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ABSTRACT 
Convolutional Neural Networks (CNNs) have substantially 
advanced the state-of-the-art accuracies of object recognition, 
which is the core function of a myriad of modern multimedia 
processing techniques such as image/video processing, speech 
recognition, and natural language processing. GPU-based 
accelerators gained increasing attention because a large amount of 
highly parallel neurons in CNN naturally matches the GPU 
computation pattern. In this work, we perform comprehensive 
experiments to investigate the performance bottlenecks and 
overheads of current GPU acceleration platform for scale-out 
CNN-based big data processing.   

In our characterization, we observe two significant semantic gaps: 
framework gap that lies between CNN-based data processing 
workflow and data processing manner in distributed framework; 
and the standalone gap that lies between the uneven computation 
loads at different CNN layers and fixed computing capacity 
provisioning of current GPU acceleration library. To bridge these 
gaps, we propose D3NN, a Distributed, Decoupled, and 
Dynamically tuned GPU acceleration framework for modern 
CNN architectures. In particular, D3NN features a novel analytical 
model that enables accurate time estimation of GPU accelerated 
CNN processing with only 5-10% error. Our evaluation results 
show the throughput of standalone processing node using D3NN 
gains up to 3.7X performance improvement over current 
standalone GPU acceleration platform. Our CNN-oriented GPU 
acceleration library with built-in dynamic batching scheme 
achieves up to 1.5X performance improvement over the non-
batching scheme and outperforms the state-of-the-art deep 
learning library by up to 28% (performance mode) ~ 67% 
(memory-efficient mode). 
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1. INTRODUCTION 
Recent years have seen massive research efforts on developing 
deep neural networks (DNNs). Among these DNNs, the 
Convolutional Neural Networks (CNNs) [24, 36, 38] are the most 
popular subsets. Typically, the CNN is comprised of one or more 

fully connected layers and multiple convolutional layers. The 
most appealing feature of CNN is that it has far fewer parameters 
than fully connected DNNs, which makes CNNs easier to train 
and more practical [12]. Today, CNNs have been extensively 
adopted [1, 14, 22, 23, 34, 41, 46] and have substantially 
advanced the state-of-the-art accuracies of object recognition, 
which is the core function for image/ speech/ language processing 
applications. 

Due to the inefficiency of general-purpose processors when 
processing CNN workloads, researchers perceive the 
opportunities to tap into CNN accelerators. Various accelerators 
based on FPGA [44], GPU [15] and ASIC [3] have been proposed 
recently to improve the performance of CNN workloads. Among 
these approaches, GPU-based accelerators gained increasing 
attention since a large amount of highly parallel neurons in CNN 
naturally matches the GPU computation pattern. Furthermore, the 
proliferation of commodity GPU deployment (bare metal and 
virtualized) in cloud data centers [2, 37] provides a mature and 
ready-to-use platform for cloud-based CNN acceleration. DjiNN 
[15] makes the first attempt to explore commodity GPU-based 
CNN accelerator server platform and provides beneficial 
implication to future warehouse-scale computer design. However, 
the enormous amount of data that generated in current IT big-
names’ warehouse-scale computers present significant challenges 
for scale-out CNN-based big data processing [18, 26, 47]. For 
example, more than 350 million photos are being posted to 
Facebook per day [13, 25] and 100 hours of video are being 
uploaded to YouTube per minute [42], such daunting amount of 
data arrival remarkably embarrasses the throughput of traditional 
standalone CNN accelerators. 

Rather than pushing the limit of standalone CNN accelerators, we 
instead explore a complementary opportunity to benefit scale out 
CNN-based big data processing that leverages state-of-the-art 
heterogeneous CNN acceleration techniques such as commodity 
GPGPU and widely used distributed computing frameworks such 
as Hadoop. In this paper, we perform comprehensive experiments 
to investigate the performance bottlenecks and overheads of 
current GPU acceleration platform for scale-out CNN-based big 
data processing. We study three most representative networks: 
AlexNet [24], GoogLeNet [38] and VGGNet [36]. As many fine-
tuned convolutional neural networks are designed based on these 
representative networks and share the same network architecture, 
we expect the observations hold valid to their derivatives. 

We find significant challenges are associated with GPU 
acceleration support for scale-out CNN-based big data processing. 
First, we observe a framework semantic gap that lies between 
CNN-based data processing workflow and data processing 
manner in current distributed framework. Specifically, the lack of 
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accurate processing time estimation approach for heterogeneous 
GPU acceleration nodes presents as an obstacle to provide agile 
proactive load balance for a distributed CNN acceleration 
framework, which could result in significant waste of valuable 
computing resource that provided by the state-of-the-art 
heterogeneous CNN acceleration hardware. 

To bridge this semantic gap, we explore the opportunity to benefit 
from leveraging GPU acceleration library by looking into more 
details of standalone CNN acceleration platform implementation. 
We surprisingly observe another standalone semantic gap that lies 
between the uneven computing loads at different CNN layers and 
fixed computing capacity provisioning of current GPU 
acceleration libraries. Specifically, the uneven GPU resource 
utilization pattern caused by the lack of awareness of per CNN 
layer computing load poses significant challenges for achieving 
optimal GPU utilization. This unpredictable GPU utilization also 
impacts the performance and restricts the possibility to accurately 
estimate the CNN acceleration processing time.  

Motivated by our characterization observations, we propose D3NN, 
a Distributed, Decoupled, and Dynamically tuned GPU 
acceleration framework. D3NN features a distributed data 
processing framework, a CNN-oriented GPU acceleration library, 
and a novel analytical model that bridges the semantic gaps in 
modern scale-out CNN-based big data processing platform. 

D3NN incorporates a CNN-oriented GPU acceleration library that 
dynamically tunes the batch size of input data at each CNN layer 
to bridge the standalone semantic gap by waxing mismatch of 
uneven computing loads at different CNN layers and fixed 
computing capacity provisioning of current GPU acceleration 
library. Based on our GPU acceleration library, we also propose 
an analytical model that bridges the semantic gap to provide 
accurate processing time estimation approach for heterogeneous 
GPU acceleration nodes and accurate multi-process number 
determination method. The distributed data processing framework 
employs a Producer-Consumer scheme to decouple the CNN data 
preparation process and CNN data processing process at each 
slave node, and a semaphore-based data synchronization scheme 
to bridge the framework semantic gap by matching the distributed 
data processing manner to CNN-based data processing workflow. 

