
Bridging the Semantic Gaps of GPU Acceleration for Scale-
out CNN-based Big Data Processing: Think Big, See Small
*Mingcong Song1, *Yang Hu1, Yunlong Xu2, Chao Li3, Huixiang Chen1, Jingling Yuan4, Tao Li1

1Department of Electrical and Computer Engineering, University of Florida, Gainesville, USA
2School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China

3Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
4Wuhan University of Technology, Wuhan, China

{songmingcong, huyang.ece, stanley.chen}@ufl.edu, xjtu.ylxu@stu.xjtu.edu.cn,
lichao@cs.sjtu.edu.cn, yjl@whut.edu.cn, taoli@ece.ufl.edu

ABSTRACT
Convolutional Neural Networks (CNNs) have substantially
advanced the state-of-the-art accuracies of object recognition,
which is the core function of a myriad of modern multimedia
processing techniques such as image/video processing, speech
recognition, and natural language processing. GPU-based
accelerators gained increasing attention because a large amount of
highly parallel neurons in CNN naturally matches the GPU
computation pattern. In this work, we perform comprehensive
experiments to investigate the performance bottlenecks and
overheads of current GPU acceleration platform for scale-out
CNN-based big data processing.

In our characterization, we observe two significant semantic gaps:
framework gap that lies between CNN-based data processing
workflow and data processing manner in distributed framework;
and the standalone gap that lies between the uneven computation
loads at different CNN layers and fixed computing capacity
provisioning of current GPU acceleration library. To bridge these
gaps, we propose D3NN, a Distributed, Decoupled, and
Dynamically tuned GPU acceleration framework for modern
CNN architectures. In particular, D3NN features a novel analytical
model that enables accurate time estimation of GPU accelerated
CNN processing with only 5-10% error. Our evaluation results
show the throughput of standalone processing node using D3NN
gains up to 3.7X performance improvement over current
standalone GPU acceleration platform. Our CNN-oriented GPU
acceleration library with built-in dynamic batching scheme
achieves up to 1.5X performance improvement over the non-
batching scheme and outperforms the state-of-the-art deep
learning library by up to 28% (performance mode) ~ 67%
(memory-efficient mode).

Keywords
GPU; Deep Learning; Distributed System; Big Data.

1. INTRODUCTION
Recent years have seen massive research efforts on developing
deep neural networks (DNNs). Among these DNNs, the
Convolutional Neural Networks (CNNs) [24, 36, 38] are the most
popular subsets. Typically, the CNN is comprised of one or more

fully connected layers and multiple convolutional layers. The
most appealing feature of CNN is that it has far fewer parameters
than fully connected DNNs, which makes CNNs easier to train
and more practical [12]. Today, CNNs have been extensively
adopted [1, 14, 22, 23, 34, 41, 46] and have substantially
advanced the state-of-the-art accuracies of object recognition,
which is the core function for image/ speech/ language processing
applications.

Due to the inefficiency of general-purpose processors when
processing CNN workloads, researchers perceive the
opportunities to tap into CNN accelerators. Various accelerators
based on FPGA [44], GPU [15] and ASIC [3] have been proposed
recently to improve the performance of CNN workloads. Among
these approaches, GPU-based accelerators gained increasing
attention since a large amount of highly parallel neurons in CNN
naturally matches the GPU computation pattern. Furthermore, the
proliferation of commodity GPU deployment (bare metal and
virtualized) in cloud data centers [2, 37] provides a mature and
ready-to-use platform for cloud-based CNN acceleration. DjiNN
[15] makes the first attempt to explore commodity GPU-based
CNN accelerator server platform and provides beneficial
implication to future warehouse-scale computer design. However,
the enormous amount of data that generated in current IT big-
names’ warehouse-scale computers present significant challenges
for scale-out CNN-based big data processing [18, 26, 47]. For
example, more than 350 million photos are being posted to
Facebook per day [13, 25] and 100 hours of video are being
uploaded to YouTube per minute [42], such daunting amount of
data arrival remarkably embarrasses the throughput of traditional
standalone CNN accelerators.

Rather than pushing the limit of standalone CNN accelerators, we
instead explore a complementary opportunity to benefit scale out
CNN-based big data processing that leverages state-of-the-art
heterogeneous CNN acceleration techniques such as commodity
GPGPU and widely used distributed computing frameworks such
as Hadoop. In this paper, we perform comprehensive experiments
to investigate the performance bottlenecks and overheads of
current GPU acceleration platform for scale-out CNN-based big
data processing. We study three most representative networks:
AlexNet [24], GoogLeNet [38] and VGGNet [36]. As many fine-
tuned convolutional neural networks are designed based on these
representative networks and share the same network architecture,
we expect the observations hold valid to their derivatives.

We find significant challenges are associated with GPU
acceleration support for scale-out CNN-based big data processing.
First, we observe a framework semantic gap that lies between
CNN-based data processing workflow and data processing
manner in current distributed framework. Specifically, the lack of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
PACT '16, September 11-15, 2016, Haifa, Israel
© 2016 ACM. ISBN 978-1-4503-4121-9/16/09…$15.00
DOI: http://dx.doi.org/10.1145/2967938.2967944
*Authors with equal contribution

mailto:lichao@cs.sjtu.edu.cn

accurate processing time estimation approach for heterogeneous
GPU acceleration nodes presents as an obstacle to provide agile
proactive load balance for a distributed CNN acceleration
framework, which could result in significant waste of valuable
computing resource that provided by the state-of-the-art
heterogeneous CNN acceleration hardware.

To bridge this semantic gap, we explore the opportunity to benefit
from leveraging GPU acceleration library by looking into more
details of standalone CNN acceleration platform implementation.
We surprisingly observe another standalone semantic gap that lies
between the uneven computing loads at different CNN layers and
fixed computing capacity provisioning of current GPU
acceleration libraries. Specifically, the uneven GPU resource
utilization pattern caused by the lack of awareness of per CNN
layer computing load poses significant challenges for achieving
optimal GPU utilization. This unpredictable GPU utilization also
impacts the performance and restricts the possibility to accurately
estimate the CNN acceleration processing time.

Motivated by our characterization observations, we propose D3NN,
a Distributed, Decoupled, and Dynamically tuned GPU
acceleration framework. D3NN features a distributed data
processing framework, a CNN-oriented GPU acceleration library,
and a novel analytical model that bridges the semantic gaps in
modern scale-out CNN-based big data processing platform.

D3NN incorporates a CNN-oriented GPU acceleration library that
dynamically tunes the batch size of input data at each CNN layer
to bridge the standalone semantic gap by waxing mismatch of
uneven computing loads at different CNN layers and fixed
computing capacity provisioning of current GPU acceleration
library. Based on our GPU acceleration library, we also propose
an analytical model that bridges the semantic gap to provide
accurate processing time estimation approach for heterogeneous
GPU acceleration nodes and accurate multi-process number
determination method. The distributed data processing framework
employs a Producer-Consumer scheme to decouple the CNN data
preparation process and CNN data processing process at each
slave node, and a semaphore-based data synchronization scheme
to bridge the framework semantic gap by matching the distributed
data processing manner to CNN-based data processing workflow.

Note that due to the similarity of convolutional neural network
architectures, D3NN is applicable to any newly developed CNN.
Our evaluation results show the throughput of standalone
processing node using D3NN gains up to 3.7X performance
improvement over current standalone GPU acceleration platform.
Our CNN-oriented GPU acceleration library with built-in
dynamic batching scheme achieves up to 1.5X performance
improvement over the non-batching scheme and outperforms the
state-of-the-art deep learning library (cuDNN) [5] by 28%
(performance mode) ~ 67% (memory-efficient mode). More
importantly, as a hierarchical CNN acceleration solution, the
decoupled architecture we proposed could also apply to other
state-of-the-art works, such as multi-GPU servers [15] and ASIC-
based CNN accelerators [3, 4].

