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Abstract—Recent years have seen a revolution in network in-

frastructure brought on by the ever-increasing demands for data 

volume. One promising proposal to emerge from this revolution 

is Network Functions Virtualization (NFV), which has been wide-

ly adopted by service and cloud providers. The essence of NFV is 

to run network functions as virtualized workloads on commodity 

Standard High Volume Servers (SHVS), which is the industry 

standard. 

However, our experience using NFV when deployed on mod-

ern NUMA-based SHVS paints a frustrating picture. Due to the 

complexity in the NFV data plane and its service function chain 

feature, modern NFV deployment on SHVS exhibits a unique 

processing pattern—heterogeneous software pipeline (HSP), in 

which the NFV traffic flows must be processed by heterogeneous 

software components sequentially from the NIC to the end re-

ceiver. Since the end-to-end performance of flows is cooperative-

ly determined by the performance of each processing stage, the 

resource allocation/mapping scheme in NUMA-based SHVS must 

consider a thread-dependence scheduling to tradeoff the impact 

of co-located contention and remote packet transmission.  

In this paper, we develop a thread scheduling mechanism that 

collaboratively places threads of HSP to minimize the end-to-end 

performance slowdown for NFV traffic flow. It employs a dy-

namic programming-based method to search for the optimal 

thread mapping with negligible overhead. To serve this mecha-

nism, we also develop a performance slowdown estimation model 

to accurately estimate the performance slowdown at each stage of 

HSP. We implement our collaborative thread scheduling mecha-

nism on a real system and evaluate it using real workloads. On 

average, our algorithm outperforms state-of-the-art NUMA-

aware and contention-aware scheduling policies by at least 7% 

on CPU utilization and 23% on traffic throughput with negligible 

computational overhead (less than 1 second). 
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I. INTRODUCTION 

Today’s service providers need greater performance, flexi-
bility, and adaptability from the network services that support 
them. Gartner forecasts that the number of devices connected 
to the Internet of Things (IoT) will reach 26 billion by 2020, 
and impose an unprecedented challenge to data transmission 
services and data center network infrastructures [1]. To meet 
the rapidly increasing volume of traffic and deliver both capital 
(Capex) and operational (Opex) expenditure advantages, thir-
teen of the world’s largest service providers (AT&T, Verizon, 
China Mobile, CenturyLink, etc.) propose Network Functions 
Virtualization (NFV) [2]. NFV allows data center networking 

functions such as load balancing, firewalls, and switching to be 
implemented as software or virtual machine-based Virtualized 
Network Functions (VNF). The VNFs are consolidated on 
Standard High Volume Servers (SHVS) with software switch-
ing instead of fixed-function specialized hardware. By doing 
so, NFV creates highly flexible and adaptable network re-
sources that can be deployed quickly to respond to changing 
demands at lower cost. To date, NFV has gained over 220 in-
dustry participants including the European Telecommunica-
tions Standards Institute (ETSI) [3], the Linux Foundation 
OPNFV [5], and Oracle [6]. According to a recent study, the 
global NFV market is expected to grow 52% from 2013-2018 
[7].  

Because SHVS are expected to continue to serve as the 
backbone for network infrastructure, their performance when 
running VNFs must be considered. Intel has proposed an initial 
x86-based reference server architecture, Intel Open Network 
Platform [8], to enable NFV deployment. However, we ob-
serve current SHVS architecture support for NFV deployment 
falls short on generality and flexibility, and is not fully pre-
pared for NFV. For example, although existing hardware-based 
high performance I/O technologies such as Single Root I/O 
Virtualization (SR-IOV) [9] and Data Direct I/O (DDIO) [10] 
can achieve line rate VM-to-network throughput by bypassing 
the hypervisor layer, they do not support overlay-based net-
work virtualization for multi-tenant and VM migration, making 
them less flexible in modern SDN/NFV deployment. More 
importantly, VM-to-VM traffic, which is dominant in NFV 
enabled environments, must traverse the PCI Express bus in 
SR-IOV and DDIO, leading to throughput that is inferior to the 
throughput in a software switch. 