Note that due to the similarity of convolutional neural network 
architectures, D3NN is applicable to any newly developed CNN. 
Our evaluation results show the throughput of standalone 
processing node using D3NN gains up to 3.7X performance 
improvement over current standalone GPU acceleration platform. 
Our CNN-oriented GPU acceleration library with built-in 
dynamic batching scheme achieves up to 1.5X performance 
improvement over the non-batching scheme and outperforms the 
state-of-the-art deep learning library (cuDNN) [5] by 28% 
(performance mode) ~ 67% (memory-efficient mode). More 
importantly, as a hierarchical CNN acceleration solution, the 
decoupled architecture we proposed could also apply to other 
state-of-the-art works, such as multi-GPU servers [15] and ASIC-
based CNN accelerators [3, 4]. 

2. BACKGROUND 
CNN: CNN can tackle various multimedia processing 
applications such as car classification [41], pedestrian 
classification [34], scene recognition [46], salient object 
subtilizing [45], object detection [14], video analysis [22] and 
image captioning [21]. In this study, our characterizations and 
optimizations mainly focus on three representative CNNs: 
AlexNet, GoogLeNet, and VGGNet. AlexNet, the ILSVRC [33] 
2012 winner model, is the first study that popularized CNN in 
computer vision. It could be fine-tuned on other databases to 
implement richer functions. In recent years, deeper and more 
complicated convolutional networks have been developed to 
achieve better accuracy. To reflect the latest research on CNNs in 
our design, we also characterize two latest ILSVRC winners, 
GoogLeNet and VGGNet. Most fine-tuned CNN models are 
designed based on them, as shown in Table 1. Although 
parameters in these fine-tuned CNN models have to be re-trained 
using new training dataset, their architectures remain the same and 
the CNN performance will not change drastically. 

We introduce essential preliminaries of CNN using AlexNet as an 
example, shown in Figure 1. It consists of five convolutional 
layers, three max-pooling layers, and two classifier layers. The 
convolutional layers perform dot products between the filters and 
local regions of the input image [6]. These operations dominate 
the execution time of CNN computation. The convolutional 
operations in a convolutional layer benefit from the optimized 
matrix multiplication libraries, such as cuBLAS [7].  

We demonstrate a typical matrix multiplication based 
convolutional operation in Figure 2.  In step ①, an operation 
called im2col [6] stretches out the local regions in the input image 
(D) into column-major matrix (D𝑚 ). Similarly, in step ②  the 
weights of the CONV layer (F) are stretched out into filter matrix 
( F𝑚). Then the original convolutional operation could be lowered 
into a matrix multiplication (Fm×Dm) in step ③. In Figure 2, the 
filter matrix F𝑚 has dimensions N𝑓 × 𝑆𝑓2N𝑐, while the data matrix 
D𝑚  has dimensions  𝑆𝑓2N𝑐 × W𝑜H𝑜 . The output matrix O𝑚  has 
dimensions N𝑓 × W𝑜H𝑜. Therefore, we can calculate the number 
of float point operations in a convolutional layer through the 
number of multiply-accumulate operations of  Fm×Dm:  

 Conv𝑓𝑓𝑓𝑓𝑓 =  2N𝑓 × 𝑆𝑓2N𝑐 × W𝑜H𝑜       (Eq1), 
where a single multiply-accumulate operation counts as 2 flops. 
The Convflops is usually used to measure the computational 
intensity in a convolutional layer. 

GPU: A GPU has multiple streaming multiprocessors (SMs). The 
SM is the main SIMD processing engine and has several 
functional blocks, such as integer/floating point ALUs, load/store 
units, special functional blocks. Execution of general-purpose 
programs on heterogeneous GPU/CPU architectures is realized by 
various application programming interfaces (API) such as CUDA 

Table 1. CNNs 

CNN Architecture Fine-tuned Models 
AlexNet FCN-AlexNet, SOS-AlexNet, 

Places205-AlexNet, Hybrid-CNN, R-
CNN, CaffeNet 

GoogLeNet Places205-GoogLeNet, GoogLeNet_cars 
VGGNet FCN-Xs, SOS-VGG16, ParseNet 
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Figure 1. A representative CNN architecture - AlexNet 

 



[30], and OpenCL [32]. Using these APIs a programmer can 
launch thousands of threads onto GPU device from the host CPU. 
Multiple threads (called a warp) execute simultaneously on an SM 
following the same instruction multiple data (SIMD) paradigm. 
Several warps form a thread block (TB) that are executed on the 
same SM; TBs group together to form a grid that executes a GPU 
kernel.  

During the execution of a GPU kernel, the work distributor checks 
whether the required resources of a TB can be satisfied by one of 
the SMs. These resources include the shared memory, the number 
of registers, and the maximum number of warps concurrently 
active on an SM. If all these resources requirements are satisfied 
by an SM, one TB will be dispatched onto it. GPUs hide memory 
latency through fast context switch among active warps; thus 
sufficient numbers of active warps should be maintained on an 
SM. Occupancy [8], which is the ratio of the number of active 
warps per SM to the maximum number of active warps, is an 
important metric in determining how effectively the hardware is 
used. Theoretical occupancy is the upper limit for occupancy 
imposed by the kernel launch configuration and the capabilities of 
the GPU, while achieved occupancy is the actual measured 
occupancy of the running kernel. The achieved occupancy is 
usually less than the theoretical occupancy mainly due to (1) 
limited problem size, and (2) unbalanced workload within and/or 
across TBs. 

Hadoop: Hadoop [39] is a most widely used framework for 
distributed processing of large data sets across a cluster of 
computers. Hadoop was inspired by Google's MapReduce [10], a 
software framework in which an application is broken down into 
numerous small map/reduce tasks. Any of these tasks can be run 
on any node in the cluster. Hadoop includes a Distributed File 
System (HDFS), which is usually mounted on each slave node 
and provide data storage service for MapReduce. 