2. BACKGROUND
CNN: CNN can tackle various multimedia processing
applications such as car classification [41], pedestrian
classification [34], scene recognition [46], salient object
subtilizing [45], object detection [14], video analysis [22] and
image captioning [21]. In this study, our characterizations and
optimizations mainly focus on three representative CNNs:
AlexNet, GoogLeNet, and VGGNet. AlexNet, the ILSVRC [33]
2012 winner model, is the first study that popularized CNN in
computer vision. It could be fine-tuned on other databases to
implement richer functions. In recent years, deeper and more
complicated convolutional networks have been developed to
achieve better accuracy. To reflect the latest research on CNNs in
our design, we also characterize two latest ILSVRC winners,
GoogLeNet and VGGNet. Most fine-tuned CNN models are
designed based on them, as shown in Table 1. Although
parameters in these fine-tuned CNN models have to be re-trained
using new training dataset, their architectures remain the same and
the CNN performance will not change drastically.

We introduce essential preliminaries of CNN using AlexNet as an
example, shown in Figure 1. It consists of five convolutional
layers, three max-pooling layers, and two classifier layers. The
convolutional layers perform dot products between the filters and
local regions of the input image [6]. These operations dominate
the execution time of CNN computation. The convolutional
operations in a convolutional layer benefit from the optimized
matrix multiplication libraries, such as cuBLAS [7].

We demonstrate a typical matrix multiplication based
convolutional operation in Figure 2. In step ①, an operation
called im2col [6] stretches out the local regions in the input image
(D) into column-major matrix (D𝑚). Similarly, in step ② the
weights of the CONV layer (F) are stretched out into filter matrix
(F𝑚). Then the original convolutional operation could be lowered
into a matrix multiplication (Fm×Dm) in step ③. In Figure 2, the
filter matrix F𝑚 has dimensions N𝑓 × 𝑆𝑓2N𝑐, while the data matrix
D𝑚 has dimensions 𝑆𝑓2N𝑐 × W𝑜H𝑜 . The output matrix O𝑚 has
dimensions N𝑓 × W𝑜H𝑜. Therefore, we can calculate the number
of float point operations in a convolutional layer through the
number of multiply-accumulate operations of Fm×Dm:

 Conv𝑓𝑓𝑓𝑓𝑓 = 2N𝑓 × 𝑆𝑓2N𝑐 × W𝑜H𝑜 (Eq1),
where a single multiply-accumulate operation counts as 2 flops.
The Convflops is usually used to measure the computational
intensity in a convolutional layer.

GPU: A GPU has multiple streaming multiprocessors (SMs). The
SM is the main SIMD processing engine and has several
functional blocks, such as integer/floating point ALUs, load/store
units, special functional blocks. Execution of general-purpose
programs on heterogeneous GPU/CPU architectures is realized by
various application programming interfaces (API) such as CUDA

Table 1. CNNs

CNN Architecture Fine-tuned Models
AlexNet FCN-AlexNet, SOS-AlexNet,

Places205-AlexNet, Hybrid-CNN, R-
CNN, CaffeNet

GoogLeNet Places205-GoogLeNet, GoogLeNet_cars
VGGNet FCN-Xs, SOS-VGG16, ParseNet

1 sample

conv1 conv2 conv3 conv4 conv5

SVM ?

256 256 96
55 55

256
27 27

384
13 13

384
13 13

256
13 13

4096 4096

conv
max

norm

conv
max

norm
conv conv conv

max
full full

Class

Extract high level features Classify each
sample

fc6 fc7

× × × × × ×

Figure 1. A representative CNN architecture - AlexNet

[30], and OpenCL [32]. Using these APIs a programmer can
launch thousands of threads onto GPU device from the host CPU.
Multiple threads (called a warp) execute simultaneously on an SM
following the same instruction multiple data (SIMD) paradigm.
Several warps form a thread block (TB) that are executed on the
same SM; TBs group together to form a grid that executes a GPU
kernel.

During the execution of a GPU kernel, the work distributor checks
whether the required resources of a TB can be satisfied by one of
the SMs. These resources include the shared memory, the number
of registers, and the maximum number of warps concurrently
active on an SM. If all these resources requirements are satisfied
by an SM, one TB will be dispatched onto it. GPUs hide memory
latency through fast context switch among active warps; thus
sufficient numbers of active warps should be maintained on an
SM. Occupancy [8], which is the ratio of the number of active
warps per SM to the maximum number of active warps, is an
important metric in determining how effectively the hardware is
used. Theoretical occupancy is the upper limit for occupancy
imposed by the kernel launch configuration and the capabilities of
the GPU, while achieved occupancy is the actual measured
occupancy of the running kernel. The achieved occupancy is
usually less than the theoretical occupancy mainly due to (1)
limited problem size, and (2) unbalanced workload within and/or
across TBs.

Hadoop: Hadoop [39] is a most widely used framework for
distributed processing of large data sets across a cluster of
computers. Hadoop was inspired by Google's MapReduce [10], a
software framework in which an application is broken down into
numerous small map/reduce tasks. Any of these tasks can be run
on any node in the cluster. Hadoop includes a Distributed File
System (HDFS), which is usually mounted on each slave node
and provide data storage service for MapReduce.

3. CHARACTERIZATION AND
IMPLICATION
To understand how to design optimized GPU acceleration system
for CNN applications, we perform an in-depth, hierarchical
characterization of the performance of existing computing
framework and GPU acceleration library for CNN to identify
inefficiencies and bottlenecks. Compared to previous work that
largely focuses on performance characterization of GPU
computation [15], our comprehensive characterization shed light
on some ignored realities. We first describe our experimental
setup in Section 3.1. In Section 3.2, we explore the bottlenecks
that constitute framework semantic gap. In Section 3.3, we delve
into standalone CNN processing platform to explore the
limitations of current GPU-accelerated implementation for CNN,

which result in the standalone semantic gap. We summarize the
root causes of these inefficiencies in Section 3.4.

3.1 Experimental Setup and Methodology
We characterize AlexNet, GoogLeNet, and VGGNet on Nvidia’s
Tesla K20c GPU, which is deployed at DELL PowerEdge R710
server. The detailed parameters are listed in Table 2. The Nvidia
driver version is 340.32 and CUDA version is 6.5. We gather
GPU runtime information using Nvidia Visual Profiler [31]. We
use 8 slave nodes and 1 master node in our distributed framework
characterization. The CNN models are trained by Caffe [20], an
open-source deep learning framework widely used in both
academia and industry. We also use Caffe to implement our CNN
networks. The test data is from ILSVRC2012 (157.3GB) [11]. We
scale up the above data sets appropriately with increased number
of computing nodes.

We develop a state-of-the-art heterogeneous MapReduce
framework that enables CPU to cooperate with GPU to do big
data processing. We make heavy modifications to Hadoop
framework so that it is capable of running multimedia workloads
using GPU. Note that although we choose Hadoop in our current
implementation, our proposed design and optimization can be
integrated with other popular distributed computing frameworks
such as Spark [43].

In this paper we define GPU temporal utilization as the proportion
of GPU-involved runtime in the whole CNN runtime and GPU
spatial utilization as GPU hardware resource utilization.

3.2 Framework Semantic Gap
3.2.1 Distributed Framework Overheads
We set out to analyze the nontransparencies in CNN workflow for
distributed framework that cause the overheads in an inefficient
integration of distributed CNN acceleration platform.

In a typical CNN-based application, the processing workflow
consists of three stages: neural network initialization, data pre-
processing and data processing. In our baseline implementation,
each Hadoop map task is associated with a CNN processing
process. While due to Hadoop job consists of a large amount of
independent map tasks with short lifecycle, naïvely associating
the whole deep learning process with map task incurs several
overheads. We elaborate these overheads that are illustrated in
Figure 3.

Repeated Network Initialization: Each map task will initialize
the neural network. Since the network initialization is really time-
and resource- consuming, this causes a large amount of
unnecessary repeated network initialization time. These are
depicted as Init in Figure 3.