In this study, we characterize the architectural overhead of 
SHVS using real Telco and cloud NFV workloads. We observe 
that NFV deployment presents more performance demanding 
and complex processing patterns than typical IT workloads. In 
a NFV environment, a packet flow needs to traverse the end-to-
end data path, namely the NFV data plane, which includes a 
variety of software components that reside within VNFs (e.g. 
virtual NICs and packet processing routines within VNFs) and 
hypervisor virtualization stacks (e.g. physical NICs, hypervisor 
I/O handler, virtual switch threads). A VNF may also process 
traffic flows in tandem with other VNFs in service chains. We 
term this packet processing style as a Heterogeneous Software 
Pipeline (HSP).  

The software pipeline [11] is a parallel application that con-
sists of several communicating stages that process streams of 
input data in tandem. This processing style demands end-to-
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end performance guarantees (either throughput or latency) for 
network flows. This indicates that the performance of an HSP 
is cooperatively determined by the performance of each pro-
cessing stage throughout the processing path. In other words, 
the end-to-end performance slowdown of an NFV flow is the 
aggregated slowdown at each pipeline stage.  

Since all software components in the pipeline are deployed 
on the shared computing resources of SHVS, finding efficient 
and effective resource allocation/mapping schemes for these 
software components, or threads, is of the utmost importance. 
However, existing SHVS hardware resource allocation 
schemes and performance estimation models lack support for 
software pipeline-style applications. Specifically, when a pack-
et is passed between software components or threads that be-
long to neighboring pipeline stages, the performance slowdown 
for this packet at this stage can be decomposed into the slow-
down caused by resource interference and the slowdown 
caused by inter-thread communication.  

Though current thread and core allocation methods [12-14] 
can manage the former slowdown, they overlook the perfor-
mance slowdown caused by inter-stage data transfer overheads. 
Considering that Non-Uniform Memory Access (NUMA) [15] 
architectures are ubiquitously adopted in contemporary SHVS, 
the message pass/packet transfer between stages in HSP causes 
the thread to access data from the memory of its predecessor 
thread, while its predecessor’s memory may reside in remote 
NUMA nodes. Therefore, the inter-thread communication 
overheads must be factored in the performance slowdown es-
timation model in accordance with interference based model to 
provide thread-dependence scheduling in each stage of the 
software pipeline. 

Designing the aggregated performance slowdown estima-
tion model for end-to-end data path in NFV raises several 
questions. How can one quantify the performance slowdown 
caused by interference and communication at each stage? 
Moreover, how can these be combined into a comprehensive 
slowdown model? Finally, how can one compare the perfor-
mance slowdown in the presence of varying resource sensitivi-
ties at each stage? To address these issues, we present a new 
performance model for estimating the end-to-end performance 
slowdown of flows in software pipeline processing environ-
ments such as NFV. Our model assesses the intra-stage per-
formance slowdown caused by hardware resource contention 
and inter-thread/core communication overheads. It also esti-
mates the end-to-end performance slowdown by summing the 
weighted inter-stage slowdown at each stage. 

Leveraging our holistic performance estimation model, we 
design vFlowComb, a dynamic thread mapping mechanism 
that enables thread-dependence mapping for NFV service 
chains. To achieve this goal, vFlowComb features a Collabora-
tive Thread Scheduling (CTS) mechanism that guarantees to 
minimize the end-to-end performance slowdown for each NIC 
hardware queue. CTS exploits a novel Dynamic Programming-
Based Mechanism (DPBM) to find the thread-core mapping 
with the minimum aggregate performance slowdown, while 
considerably reducing the performance sampling and decision-
making overheads.  

This paper makes the following contributions: 

 We explore the deployment of modern NFV workloads on 

current SHVS architectures. We observe that NFV adopts a 

heterogeneous software pipeline (HSP) processing style, 

which presents significant challenges for current thread 

mapping mechanisms and performance estimation tools. 

 We explore the performance slowdown in the HSP on 

modern NUMA architectures. We propose a performance 

estimation model that evaluates the performance slowdown 

of each stage of HSP by considering hardware resource 

contention and inter-thread/core communication overheads. 

 Based on our performance slowdown estimation model, we 

propose vFlowComb; a thread mapping mechanism that 

minimizes the end-to-end performance slowdown. We 

implement vFlowComb using Open vSwitch and OpenStack.  

 
The rest of this paper is organized as follows. Section 2 

gives a brief introduction of the NFV data plane and network 
I/O NUMA issue. Section 3 characterizes the NFV deployment 
on NUMA-based SHVS and proposes performance slowdown 
estimation model. Section 4 presents the collaborative thread 
scheduling mechanism for heterogeneous software pipelines. 
Section 5 evaluates our design. Section 6 discusses related 
work and Section 7 presents our conclusions. 