3. CHARACTERIZATION AND 
IMPLICATION 
To understand how to design optimized GPU acceleration system 
for CNN applications, we perform an in-depth, hierarchical 
characterization of the performance of existing computing 
framework and GPU acceleration library for CNN to identify 
inefficiencies and bottlenecks. Compared to previous work that 
largely focuses on performance characterization of GPU 
computation [15], our comprehensive characterization shed light 
on some ignored realities. We first describe our experimental 
setup in Section 3.1. In Section 3.2, we explore the bottlenecks 
that constitute framework semantic gap. In Section 3.3, we delve 
into standalone CNN processing platform to explore the 
limitations of current GPU-accelerated implementation for CNN, 

which result in the standalone semantic gap. We summarize the 
root causes of these inefficiencies in Section 3.4. 

3.1 Experimental Setup and Methodology 
We characterize AlexNet, GoogLeNet, and VGGNet on Nvidia’s 
Tesla K20c GPU, which is deployed at DELL PowerEdge R710 
server. The detailed parameters are listed in Table 2. The Nvidia 
driver version is 340.32 and CUDA version is 6.5. We gather 
GPU runtime information using Nvidia Visual Profiler [31]. We 
use 8 slave nodes and 1 master node in our distributed framework 
characterization. The CNN models are trained by Caffe [20], an 
open-source deep learning framework widely used in both 
academia and industry. We also use Caffe to implement our CNN 
networks. The test data is from ILSVRC2012 (157.3GB) [11]. We 
scale up the above data sets appropriately with increased number 
of computing nodes. 

We develop a state-of-the-art heterogeneous MapReduce 
framework that enables CPU to cooperate with GPU to do big 
data processing. We make heavy modifications to Hadoop 
framework so that it is capable of running multimedia workloads 
using GPU. Note that although we choose Hadoop in our current 
implementation, our proposed design and optimization can be 
integrated with other popular distributed computing frameworks 
such as Spark  [43]. 

In this paper we define GPU temporal utilization as the proportion 
of GPU-involved runtime in the whole CNN runtime and GPU 
spatial utilization as GPU hardware resource utilization. 

3.2 Framework Semantic Gap 
3.2.1 Distributed Framework Overheads  
We set out to analyze the nontransparencies in CNN workflow for 
distributed framework that cause the overheads in an inefficient 
integration of distributed CNN acceleration platform.  

In a typical CNN-based application, the processing workflow 
consists of three stages: neural network initialization, data pre-
processing and data processing. In our baseline implementation, 
each Hadoop map task is associated with a CNN processing 
process. While due to Hadoop job consists of a large amount of 
independent map tasks with short lifecycle, naïvely associating 
the whole deep learning process with map task incurs several 
overheads. We elaborate these overheads that are illustrated in 
Figure 3. 

Repeated Network Initialization: Each map task will initialize 
the neural network. Since the network initialization is really time- 
and resource- consuming, this causes a large amount of 
unnecessary repeated network initialization time. These are 
depicted as Init in Figure 3. 
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Figure 2. Convolutional operation in a CNN layer 

 

Table 2. Platform configurations 
Item Value 
GPU Type Nvidia Tesla K20c 
GPU Core Config 2496 CUDA cores, 706 MHz 
GPU  
Resources/Core 

Max. 2048 Threads (64 Warps, 32 
Threads/Warp), 48KB Shared Memory, 65536 
Registers 

GPU Memory 5120MB Global Memory, 2600MHz Memory 
Clock Rate, 320-bit Memory Bus Width 

CPU Type Intel Xeon E5530 
CPU Core Config 8 Cores, 2.4GHz 
 



GPU Calling Procedure: The launch of GPU processing in 
Hadoop also introduces overhead. The GPU processing program 
is invoked by the following steps [39]. First, task-tracker sends 
task requests to jobtracker using heart beat. Then, the jobtracker 
assigns certain tasks to the tasktracker based on the information of 
heart beat. After receiving commands from the jobtracker, 
tasktracker launches a child JVM to run the map task. Finally, the 
map task calls CUDA program via JNI [17] to start the processing. 
The calling procedure contributes to the overhead of Hadoop in 
Figure 3. 

Hadoop Load Balance: When running multimedia workloads, 
the heterogeneity of nodes aggravates the cluster performance. 
This is because the Hadoop scheduler will execute load shedding 
by moving data from low-performance nodes to high-performance 
nodes to balance the overall application execution time, while the 
data processing stage will be blocked until the data preparation 
fetches data from remote nodes. Such waiting time is a great 
waste of computing resource. Figure 3 illustrates the impact of the 
data movements on the overall performance of a Hadoop cluster. 
We observe that fetching data remotely costs up to 29% 
application runtime. Under the distributed framework, the 
performance of CNN-based application could be expressed as: 

T𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑡𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚 +  𝑡𝑑𝑑 + 𝑡𝑖𝑛𝑖𝑖 (Eq2), 
where   𝑡𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚  indicates the time spent on the data transfer to 
local disk, 𝑡𝑑𝑑 is the overhead of distributed framework and   𝑡𝑖𝑖𝑖𝑖  
is the overhead of repeated network initialization. The equation 
shows that more non-GPU related operations are introduced in the 
distributed framework, which leads to a low GPU temporal 
utilization. 

Implication: Due to the inefficiency of the framework the non-
computation related overheads account for up to 51% overall 
runtime, as shown in Figure 3. These overheads are mostly 
introduced due to the whole CNN process is associated with a 
map task. The task mapping mechanism in conventional 
distributed framework should be optimized for CNN based data 
processing flow. In addition, the modern heterogeneous 
distributed framework calls for efficient load balance to avoid 
wastes of GPU resource. An analytical model based processing 

time estimation for processing node would greatly optimize the 
task dispatch among heterogeneous processing nodes with various 
processing capacities and reduce the data movement among nodes. 
This motivates us to delve into lower standalone processing node 
level to explore the opportunity to achieve this goal. 

3.3 Standalone Semantic Gap 
To bridge the framework semantic gap, we opt to trap into the 
details of standalone CNN acceleration platform implementation 
to identify overheads and opportunities to provide insights for 
implementing predictive and efficient GPU-accelerated CNN 
processing. 