F0 F1

F3F2
Nf

F0 F1 F2 F3

Sf
2Nc

Nf

Sf

Sf
D0 D1 D2

D3 D4 D5

D6 D7 D8

D0

D1

D1 D3

D2 D4

D3 D4 D6

D4

D5

D7

D4 D5 D7 D8

×

×

=

O1 O2

O4O3

Wo

Ho

O1 O2 O3 O4

Nf

OmDmFm

F
D

WoHo

2

Wi

Wi

WoHo

im2col1

=

3

Nc=1

Sf
2Nc

Figure 2. Convolutional operation in a CNN layer

Table 2. Platform configurations
Item Value
GPU Type Nvidia Tesla K20c
GPU Core Config 2496 CUDA cores, 706 MHz
GPU
Resources/Core

Max. 2048 Threads (64 Warps, 32
Threads/Warp), 48KB Shared Memory, 65536
Registers

GPU Memory 5120MB Global Memory, 2600MHz Memory
Clock Rate, 320-bit Memory Bus Width

CPU Type Intel Xeon E5530
CPU Core Config 8 Cores, 2.4GHz

GPU Calling Procedure: The launch of GPU processing in
Hadoop also introduces overhead. The GPU processing program
is invoked by the following steps [39]. First, task-tracker sends
task requests to jobtracker using heart beat. Then, the jobtracker
assigns certain tasks to the tasktracker based on the information of
heart beat. After receiving commands from the jobtracker,
tasktracker launches a child JVM to run the map task. Finally, the
map task calls CUDA program via JNI [17] to start the processing.
The calling procedure contributes to the overhead of Hadoop in
Figure 3.

Hadoop Load Balance: When running multimedia workloads,
the heterogeneity of nodes aggravates the cluster performance.
This is because the Hadoop scheduler will execute load shedding
by moving data from low-performance nodes to high-performance
nodes to balance the overall application execution time, while the
data processing stage will be blocked until the data preparation
fetches data from remote nodes. Such waiting time is a great
waste of computing resource. Figure 3 illustrates the impact of the
data movements on the overall performance of a Hadoop cluster.
We observe that fetching data remotely costs up to 29%
application runtime. Under the distributed framework, the
performance of CNN-based application could be expressed as:

T𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑡𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚 + 𝑡𝑑𝑑 + 𝑡𝑖𝑛𝑖𝑖 (Eq2),
where 𝑡𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚 indicates the time spent on the data transfer to
local disk, 𝑡𝑑𝑑 is the overhead of distributed framework and 𝑡𝑖𝑖𝑖𝑖
is the overhead of repeated network initialization. The equation
shows that more non-GPU related operations are introduced in the
distributed framework, which leads to a low GPU temporal
utilization.

Implication: Due to the inefficiency of the framework the non-
computation related overheads account for up to 51% overall
runtime, as shown in Figure 3. These overheads are mostly
introduced due to the whole CNN process is associated with a
map task. The task mapping mechanism in conventional
distributed framework should be optimized for CNN based data
processing flow. In addition, the modern heterogeneous
distributed framework calls for efficient load balance to avoid
wastes of GPU resource. An analytical model based processing

time estimation for processing node would greatly optimize the
task dispatch among heterogeneous processing nodes with various
processing capacities and reduce the data movement among nodes.
This motivates us to delve into lower standalone processing node
level to explore the opportunity to achieve this goal.

3.3 Standalone Semantic Gap
To bridge the framework semantic gap, we opt to trap into the
details of standalone CNN acceleration platform implementation
to identify overheads and opportunities to provide insights for
implementing predictive and efficient GPU-accelerated CNN
processing.

3.3.1 GPU Temporal Inefficiency
We begin with a simple image recognition benchmark on three
typical CNN networks to identify where the speedup bottlenecks
locate at the standalone level. To maximize the system throughput,
we set the input data as a batch of 64 images from ImageNet. We
report the speedup of computation part, overall task with/without
counting in network initialization stage in Figure 4. We observe
that although GPU efficiently accelerates the computation
(average 44X), the overall speedups are still very low (average
7X). Even if the network initialization time is not counted in,
there is still much room for further optimization (average 60%).
We then investigate the time distribution of overall tasks across all
three networks and find that the GPU computation accounts for
less than 20% of the task execution duration, while the most of the
application runtime is consumed by network initialization
(loading parameters from storage) and CPU processing (image
data pre-processing). Therefore, the CNN application runtime on a
standalone system could be described as (without counting in
network initialization):

T𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑡𝑐𝑐𝑢 + 𝑡𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑡𝑔𝑔𝑔 (Eq3),
where tcpu is the time of CPU pre-processing, 𝑡𝑚𝑚𝑚𝑚𝑚𝑚 indicates
the time cost of copying parameters from CPU to GPU, and tgpu
is the GPU processing time. In the Eq3, the non-GPU related
operations dominate the performance of CNN-based applications
and GPU is idle during the most of the application execution time.
Therefore, the low GPU temporal utilization leads to low overall
speedup. We name this bottleneck as GPU temporal inefficiency.

Implication: Our investigation suggests that current CNN service
framework requires higher computation proportion to reach
desirable throughput. This could be achieved by shrinking the
network initialization time and increasing the number of input
batched image package in the entire CNN execution workflow.

3.3.2 Multiple Processes Contention
The multi-process technique has been introduced to improve the
low data throughput. For example, Nvidia’s Multi-Process Service
(MPS) [29] is developed to allow multiple kernels running
concurrently on shared GPU resource pool. However, our
investigation suggests that current task-level parallelism solution
is not optimal for deep learning applications [19, 28]. First, CNN
based applications are memory-intensive. Running multiple GPU
processes may exhaust GPU memory. We characterize the
memory consumption by varying the batch size of input data.
Figure 6 demonstrates that a single process of VGGNet could
consume around 5GB GPU memory when the batch size is 64. In
this case, three processes, even with MPS-enabled, could easily
run out of state-of-the-art GPU memory (e.g. 12GB per K80).

Moreover, the interference and resource contention could severely
degrade the performance of multiple processes. Table 3 presents

Figure 3. Overheads of distributed framework

Figure 4. GPU speedup over CPU

0% 20% 40% 60% 80% 100%

L

R

L

R

L

R

A
le

xN
et

G
oo

gl
eN

et
V

G
G

N
et

CPU+GPU Processing Init Hadoop Data Move
L：Data in Local Nodes R：Data in Remote Nodes

0

20

40

60

AlexNet GoogleNet VGGNet

GPU Processing Overall Without Init

Speedup (times)

the computation throughput (CT: images/s) of one GPU process,
two GPU processes, and two GPU processes with MPS-enabled.
We can observe that the throughput of two processes is much
lower than the theoretical throughput (2X). Even with the MPS-
enabled, the multi-process only gain limited improvement. Here
we use a metric, Kif, expressed as Eq4, to quantify the degree of
interference. The larger Kif is, the more interference among
multiple processes. The optimal value of Kif is 0, which means no
resource contention.

Kif = CTsingle−process × the number of processes
CTmulti−process

 – 1 (Eq4).
To identify the reasons of interference, we begin by investigating
the GPU critical kernels of CNNs using Nvidia Visual Profiler.
We define the critical kernels as the most time-consuming kernels
within an application. We gather their information and
corresponding micro-architectural characteristics and summarize
the results in Table 4. The kernels of Matrix Multiplication (MM)
account for more than 66 percent of execution time across three
CNNs. For Nvidia Tesla K-Series GPUs, the matrix
multiplications are conducted by the kernel of Single-precision
General Matrix Multiply (SGEMM) from cuBLAS [7]. However,
the MM kernel is register-intensive. Due to the demanding
register request for each thread each SM is limited to
simultaneously execute 24 warps in AlexNet and GoogLeNet, and
16 warps in VGGNet. The limited warps indicate limited available
computing resource. The limited available computing resource
shared with multiple processes leads to contentions among
concurrent executing kernels.

