similar throughput and latency compared
to SFC parallelization. This could be derived by comparing
configuration b and d. The equivalent lengths of SFC are all
1 in these two scenarios.

Second, we can note that the latency in configuration d is
lower than configuration b by 12%~18% on CPU and by
14%~30% on GPU. This could be resulted by the inefficient
SFC branching operations (packet copying at the start of
SFC branch and packet merging at the end of SFC branch).
The latency benefit brought by the short SFC is offset by the
packet copying/merging. Designing an optimized packet and
memory management scheme will be our future work.

Third, we can observe that the configuration d achieves
higher throughput than configuration » on both CPU
(86%~100%) and GPU based platforms (13%~21%).

To sum up, the NF synthesizing technique is well
complement to the SFC parallelization technique. A joint
application of these two techniques such as in configuration
d can result in the best performance for SFCs.

C. Effectiveness of Graph-based Task Allocation

We demonstrate that how NFCompass handles the task
balance between CPU and GPU under various NF setups.
Figure 15 reports the throughputs and the corresponding
latency of Graph-based Task Allocation scheme (GTA),
compared with the CPU-only, GPU-only cases and optimal
offloading fractions obtained by manually exhaustive
searches. We use IPv4, IPv6, IPSec, IDS, and their
combinations as our test NFs.

We use the DPDK-based traffic generator and choose
IMIX (Internet Packet Mix) that resembles the real-world
traffic in the distribution of packet lengths and defined by
Intel. It consists of 61.22% of 64B packets, 23.47% of 536-
byte packets, and 15.31% of 1360-byte packets [37].

We can note that GTA can achieve more than 90% of the
maximum possible throughput in all scenarios, and maintain
the latency lower than 4ms. Another key finding is that GTA
gains higher throughput than both CPU-only and GPU-only
for all NF setups except for IPv4. Note that the latency of
GTA for IPv4 is equal to the latency of CPU-only. This
indicates that GTA does not offload tasks to GPU at all for
1Pv4.

We also observe that GTA achieves better performance
improvement for SFC setups than for single NFs. We define
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1500B

a metric as (GTA_throughput - best-effort throughput)/ best-
effort_throughput, where best-effort throughput indicates
the better performance improvement gained by CPU or GPU.
We can note that the average performance gain is 5% for
single NF. It increases to 16% for SFCs. This indicates that
GTA can handle the complicated NF tasks well.

D. Validation of NFCompass Using Real Service Function
Chain

In this part we validate the effectiveness of NFCompass
using a representative service function chain.

The processing network function chain in the evaluation
is shown in Figure 16. It consists of a firewall (FW), a router,
and a NAT. The FW may contain several thousands of rules
in the Access Control List (ACL) which may consume
significant computer resource. We use three real ACLs [38]
in our FW. We generate ACL containing 200, 1000, and
10000 rules. The IP router forwards packets to ISP’s domain
or Internet. For traffics to Internet, the NAT network
function performs source and destination NAT. We use three
different packet sizes in our test traffics (64B, 128B, 1500B).
We choose FastClick [39] and NBA [9] as our baseline
systems.

Figure 17 shows that when executing as a single
FastClick instance, the small ACL achieves fairly good
performance. All three test systems achieve nearly the same
performance. The packet latencies are also well controlled
within 100us. However, when we look into bigger ACLs
with 1000 and 10000 rules, the classification tree becomes
huge since the traffic complexity among FW, router and
NAT. At this time, the FastClick comes across severe



performance issue. The throughput drops about 38% to 84%
for 1000 rules and 10000 rules respectively. Its latency on
ACL 10000 is more than an order of magnitude higher than
ACL 200 latency. The NBA also does not perform well in
the large ACL scenarios. The throughput drops about 32% to
73% for 1000 rules and 10000 rules respectively. The
latency on ACL 10000 is 6.7X higher than ACL 200 latency.
Thanks to our NF synthesizing technique, NFCompass
maintains its high throughput and low latency. In ACL 1000
case, the throughput is nearly same to the ACL 200
throughput. NFCompass also achieves much better latency
than its counterparts. It performs about 1.4X to 9X lower
average latency and 2.9X to 4.3X lower variance latency.