3.3.1 GPU Temporal Inefficiency 
We begin with a simple image recognition benchmark on three 
typical CNN networks to identify where the speedup bottlenecks 
locate at the standalone level. To maximize the system throughput, 
we set the input data as a batch of 64 images from ImageNet. We 
report the speedup of computation part, overall task with/without 
counting in network initialization stage in Figure 4. We observe 
that although GPU efficiently accelerates the computation 
(average 44X), the overall speedups are still very low (average 
7X). Even if the network initialization time is not counted in, 
there is still much room for further optimization (average 60%). 
We then investigate the time distribution of overall tasks across all 
three networks and find that the GPU computation accounts for 
less than 20% of the task execution duration, while the most of the 
application runtime is consumed by network initialization 
(loading parameters from storage) and CPU processing (image 
data pre-processing). Therefore, the CNN application runtime on a 
standalone system could be described as (without counting in 
network initialization): 

T𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑡𝑐𝑐𝑢 + 𝑡𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑡𝑔𝑔𝑔  (Eq3), 
where tcpu is the time of CPU pre-processing, 𝑡𝑚𝑚𝑚𝑚𝑚𝑚   indicates 
the time cost of copying parameters from CPU to GPU, and tgpu  
is the GPU processing time. In the Eq3, the non-GPU related 
operations dominate the performance of CNN-based applications 
and GPU is idle during the most of the application execution time. 
Therefore, the low GPU temporal utilization leads to low overall 
speedup. We name this bottleneck as GPU temporal inefficiency.  

Implication: Our investigation suggests that current CNN service 
framework requires higher computation proportion to reach 
desirable throughput. This could be achieved by shrinking the 
network initialization time and increasing the number of input 
batched image package in the entire CNN execution workflow. 

3.3.2 Multiple Processes Contention 
The multi-process technique has been introduced to improve the 
low data throughput. For example, Nvidia’s Multi-Process Service 
(MPS) [29] is developed to allow multiple kernels running 
concurrently on shared GPU resource pool. However, our 
investigation suggests that current task-level parallelism solution 
is not optimal for deep learning applications [19, 28]. First, CNN 
based applications are memory-intensive. Running multiple GPU 
processes may exhaust GPU memory. We characterize the 
memory consumption by varying the batch size of input data. 
Figure 6 demonstrates that a single process of VGGNet could 
consume around 5GB GPU memory when the batch size is 64. In 
this case, three processes, even with MPS-enabled, could easily 
run out of state-of-the-art GPU memory (e.g. 12GB per K80). 

Moreover, the interference and resource contention could severely 
degrade the performance of multiple processes. Table 3 presents 

 
Figure 3. Overheads of distributed framework 
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the computation throughput (CT: images/s) of one GPU process, 
two GPU processes, and two GPU processes with MPS-enabled. 
We can observe that the throughput of two processes is much 
lower than the theoretical throughput (2X). Even with the MPS-
enabled, the multi-process only gain limited improvement. Here 
we use a metric, Kif, expressed as Eq4, to quantify the degree of 
interference. The larger Kif is, the more interference among 
multiple processes. The optimal value of Kif is 0, which means no 
resource contention. 

Kif = CTsingle−process × the number of processes
CTmulti−process

 – 1   (Eq4). 
To identify the reasons of interference, we begin by investigating 
the GPU critical kernels of CNNs using Nvidia Visual Profiler. 
We define the critical kernels as the most time-consuming kernels 
within an application. We gather their information and 
corresponding micro-architectural characteristics and summarize 
the results in Table 4. The kernels of Matrix Multiplication (MM) 
account for more than 66 percent of execution time across three 
CNNs. For Nvidia Tesla K-Series GPUs, the matrix 
multiplications are conducted by the kernel of Single-precision 
General Matrix Multiply (SGEMM) from cuBLAS [7]. However, 
the MM kernel is register-intensive. Due to the demanding 
register request for each thread each SM is limited to 
simultaneously execute 24 warps in AlexNet and GoogLeNet, and 
16 warps in VGGNet. The limited warps indicate limited available 
computing resource. The limited available computing resource 
shared with multiple processes leads to contentions among 
concurrent executing kernels. 

Implication: While the notion of employing the multi-process 
technique to improve the throughput appears appealing, our 
results indicate that current multi-process solution lacks proper 
memory and interference management. The number of 
concurrently running process in multi-process implementation 
should also be considered judiciously. Running too few processes 
may lead to waste of GPU resource. While over employing 
processes could incur severe GPU resource contention, even 
memory overcommit. Though a profiled based method is helpful 
to determine the number of processes, this is impractical in 
distributed cluster-based implementation due to the diversity of 
CNN workloads and a large number of slave nodes. An analytical 
model based criterion would greatly improve the efficiency. 

3.3.3 Inefficiency of GPU Acceleration Library 
Our previous characterization implications motivate an analytical 
model to provide accurate performance estimation for distributed 
framework and process number selection in multi-process 
technique. In this section, we explore the computation patterns of 
CNN workloads and GPU acceleration library to find the answer. 

Bottlenecks: We start by characterizing the convolution layers in 
CNN workloads. To better quantify the performance of CNN 
convolutional layers, we define throughput efficiency, tpE, which 
indicates the GPU computational efficiency of each layer, as: 

𝑡𝑡𝑡 = 𝑇ℎ𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝
𝐺𝐺𝐺 𝑃𝑃𝑃𝑃 𝑇ℎ𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝

     (Eq5). 
Since the throughput of each convolutional layer could be 
calculated by dividing the number of executed floating point (FP) 
instructions by the GPU time, Eq5 can be expressed as: 

𝑡𝑡𝑡 =  Conv𝑓𝑓𝑓𝑓𝑓
𝐺𝐺𝐺 𝑡𝑡𝑡𝑡×𝐺𝐺𝐺 𝑃𝑃𝑃𝑃 𝑇ℎ𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝

      (Eq6). 
We examine the GPU computational efficiency of the three 
networks at each layer using tpE and the results are shown in 
Figure 8. We observe that the tpE in most of the convolutional 
layers is less than 60%. In AlexNet, none of the layers has a tpE 
greater than 40%. The poor tpE indicates the inefficiency of 
current GPU computational operations for CNN applications. 