Implication: While the notion of employing the multi-process
technique to improve the throughput appears appealing, our
results indicate that current multi-process solution lacks proper
memory and interference management. The number of
concurrently running process in multi-process implementation
should also be considered judiciously. Running too few processes
may lead to waste of GPU resource. While over employing
processes could incur severe GPU resource contention, even
memory overcommit. Though a profiled based method is helpful
to determine the number of processes, this is impractical in
distributed cluster-based implementation due to the diversity of
CNN workloads and a large number of slave nodes. An analytical
model based criterion would greatly improve the efficiency.

3.3.3 Inefficiency of GPU Acceleration Library
Our previous characterization implications motivate an analytical
model to provide accurate performance estimation for distributed
framework and process number selection in multi-process
technique. In this section, we explore the computation patterns of
CNN workloads and GPU acceleration library to find the answer.

Bottlenecks: We start by characterizing the convolution layers in
CNN workloads. To better quantify the performance of CNN
convolutional layers, we define throughput efficiency, tpE, which
indicates the GPU computational efficiency of each layer, as:

𝑡𝑡𝑡 = 𝑇ℎ𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝
𝐺𝐺𝐺 𝑃𝑃𝑃𝑃 𝑇ℎ𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝

 (Eq5).
Since the throughput of each convolutional layer could be
calculated by dividing the number of executed floating point (FP)
instructions by the GPU time, Eq5 can be expressed as:

𝑡𝑡𝑡 = Conv𝑓𝑓𝑓𝑓𝑓
𝐺𝐺𝐺 𝑡𝑡𝑡𝑡×𝐺𝐺𝐺 𝑃𝑃𝑃𝑃 𝑇ℎ𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝

 (Eq6).
We examine the GPU computational efficiency of the three
networks at each layer using tpE and the results are shown in
Figure 8. We observe that the tpE in most of the convolutional
layers is less than 60%. In AlexNet, none of the layers has a tpE
greater than 40%. The poor tpE indicates the inefficiency of
current GPU computational operations for CNN applications.

Root Causes: To identify the root causes of the inefficiency of
GPU computational operations, we calculate the amount of
computation of each layer based on Eq1. As shown in Figure 9,
most layers have a small amount of computation. The low amount
of computation leads to GPU resource under-utilization (i.e. low
GPU spatial utilization), which results in low occupancy in kernel
level. We further characterize the ratio of achieved occupancy and
theoretical occupancy, which quantifies the GPU resource
utilization. The results are presented as Cumulative Distribution
Function (CDF) in Figure 7. Each point represents the kernels
with the same GPU resource utilization in a network. For example,
60% of the kernels have GPU resource utilization below 50%
(GPU spatial inefficiency) in AlexNet and GoogLeNet. This leads
to the low tpE value in Figure 8.

Table 3. Throughput and Kif
 2 P 2 P in MPS 1P Kif Kif in MPS

AlexNet 348 436 289 0.7 0.3
GoogLeNet 125 156 116 0.8 0.5

VGGNet 43 49 42 1.0 0.7

Figure 5. Batch size vs. latency Figure 6. Memory usage Figure 7. CDF of Achiv/Theo occupancy

Table 4. The critical kernels

Application Kernel Percent Block
Size

Registers
/Thread

Shared
Memory/Block

Warps
Limit

Theoretical
Occupancy

AlexNet MM1 sgemm_sm35_ldg_nn_64×16×64×16×16 72.5% [16, 16, 1] 71 8.27KB 24 37.5%

GoogLeNet MM1 sgemm_sm35_ldg_nn_64×16×64×16×16 66.3% [16, 16, 1] 71 8.27KB 24 37.5%

VGGNet
MM1 sgemm_sm35_ldg_nn_64×16×64×16×16 20.4% [16, 16, 1] 71 8.27KB 24 37.5%
MM2 sgemm_sm35_ldg_nn_128×8×128×16×16 37.3% [16, 16, 1] 127 8.145KB 16 25%
MM3 sgemm_sm35_ldg_nn_64×16×128×8×32 21.2% [8, 32, 1] 115 12.27KB 16 25%

0

20

40

60

80

100

1 4 16 64 256

La
te

nc
y(

tim
es

)

Batch size

AlexNet
VGGNet
GoogleNet

0

1000

2000

3000

4000

5000

6000

1 4 16 64 256

M
em

or
y(

M
B

)

Batch size

AlexNet
VGGNet
GoogleNet

0

0.2

0.4

0.6

0.8

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Achieved Occupancy /Theoretical Occupancy

AlexNet
GoogleNet
VGGNet

Intuitively, batching multiple images/frames into a larger frame at
each layer is usually adopted to improve the amount of
computation in CNNs. However, due to the uneven computation
amount at each CNN layers, using fixed batch size for all layers is
not desirable. We conduct an experiment to compare the non-
batching method with batching method based on cuBLAS. As
shown in Figure 10, we observe that for those layers with ideal
tpE (>60%), batching method does not help to further improve
computational efficiency, while significantly increases the latency.
Figures 5 and 6 illustrate the variation in latency and memory
with the change of batch size. Without caution, the batching
method will consume more memory and increase latency.

Implication: Due to the non-uniform computation amount across
convolutional layers, we need to design a balanced scheme to
improve tpE with less latency and memory usage. With the
improved tpE, the resource utilization of GPU hardware could be
pushed to near limit. This also could benefit the building of a
performance estimation analytical model, because the throughputs
of most convolutional layers are proportional to the GPU peak
performance under this situation.

3.4 Summary
To sum, the inefficiencies of CNN-based applications stem from
the GPU temporal inefficiency in framework level and the GPU
spatial inefficiency in architecture level. The large number of non-
GPU involved operations in Eq2 leads to GPU temporal
inefficiency, which results in unsatisfactory speedup. At the
architecture level, the small computation throughput of
convolutional layers results in low GPU spatial inefficiency.
These observations point us towards a hierarchical design that
waxes the GPU resource supply-demand mismatches at the
architecture level and eliminates distributed overheads at the
framework level.

4. OVERCOMING BOTTLENECKS:
BUILDING HIGH THROUGHPUT GPU
ACCELERATION FRAMEWORK
Motivated by our characterization experiences, we present D3NN,
a Distributed, Decoupled, and Dynamically-tuned GPU
acceleration framework for modern CNN network architectures.
D3NN features three novel designs.

1. A CNN oriented GPU acceleration library that dynamically
selects the optimal batch size of input data for each CNN
layer.

2. An analytical model that enables accurate GPU processing
time estimation in standalone GPU processing node. The
analytical model provides insights for a load balance free
distributed framework design and profiling-free multi-
process technique.

3. A distributed data processing framework that decouples the
CPU based data preparation and GPU-based data processing
in CNN applications.

4. A contention mitigation scheme that alleviates the GPU
resource contention caused by task-level parallelism.

4.1 Dynamic Batch Size Tuning Scheme
We first bridge the performance gaps among convolutional layers
by designing a dynamic batching GPU acceleration library. We
then design an analytical model that is able to accurately estimate
GPU processing time.

In section 3 we show that using fixed batch size for all CNN
layers may not be beneficial. Given the uneven computation
amount at different CNN layers, two questions should be
answered. First, when should we apply the batching method?
Second, how to select the best batch size if the batching method is
adopted?

Using batching or not, it highly depends on the GPU resource
supply and demand at each CNN layer. We define a metric,
cpRatio, to reflect the proportion of demanded resource to
available resource at given CNN layer:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 (Eq7),
The maximum number of blocks (maxBlocks) is defined in Eq8,
which is mainly determined by the registers per thread (i.e. r in
Eq8) and total number of registers per SM:

maxBlocks = �𝑇𝑇𝑇𝑇𝑇 𝑅𝑒𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝 𝑆𝑆
𝑟∗𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

� × 𝑛𝑛𝑛 𝑜𝑜 𝑆𝑆 (Eq8).
The GridSize (the number of blocks of MM kernel in a given
layer) is defined in Eq9. Since in the matrix multiplication based
convolution, MM kernel divides the result matrix into sub-
matrices, with each sub-matrix mapped to a block.