VI.  RELATED WORK

GPUs and dataflow graph: PTask [32] proposes a GPU
based task mapping framework for complex dataflow graphs.
However, the packet processing system cannot directly
leverage its Unix pipe-based data processing model. The
input data is processed by its processing element and is
converted into new streams of output data. In contrast, the
packet data is processed by a series of processing elements as
a pipeline, where the data modification, annotation, and drop
are conducted. NFCompass provides the new design insights
for GPU offloadable task allocation using light-weight graph
partition. Flextream [40] is a compilation framework for the
SDF model that dynamically adapts applications to target
architectures in the face of changing availability of FPGA,
GPU, or CPU resources.

Packet processing acceleration: GPUs provide a
substantial performance boost to many network-related
workloads. PacketShader [8] demonstrates the feasibility of
40 Gbps on a single PC with optimized packet 1/O
processing and GPU offloading. MIDeA [41], SSLShader
[15], and Kargus [14] all exploit GPU to accelerate network
applications, such as SSL (Secure Sockets Layer). Snap [17]
proposes a packet batch processing framework for GPU.
GASPP [7] proposes a stateful approach to GPU-oriented
packet processing. GPUnet [42] is a socket abstraction for
GPUs, which allows GPU programs to control RX/TX with
remote machines. Snap [17] is a packet processing
framework that adds a set of extensions to Click to integrate
GPU elements. APUNet [43] and PIPSEA [44] propose to
accelerate packet processing such as IP forwarder and IPSec
on APU. Furthermore, [45] and [46] propose the dynamic
core allocation and task mapping schemes for network
traffics based on network processors. NFCompass is
different from prior works since we use a fine-grained task
partition scheme for task offloading. We treat CPU and GPU
equally and only offload tasks to GPU when it is beneficial
to the performance.

Load balancing system for heterogeneous platform:
Qilin [19] employs an offline training and dynamic
compilation at run time to fulfill the adaptive workload
mapping. It provides an API that is compatible for both CPU
and GPU. PetaBricks [47], an implicitly parallel language
and compiler, uses an empirical auto-tuning approach to
search the space of possible implementations at installation
time to construct poly-algorithms that combine many
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different algorithmic techniques to obtain better performance.
StarPU [31] is a task scheduling framework for
heterogeneous systems. It uses heterogeneous earliest finish
time (HEFT) scheduling algorithm and automatically
calibrates its performance model by observing task
completion times. The disadvantage of these approaches is
that they have been designed for applications that take as
input constant streaming data and as a consequence, they
adapt very slowly when the input data stream varies. Our
system targets a very different workload, network traffic,
which stresses not only CPU, but also 1/0, depending on the
traffic composition. Koromilas et al. [16] and NBA [9] tackle
scheduling problem of network packet processing workloads
on GPUs. Differently from above work, our graph-based
algorithm can better handle the systems with complex
interdependencies in the network function service chains.
NFV acceleration and network function optimization:
A myriad of prior work addresses the NFV acceleration in
terms of single NF acceleration [11], [13], [48] and NFV
acceleration framework [49]-[56]. ParaBox [57] proposes
initial NFV service chain parallelization technique and NFP
[58] elaborates this technique in the same time with our work.
NFCompass augments these contributions by proposing a
comprehensive SFC framework for heterogeneous platform.

VIL

In this paper, we study the typical software based
network functions that are widely used in modern Network
Function Virtualization environment. In particular, we
characterize the running of service function chains on
modern GPU-accelerated COTS server platform to identify
the performance bottlenecks. Our characterization
experiences show that the performance of SFC is mainly
restricted by two root causes, the aggregated processing
overheads, and the co-existence interference overheads. To
tackle these two issues, we propose NFCompass, a runtime
support for high-performance network function service
chaining on heterogeneous COTS server platform.
NFCompass innovatively leverages a two-level SFC re-
organization technique and a graph partition-based
scheduling scheme to conquer the above two overheads
respectively. Our experimental results show that NFCompass
can achieve 60% more throughput improvement, and about
1.4X to 9X lower than state-of-the-art packet processing
framework when running real world service function chain.

CONCLUSIONS
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