Root Causes: To identify the root causes of the inefficiency of 
GPU computational operations, we calculate the amount of 
computation of each layer based on Eq1. As shown in Figure 9, 
most layers have a small amount of computation. The low amount 
of computation leads to GPU resource under-utilization (i.e. low 
GPU spatial utilization), which results in low occupancy in kernel 
level. We further characterize the ratio of achieved occupancy and 
theoretical occupancy, which quantifies the GPU resource 
utilization. The results are presented as Cumulative Distribution 
Function (CDF) in Figure 7. Each point represents the kernels 
with the same GPU resource utilization in a network. For example, 
60% of the kernels have GPU resource utilization below 50% 
(GPU spatial inefficiency) in AlexNet and GoogLeNet. This leads 
to the low tpE value in Figure 8. 

Table 3. Throughput and Kif 
 2 P 2 P in MPS 1P Kif Kif in MPS 

AlexNet 348 436 289 0.7 0.3 
GoogLeNet 125 156 116 0.8 0.5 

VGGNet 43 49 42 1.0 0.7 
 

   
Figure 5. Batch size vs. latency Figure 6. Memory usage   Figure 7.  CDF of Achiv/Theo occupancy 

 
Table 4. The critical kernels 

Application Kernel Percent Block 
Size 

Registers 
/Thread 

Shared 
Memory/Block 

Warps 
Limit 

Theoretical 
Occupancy 

AlexNet MM1 sgemm_sm35_ldg_nn_64×16×64×16×16 72.5% [16, 16, 1] 71 8.27KB 24 37.5% 

GoogLeNet MM1 sgemm_sm35_ldg_nn_64×16×64×16×16 66.3% [16, 16, 1] 71 8.27KB 24 37.5% 

VGGNet 
MM1 sgemm_sm35_ldg_nn_64×16×64×16×16 20.4% [16, 16, 1] 71 8.27KB 24 37.5% 
MM2 sgemm_sm35_ldg_nn_128×8×128×16×16 37.3% [16, 16, 1] 127 8.145KB 16 25% 
MM3 sgemm_sm35_ldg_nn_64×16×128×8×32 21.2% [8, 32, 1] 115 12.27KB 16 25% 

 
 

0

20

40

60

80

100

1 4 16 64 256

La
te

nc
y(

tim
es

) 

Batch size 

AlexNet
VGGNet
GoogleNet

0

1000

2000

3000

4000

5000

6000

1 4 16 64 256

M
em

or
y(

M
B

) 

Batch size 

AlexNet
VGGNet
GoogleNet

0

0.2

0.4

0.6

0.8

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Achieved Occupancy /Theoretical Occupancy 

AlexNet
GoogleNet
VGGNet



Intuitively, batching multiple images/frames into a larger frame at 
each layer is usually adopted to improve the amount of 
computation in CNNs. However, due to the uneven computation 
amount at each CNN layers, using fixed batch size for all layers is 
not desirable. We conduct an experiment to compare the non-
batching method with batching method based on cuBLAS. As 
shown in Figure 10, we observe that for those layers with ideal 
tpE (>60%), batching method does not help to further improve 
computational efficiency, while significantly increases the latency. 
Figures 5 and 6 illustrate the variation in latency and memory 
with the change of batch size. Without caution, the batching 
method will consume more memory and increase latency.  

Implication: Due to the non-uniform computation amount across 
convolutional layers, we need to design a balanced scheme to 
improve tpE with less latency and memory usage. With the 
improved tpE, the resource utilization of GPU hardware could be 
pushed to near limit. This also could benefit the building of a 
performance estimation analytical model, because the throughputs 
of most convolutional layers are proportional to the GPU peak 
performance under this situation. 

3.4 Summary 
To sum, the inefficiencies of CNN-based applications stem from 
the GPU temporal inefficiency in framework level and the GPU 
spatial inefficiency in architecture level. The large number of non-
GPU involved operations in Eq2 leads to GPU temporal 
inefficiency, which results in unsatisfactory speedup. At the 
architecture level, the small computation throughput of 
convolutional layers results in low GPU spatial inefficiency. 
These observations point us towards a hierarchical design that 
waxes the GPU resource supply-demand mismatches at the 
architecture level and eliminates distributed overheads at the 
framework level.  

4. OVERCOMING BOTTLENECKS: 
BUILDING HIGH THROUGHPUT GPU 
ACCELERATION FRAMEWORK  
Motivated by our characterization experiences, we present D3NN, 
a Distributed, Decoupled, and Dynamically-tuned GPU 
acceleration framework for modern CNN network architectures. 
D3NN features three novel designs.  

1. A CNN oriented GPU acceleration library that dynamically 
selects the optimal batch size of input data for each CNN 
layer. 

2. An analytical model that enables accurate GPU processing 
time estimation in standalone GPU processing node. The 
analytical model provides insights for a load balance free 
distributed framework design and profiling-free multi-
process technique. 

3. A distributed data processing framework that decouples the 
CPU based data preparation and GPU-based data processing 
in CNN applications. 

4. A contention mitigation scheme that alleviates the GPU 
resource contention caused by task-level parallelism. 

4.1 Dynamic Batch Size Tuning Scheme 
We first bridge the performance gaps among convolutional layers 
by designing a dynamic batching GPU acceleration library. We 
then design an analytical model that is able to accurately estimate 
GPU processing time. 

In section 3 we show that using fixed batch size for all CNN 
layers may not be beneficial. Given the uneven computation 
amount at different CNN layers, two questions should be 
answered. First, when should we apply the batching method? 
Second, how to select the best batch size if the batching method is 
adopted? 

Using batching or not, it highly depends on the GPU resource 
supply and demand at each CNN layer. We define a metric, 
cpRatio, to reflect the proportion of demanded resource to 
available resource at given CNN layer: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

     (Eq7), 
The maximum number of blocks (maxBlocks) is defined in Eq8, 
which is mainly determined by the registers per thread (i.e. r in 
Eq8) and total number of registers per SM: 

maxBlocks = �𝑇𝑇𝑇𝑇𝑇 𝑅𝑒𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝 𝑆𝑆
𝑟∗𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

� × 𝑛𝑛𝑛 𝑜𝑜 𝑆𝑆  (Eq8). 
The GridSize (the number of blocks of MM kernel in a given 
layer) is defined in Eq9. Since in the matrix multiplication based 
convolution, MM kernel divides the result matrix into sub-
matrices, with each sub-matrix mapped to a block.  

GridSize = �𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑒𝑒𝑒ℎ 𝑙𝑙𝑙𝑙𝑙

𝑆𝑆𝑆−𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑆𝑆𝑀𝑀 𝑘𝑘𝑘𝑘𝑘𝑘 
�  (Eq9). 