GridSize = �𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑒𝑒𝑒ℎ 𝑙𝑙𝑙𝑙𝑙

𝑆𝑆𝑆−𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑆𝑆𝑀𝑀 𝑘𝑘𝑘𝑘𝑘𝑘
� (Eq9).

We use cpRatio to indicate whether the batching method is
adopted: If measured cpRatio is bigger than 1, then all available
GPU resource (blocks) is consumed by CNN kernel. Therefore the
batching method is not necessary for this layer. As shown in
Figure 11, in CNN layers whose cpRatios are bigger than 1, the
non-batching method performs better. The batching method in the
last six layers achieves better performance than non-batching,
where the measured cpRatios are all less than 1.

Figure 8. Throughput efficiency for each CONV layer

Figure 9. Varying computations of convolutional layers

0%

50%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Convolutional Layers

AlexNet GoogleNet VGGNet

0

2000

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Convoluntional Layers

AlexNet GoogleNet VGGNetMFlops

Figure 10. Non-batch vs batch in VGGNet

0
200
400
600
800
1000
1200
1400

0%

20%

40%

60%

80%

La
te

nc
y(

m
s)

Convolutional Layers

non-batch batch non-batch-latency batch-latencytpE

To identify the optimal batch size, we first exhaustedly
characterize convolutional layers’ performance using different
batch sizes in Figure 12. We can observe the performance of CNN
layers do not increase monotonically with the increasing of batch
size. At the peak, its kernel’s GridSize is a multiple of maxBlocks
(26 for K20c), which means GPU MM kernel will achieve the
best performance when it fully utilizes GPU resource. The
performance of each CNN layer reaches the peak only if the value
of GridSize is integer multiples of the maxBlocks. This implies
the cpRatio is desired to be chosen as an integer to avoid
performance degradation. We design a metric Util to indicate
whether the batch size is optimal.

Util = �B𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 B𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 0
1 𝑖𝑖 B𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0 (Eq10),

where: BcpRatio = cpRatio mod 1 . Figure 13 validates this
policy: the point with the maximum value of Util always indicates
the best batch size at given CNN layer. For example, the optimal
batch size for AlexNet Layer No.2 is 4, where the value of Util is
the maximum 0.88.

Based on our dynamic batching method, we design analytical
models to estimate the CNN computing time and memory copy
time swiftly. Since the dynamic batching method could boost the
throughput of most of the convolutional layers to the maximum
throughput, we can estimate the runtime of each convolutional
layer based on its maximum throughput:

𝑡𝐶𝐶𝐶𝐶𝐶 = 𝐵𝐵𝐵𝐵ℎ 𝑆𝑆𝑆𝑆 × 𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ×𝑈𝑈𝑈𝑈

 (Eq11),
and then estimate the GPU computing time as:

𝑡𝑔𝑔𝑔 = ∑ 𝑡𝐶𝐶𝐶𝐶𝐶𝑁
𝑖=1

𝛿
 (Eq12),

where δ is the ratio of convolutional layers in CNN. The memory
copy time can be described as:

𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = InputSize +ParameterSize
𝑇ℎ𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝𝑃𝑃𝑃𝑃

 (Eq13),
where InputSize is the size of pre-processed images and
ParameterSize is the size of CNN parameters (mainly composed
of parameters of fully connected layers).

ParameterSize = ∑ 𝑁𝑓𝑖 × 𝑆𝑓2𝑖 × 𝑁𝑐𝑖
𝑁
𝑖=1 (Eq14).

4.2 Distributed and Decoupled Framework
D3NN exploits three novel mechanisms for the efficient data
processing in the distributed data processing framework: (1)
Producer-Consumer scheme that decouples the data preparation
and data processing at each slave node to hide the data preparation
latency; (2) Semaphore-based data synchronization scheme that
ensures the maximum single node throughput; and (3) Analytical

model-based resource allocation that maximizes resource
utilization.

Producer-Consumer scheme: The overall architecture of D3NN
distributed framework is shown in Figure 17. Compared to
baseline system in Section 3.2, we re-organize the task execution
flow at slave node by separating the deep learning based
multimedia process into data preparation process and data
processing process. We employ a data preparation engine
(Producer) and a data processing engine (Consumer), which run
simultaneously on each slave node. The data preparation engine
consists of map tasks, which act as data preparation processes and
are responsible for downloading data from distributed storage to
local disk. The data processing engine consists of data processing

Figure 11. Effectiveness of batching method
in VGGNet

Figure 12. Performance variation Figure 13. Util in different batch sizes

0
1
2
3
4
5
6
7
8

0%
10%
20%
30%
40%
50%
60%
70%
80%

non-batch batch cpRatio

tp
E

cp
R

at
io

GridSize=26

GridSize=26
GridSize=52

GridSize=52

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

tp
E

Batch Size

AlexNet Layer 2
AlexNet Layer 5
VGGNet Layer 9-10
VGGNet Layer 11-13

0.69

0.88

0.12

0.92
1

0.04

0.88
0.85

0.88
0.15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

tp
E

Batch Size

AlexNet Layer 2
AlexNet Layer 5
VGGNet Layer 9-10
VGGNet Layer 11-13

Comments: M consumers work on a slave node and the depth of
semaphore is N, which means N consumers can access GPU
simultaneously

1:
2:
3:
4:

sem_data = 1 //access data pool atomically
sem_GPU = N //N consumers share a GPU, N <= M
sem_prod = 2M //prepare 2 data for each consumer
sem_cons = 0 //consumer will be waked-up by producer

Figure 14. Semaphores initialization

1:
2:
3:
4:
5:
6:

down → sem_prod
 copy data from HDFS to data pool
 down → sem_data
 make data available to consumers
 up → sem_data
up → sem_cons //wake up a consumer

Figure 15. Producer workflow

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

create CNN and do the initial work
while(1) {
 down → sem_cons
 down → sem_data
 select a data from data pool
 up → sem_data
 load and pre-proceesing by CPU
 down → sem_GPU
 GPU do processing
 up → sem_GPU

up → sem_prod //notify producer to prepare next data
 pid = fork() //fork a new thread to upload result to HDFS
 if(pid ==0)
 child thread upload result to HDFS
}

Figure 16. Consumer workflow

processes, which are in charge of data processing and network
initialization. We employ a data pool to buffer the data produced
by data preparation engine, which is a critical region for the
producers and consumers to access data atomically.

Semaphore-based data synchronization scheme: We design a
synchronization mechanism using a semaphore to coordinate the
data preparation (Producer) and data processing (Consumer) in
Figures 14-16. First, the producer starts to put data into data pool.
At the same time, the consumer completes initial work and enters
the sleep state to wait for sem_consumer. Once the producer
completes a task of data preparation, it will trigger the consumer
to process the incoming data. When the consumer is processing
current data, the producer continues to prepare the next data for it.
If there are more than 2M available data in data pool, the producer
will enter the sleep state until the consumer completes a task of
data processing and increases sem_producer. In this way, the
consumer will keep pace with the producer.

A typical workflow of data preparation engine and data
processing engine is presented in Figure 17. By running data
preparation task and data processing task in parallel with different
phases, the data processing time is well overlapped with data
preparation time. Since the consumer services are never
terminated, the network initialization only needs to be executed
once, thereby eliminating considerable overheads. Therefore, the
gaps resulted from distributed framework has been bridged and
the distributed processing time is mainly dominated by the time of
standalone CNN processing. Now Eq2 can be rewritten as:

T𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑡𝑐𝑐𝑐 + 𝑡𝑔𝑔𝑔 + 𝑡𝑚𝑚𝑚𝑚𝑚𝑚 (Eq15).
An analytical model based resource allocation: As mentioned
in our motivations, the analytical model plays a critical role to
bridge the semantic gap in scale-out CNN based big data
processing platform. We leverage our analytical model to estimate
the processing capacity of each computing node in distributed
framework. This helps us to avoid great overheads on passive load
balance among heterogeneous cluster, and always keeps the high
utilization of heterogeneous hardware.