We use cpRatio to indicate whether the batching method is 
adopted: If measured cpRatio is bigger than 1, then all available 
GPU resource (blocks) is consumed by CNN kernel. Therefore the 
batching method is not necessary for this layer. As shown in 
Figure 11, in CNN layers whose cpRatios are bigger than 1, the 
non-batching method performs better. The batching method in the 
last six layers achieves better performance than non-batching, 
where the measured cpRatios are all less than 1.  

 
Figure 8. Throughput efficiency for each CONV layer 

 
Figure 9. Varying computations of convolutional layers 
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Figure 10. Non-batch vs batch in VGGNet 
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To identify the optimal batch size, we first exhaustedly 
characterize convolutional layers’ performance using different 
batch sizes in Figure 12. We can observe the performance of CNN 
layers do not increase monotonically with the increasing of batch 
size. At the peak, its kernel’s GridSize is a multiple of maxBlocks 
(26 for K20c), which means GPU MM kernel will achieve the 
best performance when it fully utilizes GPU resource. The 
performance of each CNN layer reaches the peak only if the value 
of GridSize is integer multiples of the maxBlocks. This implies 
the cpRatio is desired to be chosen as an integer to avoid 
performance degradation. We design a metric Util to indicate 
whether the batch size is optimal. 

Util = �B𝑐𝑐𝑐𝑐𝑐𝑐𝑐      𝑖𝑖       B𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 0
1                      𝑖𝑖       B𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0  (Eq10), 

where: BcpRatio = cpRatio mod 1 . Figure 13 validates this 
policy: the point with the maximum value of Util always indicates 
the best batch size at given CNN layer. For example, the optimal 
batch size for AlexNet Layer No.2 is 4, where the value of Util is 
the maximum 0.88.  

Based on our dynamic batching method, we design analytical 
models to estimate the CNN computing time and memory copy 
time swiftly. Since the dynamic batching method could boost the 
throughput of most of the convolutional layers to the maximum 
throughput, we can estimate the runtime of each convolutional 
layer based on its maximum throughput: 

𝑡𝐶𝐶𝐶𝐶𝐶 = 𝐵𝐵𝐵𝐵ℎ 𝑆𝑆𝑆𝑆 × 𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ×𝑈𝑈𝑈𝑈

  (Eq11), 
and then estimate the GPU computing time as: 

𝑡𝑔𝑔𝑔 = ∑ 𝑡𝐶𝐶𝐶𝐶𝐶𝑁
𝑖=1

𝛿
       (Eq12), 

where δ is the ratio of convolutional layers in CNN. The memory 
copy time can be described as: 

𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = InputSize +ParameterSize
𝑇ℎ𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝𝑃𝑃𝑃𝑃

       (Eq13), 
where InputSize is the size of pre-processed images and 
ParameterSize is the size of CNN parameters (mainly composed 
of parameters of fully connected layers). 

ParameterSize = ∑ 𝑁𝑓𝑖 × 𝑆𝑓2𝑖 × 𝑁𝑐𝑖
𝑁
𝑖=1  (Eq14).  

4.2 Distributed and Decoupled Framework 
D3NN exploits three novel mechanisms for the efficient data 
processing in the distributed data processing framework: (1) 
Producer-Consumer scheme that decouples the data preparation 
and data processing at each slave node to hide the data preparation 
latency; (2) Semaphore-based data synchronization scheme that 
ensures the maximum single node throughput; and (3) Analytical 

model-based resource allocation that maximizes resource 
utilization. 

Producer-Consumer scheme: The overall architecture of D3NN 
distributed framework is shown in Figure 17. Compared to 
baseline system in Section 3.2, we re-organize the task execution 
flow at slave node by separating the deep learning based 
multimedia process into data preparation process and data 
processing process. We employ a data preparation engine 
(Producer) and a data processing engine (Consumer), which run 
simultaneously on each slave node. The data preparation engine 
consists of map tasks, which act as data preparation processes and 
are responsible for downloading data from distributed storage to 
local disk. The data processing engine consists of data processing 

 

  
Figure 11. Effectiveness of batching method 
in VGGNet 

Figure 12. Performance variation  Figure 13.  Util in different batch sizes 
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Comments: M consumers work on a slave node and the depth of 
semaphore is N, which means N consumers can access GPU 
simultaneously 

 
1: 
2: 
3: 
4:       

sem_data = 1       //access data pool atomically 
sem_GPU = N    //N consumers share a GPU, N <= M 
sem_prod = 2M  //prepare 2 data for each consumer 
sem_cons = 0     //consumer will be waked-up by producer 

Figure 14. Semaphores initialization 
 

1: 
2: 
3: 
4: 
5: 
6:       

down → sem_prod 
   copy data from HDFS to data pool     
   down → sem_data 
       make data available to consumers 
    up → sem_data 
up → sem_cons              //wake up a consumer 

Figure 15. Producer workflow 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 

create CNN and do the initial work 
while(1) { 
    down → sem_cons 
       down → sem_data 
          select a data from data pool 
       up → sem_data 
       load and pre-proceesing by CPU 
       down → sem_GPU 
          GPU do processing 
       up → sem_GPU 

up → sem_prod    //notify producer to prepare next data 
    pid = fork() //fork a new thread to upload result to HDFS 
    if(pid ==0) 
      child thread upload result to HDFS 
} 

 

Figure 16. Consumer workflow 

 



processes, which are in charge of data processing and network 
initialization. We employ a data pool to buffer the data produced 
by data preparation engine, which is a critical region for the 
producers and consumers to access data atomically.  

Semaphore-based data synchronization scheme: We design a 
synchronization mechanism using a semaphore to coordinate the 
data preparation (Producer) and data processing (Consumer) in 
Figures 14-16. First, the producer starts to put data into data pool. 
At the same time, the consumer completes initial work and enters 
the sleep state to wait for sem_consumer. Once the producer 
completes a task of data preparation, it will trigger the consumer 
to process the incoming data. When the consumer is processing 
current data, the producer continues to prepare the next data for it. 
If there are more than 2M available data in data pool, the producer 
will enter the sleep state until the consumer completes a task of 
data processing and increases sem_producer. In this way, the 
consumer will keep pace with the producer.  