The analytical model could also guide us to select optimal process
number in multi-processing technique with the lowest contention.
Based on the analytical model, we can estimate the current GPU
temporal utilization as:

𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑡𝑔𝑔𝑔+𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (Eq16).

Therefore, the optimal process number equals to 1/gpuUtil. And
this could boost GPU utilization to nearly 100%. We will further
discuss this interference management scheme.

4.3 Multi-Processing Contention Mitigation
 As discussed in Section 3.3.2, the task-level parallelism of CNN
based processes will cause intensive interference. In region A of
Figure 18(a), all processes contend for GPU resource almost
simultaneously, thus leading to interference and GPU memory
over-committing. However, the GPU utilization decreases to zero
in region B, as all processes are in their data preprocessing stage
executed by CPU. This imbalance of GPU usage inevitably causes
low GPU utilization. We also show the measurement of GPU
utilization statistics with MPS-enabled in Figure 19. We observe a
noticeable intermittent pattern in GPU utilization.
We propose a contention mitigation scheme to handle task-level
parallelism bottlenecks. As shown in Figure 18(b), our contention
management scheme pipelines the GPU processing tasks to avoid
GPU resource contention, thus improves GPU utilization. Since
Kif is high among CNN based applications, running too many
processes does not help improve the data processing throughput.
The contention mitigation scheme first calculates the optimal
number of processes (1/gpuUtil) using Eq16. It then provides an
access mechanism based on semaphore primitive. For contention-
intensive applications (e.g. VGGNet), the initial value of the
semaphore is 1, so that only one process can access the GPU
resource at a time. After this process completes GPU processing
and releases the semaphore, another process immediately acquires
the semaphore and accesses GPU resource. In this way, the
contention could be avoided and GPU remains busy as shown in
SEM+MPS of Figure 19.

Task Arrival
Task

Tracker

MapTask
A

MapTask
B

MapTask
C

MapTask
D

Data Preparation Engine (Producer)

Process A Process B Process C Process D

DataPool
Semaphore
sem_data

Data Processing Engine (Consumer)Task Scheduler

Job Tracker

Slave Nodes

Zoomed view of a slave node

Producer

Consumer

t

1, Producer puts A and B into data pool;

①

Init Network

Consumer initialize network

 3, Producer prepare new data C
Consumer processing data A

②

sleep

Data A Data B

sleep

③

2, Producer detects 2 data, sleep

Consumer processing data B

④

 4, Producer prepares new data D
Consumer processing data C

Data C

Data A Data B Data C

Data D

Figure 17. An overview of D3NN workflow

P1

P2

P3
A B

GPU
CPU

(a)

P1

P2

P3

 (b)

Figure 18. Contention management scheme

Figure 19. Real measurement of GPU utilization

0%

50%

100%

1 21 41 61

G
PU

 U
til

iz
at

io
n

SEM+MPS SEM MPS

Note that the decoupled architecture is not simply designed for
distributed cluster. This design also applies to a single node
design with single GPU or multiple GPUs. This is because the
GPU idle time is inevitable in single node design with CPU pre-
processing. Worse, the current multi-process scheme for GPU
incurs severe interference because of the GPU resource contention.

5. EVALUATION
5.1 Architecture Level Evaluation
We evaluate our dynamic supply-demand optimization scheme on
two typical CNNs (AlexNet and VGGNet). In our dynamic
method, matrix multiplication is based on cuBLAS and the
stretching out the local regions into column vectors is
implemented by the kernel im2col. Table 5 illustrates the batch
size of each layer calculated using Eq10. Note that we avoid
choosing the batch size as prime number (though it may be
optimal) at each layer, because a big prime number causes a huge
overall batch size. Here the overall batch size for a CNN is the
least common multiple of batch size in each layer. Since different
layers have different batch size, each layer needs to run
overall batch size

batch size of this layer
 times to perform an overall processing.

We compare our dynamic batch method with the non-batch
method and batch method used in cuDNN, which is a state-of-the-
art DNN library developed by NVIDIA [19]. The cuDNN now
allows control over the balance between performance and memory
footprint using different algorithms [9]. We include these two
policies in our comparison. One is IMPLICIT_GEMM, which
uses no extra working space and is memory-efficient. The other is
GEMM and it is the fastest approach. Under the same overall
batch size, we report the throughput efficiency (tpE) of the non-
batch method, cuDNN (with memory-efficient and performance-
preferred policies) and our dynamic batching method at each layer
in Figure 20. Experimental results (Figure 21) show that our
dynamic batching scheme can achieve up to 1.5X performance
improvement compared with the one without batching. Our
method even outperforms the state-of-the-art deep learning library
(cuDNN) by up to 67% (memory-efficient policy) and 28%
(performance-preferred policy). Moreover, as shown in Figure 23,
our method consumes less GPU memory than cuDNN with
performance-preferred policy. To summary, our analysis suggests
that dynamic batching is an effective method to tackle the

imbalance among multiple layers for CNNs with less latency and
memory usage.

Since the analytical model plays a critical role to bridge the
semantic gaps in scale-out CNN based big data processing
platform, we continue to evaluate the accuracy of our analytical
model. Here we leverage the analytical model to calculate the
runtime then use it to compare with real runtime and a naive
method. Figure 22 depicts the runtime comparisons of the per-
convolutional layer and total GPU. By dividing the number of
floating point operations at each layer by peak performance of
specific GPU, the naïve method only obtains 27-40% accuracy.
Our results show that we can predict the performance of CNN
with only 5-10% error.

5.2 System Level Evaluation
We evaluate the effectiveness of D^3NN in terms of system
performance and load balance.

Performance: We evaluate the performance improvement of
D^3NN under the three CNNs. We first report the GPU utilization
and application speedup in Figure 24. We observe that D^3NN
outperforms our baseline significantly in GPU utilization (average
30% improvement) and runtime (average 1.5X speedup). We then
evaluate the impact of the decoupled implementation on single
node throughput. The results are shown in Table 6. Mode Overall
denotes the overall image processing throughput on the standalone
platform. Mode No-Init denotes the throughput without counting
in the network initialization. Mode Proc-only denotes the
throughput of data processing stage on a standalone platform,
while excluding the data pre-processing and network initialization.
Mode D denotes the throughput of a single slave node in D^3NN.
We calculate the throughputs in Modes Overall, No-Init and Proc-
only by leveraging the built-in tool in our processing program.
The throughput in Mode D is calculated through the task statistics

 Figure 20. The comparison of throughput efficiency among CONV layers Figure 21. Speedup over non-batch

 Figure 22. Evaluate the accuracy of analytical model Figure 23. Memory usage

0%

50%

100%

CONV1 CONV2 CONV3 CONV4 CONV5
non-batch cuDNN-memory
cuDNN-performance dynamic batch

tpE
AlexNet

0%

20%

40%

60%

80%

non-batch cuDNN-memory cuDNN-performance dynamic batch

tpE VGGNet

0

0.5

1

1.5

2

2.5

AlexNet VGGNet

cuDNN-memory
cuDNN-performance
dynamic batch

Speedup

0
10
20
30
40
50
60

0

2

4

6

8

CONV1 CONV2 CONV3 CONV4 CONV5 GPU

Real Estimate Naïve
T/ms

AlexNet

0
50
100
150
200

0
5

10
15
20
25 Real Estimate Naïve

VGGNet
0

200

400

600

800

1000

AlexNet VGGNet

cuDNN-performance
dynamic batch

Figure 24. Hadoop vs 𝑫𝟑𝑵𝑵

0

0.5

1

1.5

2

0

50

100

AlexNet GoogleNet VGGNet

Sp
ee

du
p

G
PU

 U
til

iz
at

io
n(

%
)

Speedup Hadoop D^3NN

T/ms T/ms Memory/MB T/ms

from Hadoop. Our results shows: (1) the throughput of D gains
remarkable improvement (up to 7.9X) compared to the throughput
of Overall and even has 3.7X speedup over the throughput of No-
Init, which justifies our decoupling optimization. (2) The
throughput of D outperforms the throughput of Proc-only, which
implies that the GPU has been fully utilized.