A typical workflow of data preparation engine and data 
processing engine is presented in Figure 17. By running data 
preparation task and data processing task in parallel with different 
phases, the data processing time is well overlapped with data 
preparation time. Since the consumer services are never 
terminated, the network initialization only needs to be executed 
once, thereby eliminating considerable overheads. Therefore, the 
gaps resulted from distributed framework has been bridged and 
the distributed processing time is mainly dominated by the time of 
standalone CNN processing. Now Eq2 can be rewritten as: 

T𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑡𝑐𝑐𝑐 + 𝑡𝑔𝑔𝑔 + 𝑡𝑚𝑚𝑚𝑚𝑚𝑚  (Eq15). 
An analytical model based resource allocation: As mentioned 
in our motivations, the analytical model plays a critical role to 
bridge the semantic gap in scale-out CNN based big data 
processing platform. We leverage our analytical model to estimate 
the processing capacity of each computing node in distributed 
framework. This helps us to avoid great overheads on passive load 
balance among heterogeneous cluster, and always keeps the high 
utilization of heterogeneous hardware. 

The analytical model could also guide us to select optimal process 
number in multi-processing technique with the lowest contention. 
Based on the analytical model, we can estimate the current GPU 
temporal utilization as: 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑡𝑔𝑔𝑔+𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
    (Eq16). 

Therefore, the optimal process number equals to 1/gpuUtil. And 
this could boost GPU utilization to nearly 100%. We will further 
discuss this interference management scheme. 

4.3 Multi-Processing Contention Mitigation  
 As discussed in Section 3.3.2, the task-level parallelism of CNN 
based processes will cause intensive interference. In region A of 
Figure 18(a), all processes contend for GPU resource almost 
simultaneously, thus leading to interference and GPU memory 
over-committing. However, the GPU utilization decreases to zero 
in region B, as all processes are in their data preprocessing stage 
executed by CPU. This imbalance of GPU usage inevitably causes 
low GPU utilization. We also show the measurement of GPU 
utilization statistics with MPS-enabled in Figure 19. We observe a 
noticeable intermittent pattern in GPU utilization. 
We propose a contention mitigation scheme to handle task-level 
parallelism bottlenecks. As shown in Figure 18(b), our contention 
management scheme pipelines the GPU processing tasks to avoid 
GPU resource contention, thus improves GPU utilization. Since 
Kif is high among CNN based applications, running too many 
processes does not help improve the data processing throughput. 
The contention mitigation scheme first calculates the optimal 
number of processes (1/gpuUtil) using Eq16. It then provides an 
access mechanism based on semaphore primitive. For contention-
intensive applications (e.g. VGGNet), the initial value of the 
semaphore is 1, so that only one process can access the GPU 
resource at a time. After this process completes GPU processing 
and releases the semaphore, another process immediately acquires 
the semaphore and accesses GPU resource. In this way, the 
contention could be avoided and GPU remains busy as shown in 
SEM+MPS of Figure 19. 
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Figure 17. An overview of D3NN workflow 
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Figure 18. Contention management scheme 
 
 

 

Figure 19.  Real measurement of GPU utilization 
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Note that the decoupled architecture is not simply designed for 
distributed cluster. This design also applies to a single node 
design with single GPU or multiple GPUs. This is because the 
GPU idle time is inevitable in single node design with CPU pre-
processing. Worse, the current multi-process scheme for GPU 
incurs severe interference because of the GPU resource contention. 

5. EVALUATION 
5.1 Architecture Level Evaluation 
We evaluate our dynamic supply-demand optimization scheme on 
two typical CNNs (AlexNet and VGGNet). In our dynamic 
method, matrix multiplication is based on cuBLAS and the 
stretching out the local regions into column vectors is 
implemented by the kernel im2col. Table 5 illustrates the batch 
size of each layer calculated using Eq10. Note that we avoid 
choosing the batch size as prime number (though it may be 
optimal) at each layer, because a big prime number causes a huge 
overall batch size. Here the overall batch size for a CNN is the 
least common multiple of batch size in each layer. Since different 
layers have different batch size, each layer needs to run 
overall batch size

batch size of this layer
 times to perform an overall processing. 

We compare our dynamic batch method with the non-batch 
method and batch method used in cuDNN, which is a state-of-the-
art DNN library developed by NVIDIA [19]. The cuDNN now 
allows control over the balance between performance and memory 
footprint using different algorithms [9]. We include these two 
policies in our comparison. One is IMPLICIT_GEMM, which 
uses no extra working space and is memory-efficient. The other is 
GEMM and it is the fastest approach. Under the same overall 
batch size, we report the throughput efficiency (tpE) of the non-
batch method, cuDNN (with memory-efficient and performance-
preferred policies) and our dynamic batching method at each layer 
in Figure 20. Experimental results (Figure 21) show that our 
dynamic batching scheme can achieve up to 1.5X performance 
improvement compared with the one without batching. Our 
method even outperforms the state-of-the-art deep learning library 
(cuDNN) by up to 67% (memory-efficient policy) and 28% 
(performance-preferred policy). Moreover, as shown in Figure 23, 
our method consumes less GPU memory than cuDNN with 
performance-preferred policy. To summary, our analysis suggests 
that dynamic batching is an effective method to tackle the 

imbalance among multiple layers for CNNs with less latency and 
memory usage. 

Since the analytical model plays a critical role to bridge the 
semantic gaps in scale-out CNN based big data processing 
platform, we continue to evaluate the accuracy of our analytical 
model. Here we leverage the analytical model to calculate the 
runtime then use it to compare with real runtime and a naive 
method. Figure 22 depicts the runtime comparisons of the per-
convolutional layer and total GPU. By dividing the number of 
floating point operations at each layer by peak performance of 
specific GPU, the naïve method only obtains 27-40% accuracy. 
Our results show that we can predict the performance of CNN 
with only 5-10% error. 