Load balance: We further evaluate the effectiveness of D3NN’s
load balance capability. In this experimental setup, we deploy
D3NN on a cluster with three different GPU computing nodes
(Titan X, K20c, and M2050), and compare the performance of
D3NN with the scheme of equally allocating tasks to each node
(Equal in short). In D3NN, the tasks are allocated based on the
ratio of their performance derived from our analytical model. The
ratio of load balance is calculated by the number of completed
tasks for each node divided by the node’s processing capability,
which is the real processing throughput profiled at standalone
mode. The results are shown in Table 7. We can see that the ratios
of D3NN are close to 1, which means D3NN has a superior load
balance capability. For the Equal scheme, since the total running
time of the cluster is determined by the slowest node (M2050), the
runtime will be up to 2.6X more than D3NN.

6. RELATED WORK
Deep Learning: Sirius [16] is an open end-to-end intelligent
personal assistant based on DNN services. The DjiNN [15] further
brings the community the characterization of GPU acceleration
server system running DNN services and provides insights into
designing future warehouse-scale computer architectures for DNN
services. Our work distinguishes itself from DjiNN in four aspects:
(1) We perform comprehensive characterizations of GPU
acceleration platform instead of computation scope and explore
the root causes of low system throughput; (2) We disclose the
inefficiency of multi-process technique and propose semaphore-
based optimization; (3) We propose dynamic batching scheme and
an analytical model for CNN based GPU processing. (4) We
present a decoupled distributed framework to facilitate the GPU
acceleration at scale.

Several recent projects [3, 4, 12, 27, 44] begin to use FPGAs and
ASICs as the accelerators to achieve high performance at low
energy. Most of them are on-going efforts and could not be
flexibly deployed and programmed at large-scale. Recently,
Nvidia released its deep learning library (cuDNN) [5] based on

batching method. However, it does not consider using dynamic
batching to tackle the compute-intensive CNN, such as VGGNet.

GPU Task Execution: Sethia et al. [35] proposed Equalizer, a
low overhead hardware runtime system that dynamically adapts
the resource to the needs of running kernel. When a GPU kernel is
running, Equalizer could adjust the number of concurrent thread
blocks based on the runtime profiling information. Equalize will
not improve the performance of CNN with small batch size
because of its underutilization of GPU resource. To fully utilize
GPU resource, our proposed techniques determine the GridSize of
kernel based on the problem size of each CNN layer before the
kernel is executed. Therefore, Equalizer could be incorporated
into our proposed schemes to further ensure that GPU resources
match the requirement of the executing kernels. Similar to our
work, Xu et al. [40] also proposed optimization for task execution
in CPU-GPU heterogeneous systems to improve the utilization of
GPU resources. However, their optimization objective is
maximizing the schedulability of real-time tasks (i.e., the amount
of work of real-time tasks that can be accomplished before
deadlines), while our objective is maximizing the throughput of
the whole CPU-GPU system.

7. CONCLUSION
This work presents the first in-depth empirical study on
characterizing the performance of GPU acceleration system for
CNN applications. Our characterization results demonstrate two
significant semantic gaps: framework gap and standalone gap.
Framework gap indicates the mismatch between CNN-based data
processing workflow and data processing manner in current
distributed framework. The uneven computing loads at different
CNN layers and fixed computing capacity provisioning of current
GPU acceleration library results in the standalone gap. Motivated
by our characterization findings, we propose D3NN, a Distributed,
Decoupled, and Dynamically tuned GPU acceleration framework
for modern CNN architectures. More importantly, D3NN features
a novel analytical model that enables accurate time estimation of
GPU accelerated CNN processing with only 5-10% error. Our
evaluation results show the throughput of standalone processing
node using D3NN gains up to 3.7X performance improvement
over current GPU acceleration platform.

8. ACKNOWLEDGMENTS
This work is supported in part by NSF grants 1527535, 1423090,
1320100, 1117261, 0937869, 0916384, 0845721(CAREER),
0834288, 0811611, 0720476, by SRC grants 2008-HJ-1798,
2007-RJ-1651G, by Microsoft Research Trustworthy Computing,
Safe and Scalable Multi-core Computing Awards, and by three
IBM Faculty Awards. Jingling Yuan is supported by NSFC grant
61303029.

Table 5. The recommend batch size for each layer
 AlexNet VGGNet

CONV Layers cpRatio Batch size cpRatio Batch size
1 1.82 None 7.54 None
2 0.22 4 7.54 None
3 0.15 18 3.77 None
4 0.08 9 3.77 None
5 0.05 18 1.89 None
6 X X 1.89 None
7 X X 1.89 None

8, 9, 10 X X 0.94 2
11, 12, 13 X X 0.24 8

Table 6. The comparison of throughputs (images/s)

Slave K20c

Mode Standalone Single Node
Overall No-Init Proc-only D

AlexNet 39 75 289 350
GoogLeNet 43 59 116 125

VGGNet 18 31 42 43

Table 7. Evaluation of load balance
Task Allocation Titan X K20c M2050

AlexNet Equal 0.51 0.94 2.62
 𝐷3𝑁𝑁 0.96 0.98 1.00

GoogLeNet Equal 0.48 0.94 2.58
 𝐷3𝑁𝑁 0.93 0.95 1.00

VGGNet Equal 0.54 1.06 2.66
 𝐷3𝑁𝑁 0.93 0.95 1.00

9. REFERENCES
[1] Abdel-Hamid, O., Mohamed, A., Jiang, H., Deng, L., Penn,

G. and Yu, D. 2014. Convolutional neural networks for
speech recognition. IEEE/ACM Transactions on audio,
speech, and language processing. 22, 10 (2014), 1533–1545.

[2] Amazon G2 instance:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/usin
g_cluster_co mputing.html.

[3] Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y. and
Temam, O. 2014. DianNao: A Small-Footprint High-
Throughput Accelerator for Ubiquitous Machine-Learning.
Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems (2014), 269–284.

[4] Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L.,
Chen, T., Xu, Z. and Sun, N. 2014. DaDianNao: A Machine-
Learning Supercomputer. Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture
(2014), 609–622.

[5] Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran,
J., Catanzaro, B. and Shelhamer, E. 2014. cuDNN: Efficient
Primitives for Deep Learning. arXiv preprint
arXiv:1410.0759. (Oct. 2014).

[6] CS231n: Convolutional Neural Networks for Visual
Recognition: http://cs231n.github.io/convolutional-networks/.

[7] cuBLAS: https://developer.nvidia.com/cuBLAS.
[8] CUDA Profiler User’s Guide: docs.nvidia.com/cuda/profiler-

users-guide/.
[9] cuDNN v2: Higher Performance for Deep Learning on GPUs:

http://devblogs.nvidia.com/parallelforall/cudnn-v2-higher-
performance-deep-learning-gpus/.

[10] Dean, J. and Ghemawat, S. 2008. MapReduce : Simplified
Data Processing on Large Clusters. Communications of the
ACM. 51, 1 (2008), 1–13.

[11] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei,
L. 2009. ImageNet: A large-scale hierarchical image
database. Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). (2009), 1097–1105.

[12] Du, Z., Fasthuber, R., Chen, T., Ienne, P., Li, L., Luo, T.,
Feng, X., Chen, Y. and Temam, O. 2015. ShiDianNao:
Shifting Vision Processing Closer to the Sensor. Proceedings
of the 42nd Annual International Symposium on Computer
Architecture (2015), 92–104.

[13] Facebook, Ericsson and Qualcomm 2013. A focus on
efficiency.

[14] Girshick, R., Donahue, J., Darrell, T., Berkeley, U.C. and
Malik, J. 2014. Rich feature hierarchies for accurate object
detection and semantic segmentation. Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). (2014),
580–587.