5.2 System Level Evaluation 
We evaluate the effectiveness of D^3NN in terms of system 
performance and load balance. 

Performance: We evaluate the performance improvement of 
D^3NN under the three CNNs. We first report the GPU utilization 
and application speedup in Figure 24. We observe that D^3NN 
outperforms our baseline significantly in GPU utilization (average 
30% improvement) and runtime (average 1.5X speedup). We then 
evaluate the impact of the decoupled implementation on single 
node throughput. The results are shown in Table 6. Mode Overall 
denotes the overall image processing throughput on the standalone 
platform. Mode No-Init denotes the throughput without counting 
in the network initialization. Mode Proc-only denotes the 
throughput of data processing stage on a standalone platform, 
while excluding the data pre-processing and network initialization. 
Mode D denotes the throughput of a single slave node in D^3NN. 
We calculate the throughputs in Modes Overall, No-Init and Proc-
only by leveraging the built-in tool in our processing program. 
The throughput in Mode D is calculated through the task statistics 

   
 Figure 20. The comparison of throughput efficiency among CONV layers  Figure 21. Speedup over non-batch 
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Figure 24. Hadoop vs 𝑫𝟑𝑵𝑵 
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from Hadoop. Our results shows: (1) the throughput of D gains 
remarkable improvement (up to 7.9X) compared to the throughput 
of Overall and even has 3.7X speedup over the throughput of No-
Init, which justifies our decoupling optimization. (2) The 
throughput of D outperforms the throughput of Proc-only, which 
implies that the GPU has been fully utilized. 

Load balance: We further evaluate the effectiveness of D3NN’s 
load balance capability. In this experimental setup, we deploy 
D3NN on a cluster with three different GPU computing nodes 
(Titan X, K20c, and M2050), and compare the performance of 
D3NN with the scheme of equally allocating tasks to each node 
(Equal in short). In D3NN, the tasks are allocated based on the 
ratio of their performance derived from our analytical model.  The 
ratio of load balance is calculated by the number of completed 
tasks for each node divided by the node’s processing capability, 
which is the real processing throughput profiled at standalone 
mode. The results are shown in Table 7. We can see that the ratios 
of D3NN are close to 1, which means D3NN has a superior load 
balance capability. For the Equal scheme, since the total running 
time of the cluster is determined by the slowest node (M2050), the 
runtime will be up to 2.6X more than D3NN. 

6. RELATED WORK 
Deep Learning: Sirius [16] is an open end-to-end intelligent 
personal assistant based on DNN services. The DjiNN [15] further 
brings the community the characterization of GPU acceleration 
server system running DNN services and provides insights into 
designing future warehouse-scale computer architectures for DNN 
services. Our work distinguishes itself from DjiNN in four aspects: 
(1) We perform comprehensive characterizations of GPU 
acceleration platform instead of computation scope and explore 
the root causes of low system throughput; (2) We disclose the 
inefficiency of multi-process technique and propose semaphore-
based optimization; (3) We propose dynamic batching scheme and 
an analytical model for CNN based GPU processing. (4) We 
present a decoupled distributed framework to facilitate the GPU 
acceleration at scale.  

Several recent projects [3, 4, 12, 27, 44] begin to use FPGAs and 
ASICs as the accelerators to achieve high performance at low 
energy. Most of them are on-going efforts and could not be 
flexibly deployed and programmed at large-scale. Recently, 
Nvidia released its deep learning library (cuDNN) [5] based on 

batching method. However, it does not consider using dynamic 
batching to tackle the compute-intensive CNN, such as VGGNet.  

GPU Task Execution: Sethia et al. [35] proposed Equalizer, a 
low overhead hardware runtime system that dynamically adapts 
the resource to the needs of running kernel. When a GPU kernel is 
running, Equalizer could adjust the number of concurrent thread 
blocks based on the runtime profiling information. Equalize will 
not improve the performance of CNN with small batch size 
because of its underutilization of GPU resource. To fully utilize 
GPU resource, our proposed techniques determine the GridSize of 
kernel based on the problem size of each CNN layer before the 
kernel is executed. Therefore, Equalizer could be incorporated 
into our proposed schemes to further ensure that GPU resources 
match the requirement of the executing kernels. Similar to our 
work, Xu et al. [40] also proposed optimization for task execution 
in CPU-GPU heterogeneous systems to improve the utilization of 
GPU resources. However, their optimization objective is 
maximizing the schedulability of real-time tasks (i.e., the amount 
of work of real-time tasks that can be accomplished before 
deadlines), while our objective is maximizing the throughput of 
the whole CPU-GPU system. 

7. CONCLUSION 
This work presents the first in-depth empirical study on 
characterizing the performance of GPU acceleration system for 
CNN applications. Our characterization results demonstrate two 
significant semantic gaps: framework gap and standalone gap. 
Framework gap indicates the mismatch between CNN-based data 
processing workflow and data processing manner in current 
distributed framework. The uneven computing loads at different 
CNN layers and fixed computing capacity provisioning of current 
GPU acceleration library results in the standalone gap. Motivated 
by our characterization findings, we propose D3NN, a Distributed, 
Decoupled, and Dynamically tuned GPU acceleration framework 
for modern CNN architectures. More importantly, D3NN features 
a novel analytical model that enables accurate time estimation of 
GPU accelerated CNN processing with only 5-10% error. Our 
evaluation results show the throughput of standalone processing 
node using D3NN gains up to 3.7X performance improvement 
over current GPU acceleration platform. 
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Table 5. The recommend batch size for each layer 
 AlexNet  VGGNet 

CONV Layers cpRatio Batch size cpRatio Batch size 
1 1.82 None 7.54 None 
2 0.22 4 7.54 None 
3 0.15 18 3.77 None 
4 0.08 9 3.77 None 
5 0.05 18 1.89 None 
6 X X 1.89 None 
7 X X 1.89 None 

8, 9, 10 X X 0.94 2 
11, 12, 13 X X 0.24 8 

 
Table 6. The comparison of throughputs (images/s) 

Slave K20c 

Mode Standalone Single Node 
Overall No-Init Proc-only D  

AlexNet 39 75 289 350 
GoogLeNet 43 59 116 125 

VGGNet 18 31 42 43 
 

Table 7.  Evaluation of load balance 
Task Allocation Titan X K20c M2050 

AlexNet Equal 0.51 0.94 2.62 
 𝐷3𝑁𝑁 0.96 0.98 1.00 

GoogLeNet Equal 0.48 0.94 2.58 
 𝐷3𝑁𝑁 0.93 0.95 1.00 

VGGNet Equal 0.54 1.06 2.66 
 𝐷3𝑁𝑁 0.93 0.95 1.00 
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