[15] Hauswald, J., Kang, Y., Laurenzano, M.A., Chen, Q., Li, C.,
Dreslinski, R., Mudge, T., Mars, J. and Tang, L. 2015. Djinn
and Tonic: DNN as a Service and Its Implications for Future
Warehouse Scale Computers. Proceedings of the 42Nd
Annual International Symposium on Computer Architecture
(2015), 27–40.

[16] Hauswald, J., Laurenzano, M.A., Zhang, Y., Li, C., Rovinski,
A., Khurana, A., Dreslinski, R.G., Mudge, T., Petrucci, V.,
Tang, L. and Mars, J. 2015. Sirius: An Open End-to-End
Voice and Vision Personal Assistant and Its Implications for
Future Warehouse Scale Computers. Proceedings of the
Twentieth International Conference on Architectural Support
for Programming Languages and Operating Systems (2015),
223–238.

[17] He, W., Cui, H., Lu, B., Zhao, J., Li, S., Xue, J. and Feng, X.
2015. Hadoop+: Modeling and Evaluating the Heterogeneity
for MapReduce Applications in Heterogeneous Clusters.
Proceedings of the 29th ACM on International Conference
on Supercomputing (2015), 143–153.

[18] Hu, Y., Li, C., Liu, L. and Li, T. 2016. HOPE: Enabling
Efficient Service Orchestration in Software-Defined Data
Centers. Proceedings of the 2016 International Conference
on Supercomputing (2016), 10:1–10:12.

[19] Hu, Y., Song, M., Chen, H. and Li, T. 2016. Towards
Efficient Server Architecture for Virtualized Network
Function Deployment: Implications and Implementations.
Proceedings of the 49th Annual IEEE/ACM International
Symposium on Microarchitecture (2016).

[20] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., Darrell, T. and Eecs, U.C.B.
2014. Caffe : Convolutional Architecture for Fast Feature
Embedding. Proceedings of the 22Nd ACM International
Conference on Multimedia. (2014), 675–678.

[21] Karpathy, A. and Fei-Fei, L. 2015. Deep visual-semantic
alignments for generating image descriptions. Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR).
(2015), 3128–3137.

[22] Karpathy, A. and Leung, T. 2014. Large-scale Video
Classification with Convolutional Neural Networks. Proc.
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) (2014), 1725–1732.

[23] Kim, Y. 2014. Convolutional neural networks for sentence
classification. Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). (2014), 1746–1751.

[24] Krizhevsky, A., Sutskever, I. and Hinton, G.E. 2012.
ImageNet Classification with Deep Convolutional Neural
Networks. Advances In Neural Information Processing
Systems. (2012), 1097–1105.

[25] Li, C., Hu, Y., Liu, L., Gu, J., Song, M., Liang, X., Yuan, J.
and Li, T. 2015. Towards Sustainable In-situ Server Systems
in the Big Data Era. Proceedings of the 42nd Annual
International Symposium on Computer Architecture (2015),
14–26.

[26] Li, C., Hu, Y., Zhou, R., Liu, M., Liu, L., Yuan, J. and Li, T.
2013. Enabling Datacenter Servers to Scale out
Economically and Sustainably. Proceedings of the 46th
Annual IEEE/ACM International Symposium on
Microarchitecture (2013), 322–333.

[27] Liu, D., Chen, T., Liu, S., Zhou, J., Zhou, S., Teman, O.,
Feng, X., Zhou, X. and Chen, Y. 2015. Pudiannao: A
polyvalent machine learning accelerator. Proceedings of the
Twentieth International Conference on Architectural Support
for Programming Languages and Operating Systems (2015),
369–381.

[28] Liu, L., Cui, Z., Xing, M., Bao, Y., Chen, M. and Wu, C.
2012. A software memory partition approach for eliminating
bank-level interference in multicore systems. Proceedings of
the 21st international conference on Parallel architectures
and compilation techniques (2012), 367–376.

[29] MULTI-PROCESS SERVICE:
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_S
ervice_Overview.pdf.

[30] NVIDIA CUDA Programming Guide:
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_G
uide.pdf.

[31] NVIDIA Visual Profiler:
https://developer.nvidia.com/nvidia-visual-profiler.

[32] OpenCL: http://www.khronos.org/opencl/.
[33] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,

Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.,
Berg, A.C. and Fei-Fei, L. 2015. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision. 115, 3 (Sep. 2015), 211–252.

[34] Sermanet, P., Kavukcuoglu, K., Chintala, S. and Lecun, Y.
2013. Pedestrian detection with unsupervised multi-stage
feature learning. Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR) (2013), 3626–3633.

[35] Sethia, A. and Mahlke, S. 2014. Equalizer: Dynamic Tuning
of GPU Resources for Efficient Execution. Proceedings of
the 47th Annual IEEE/ACM International Symposium on
Microarchitecture (2014), 647–658.

[36] Simonyan, K. and Zisserman, A. 2014. Very Deep
Convolutional Networks for Large-Scale Image Recognition.
CoRR. abs/1409.1, (2014).

[37] SoftLayer offers Nvidia’s most powerful GPU as-a-service:
http://www.datacenterdynamics.com/app-cloud/softlayer-
offers-nvidias-most-powerful-gpu-as-a-
service/94407.fullarticle.

[38] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A.
2015. Going deeper with convolutions. Proc. IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR). (2015),
1–9.

[39] White, T. 2012. Hadoop: The definitive guide. “ O’Reilly
Media, Inc.”

[40] Xu, Y., Wang, R., Li, T., Song, M., Gao, L., Luan, Z. and
Qian, D. 2016. Scheduling Tasks with Mixed Timing
Constraints in GPU-Powered Real-Time Systems.
Proceedings of the 2016 International Conference on
Supercomputing (2016), 30:1–30:13.

[41] Yang, L., Luo, P., Loy, C.C. and Tang, X. 2015. A Large-
Scale Car Dataset for Fine-Grained Categorization and
Verification. Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR) (2015), 3973–3981.

[42] Youtube press statistics:
http://youtube.com/yt/press/statistics.html.

[43] Zaharia, M., Chowdhury, M., Das, T. and Dave, A. 2012.
Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. Proceedings of the 9th
USENIX Conference on Networked Systems Design and
Implementation. (2012).

[44] Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B. and Cong, J.
2015. Optimizing FPGA-based Accelerator Design for Deep
Convolutional Neural Networks. Proceedings of the 2015
ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (2015), 161–170.

[45] Zhang, J., Sameki, M., Ma, S., Price, B., Mech, R., Shen, X.,
Betke, M., Sclaroff, S. and Lin, Z. 2015. Salient object
subitizing. Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR) (2015), 4045–4054.

[46] Zhou, B. and Lapedriza, A. and Xiao, J. and Torralba, A. and
Oliva, A. 2014. Learning Deep Features for Scene
Recognition using Places Database. Advances In Neural
Information Processing Systems (2014).

[47] Zhou, R., Chen, H. and Li, T. 2015. Towards Lightweight
and Swift Storage Resource Management in Big Data Cloud
Era. Proceedings of the 29th ACM on International
Conference on Supercomputing (2015), 133–142.

	1. INTRODUCTION
	2. BACKGROUND
	3. CHARACTERIZATION AND IMPLICATION
	Experimental Setup and Methodology
	3.2 Framework Semantic Gap
	3.2.1 Distributed Framework Overheads

	3.3 Standalone Semantic Gap
	3.3.1 GPU Temporal Inefficiency
	3.3.2 Multiple Processes Contention
	3.3.3 Inefficiency of GPU Acceleration Library

	3.4 Summary

	4. OVERCOMING BOTTLENECKS: BUILDING HIGH THROUGHPUT GPU ACCELERATION FRAMEWORK
	4.1 Dynamic Batch Size Tuning Scheme
	4.2 Distributed and Decoupled Framework
	4.3 Multi-Processing Contention Mitigation

	5. EVALUATION
	5.1 Architecture Level Evaluation
	5.2 System Level Evaluation

	6. RELATED WORK
	7. CONCLUSION
	8. ACKNOWLEDGMENTS
	9. REFERENCES