II. BACKGROUND AND MOTIVATION 

A. Network Functions Virtualization 

1) Control/Data Plane 
In software-defined networks, the network environment can 

be split into three planes: the application plane, the control 
plane, and the data plane. Tenants interact with the application 
plane, requesting deployment of their virtual private networks. 
The control plane responds to these requests and instantiates 
virtual links between tenant VMs and VNFs using tunneling 
techniques [16] or encapsulation policies. The data plane in-
stantiates configurations furnished by the control plane and 
provides a network traffic backbone for each tenant’s virtual 
private network. The data plane consists of all tenant VMs and 
VNFs, and the virtual switches by which they are connected. 
All components are consolidated on a SHVS architecture and 
are allocated on shared computing resources. Figure 1(a) shows 
a simple tenant virtual network with a VM and a firewall. In 
this setup, all incoming traffic must pass through a firewall 
before entering the tenant VM. Each packet will traverse the 
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Figure 1. Heterogeneous software pipeline (HSP) in NFV data plane 



2016 IEEE/ACM 49th International Symposium on Microarchitecture 

software components before being processed in the VNF and 
the VM. 

2) Software Pipeline in Data Plane 
Here, we describe the detailed processing patterns of the 

software pipeline in NFV data plane and illustrate a software 
pipeline implementation based on the Linux kernel with NAPI, 
a virtual machine, and an Open vSwitch-based software switch. 
Each software component receives packets from its pre-
decessor, processes them based on its functionality, and sends 
them to the successor components, as shown in Figure 1(b).  

When an incoming packet arrives at the input buffer of a 
physical NIC, it will be DMA’d to the kernel DMA RX-buffer, 
sk_buff, which is allocated in main memory. In multi-10G 
networks, this buffer allocation/de-allocation could 
significantly stress the memory subsystem (tens of millions of 
allocations per second). Once in the buffer, a hardware 
interrupt is triggered. An interrupt handler associated with one 
of the processor cores is called and schedules a softIRQ 
context to its local core or another CPU core. All CPU cores 
examine their poll queue using the poll method and process the 
queued softIRQ context. Modern NICs support multiple 
receive and transmit descriptor queues (multi-queue) 
technique. The NIC controller computes a hash value for each 
incoming packet. Based on these hash values, the NIC assigns 
packets of the same data flow to a single queue and distributes 
traffic flows evenly across queues. To maximize the network 
transmission performance in multi-core server systems, 
Receive-side Scaling (RSS) [17] and Receive Packet Steering 
(RPS) are used. RSS enables multiple NIC queues to have their 
own associated CPU core while RPS assigns a specific core for 
a softIRQ context. These core assignments should be carefully 
designed to avoid unbalanced CPU loads.  

Virtual Switch: In virtual machines, the hypervisor pro-
vides intra-server networking connectivity for virtual 
machines. In this virtual network, the hypervisor creates one or 
more virtual NICs (vNICs) for each VM to connect to physical 
NICs (pNICs) of the host server and facilitates network 
connection between the VM network stack and hypervisor 
network stack through virtualized switches (e.g. Linux Net 
bridge and Open vSwitch) [18]. When using virtual switches, 
the intra-server network connection is no longer limited by 
network speed but memory bandwidth since no packet must 
pass through PCI-E links to special purpose hardware. This 
enables high-performance communication among VMs. More 
importantly, virtual switches enable cross-server bridging in a 
way that makes the underlying server architecture transparent. 
A virtual switch within one server can transparently join with 
another virtual switch in another server, simplifying VM 
migration. 

B. NFV Workloads 

In this paper, we use Clearwater [19] as our NFV plat-form. 
Clearwater is a cloud-based Telco-grade IP Multimedia 
Subsystem (IMS). IMS is widely adopted by large Telcos to 
provide IP-based voice, video, and messaging services based 
on soft-switching. Clearwater consists of a series of typical 
function components with various resource utilization patterns 

in a Telco data center, and could be easily deployed as VNFs in 
NFV environment. 

1) Workloads Description 
Bono is a scalable edge proxy in the NFV environment. It 

serves as a gateway and provides connections to the Clearwater 
system for clients. Sprout processes the incoming requests 
from Bono, acting as a registrar and authoritative routing proxy. 
The Sprout cluster includes a memcached cluster to store client 
registration data. Homestead provides web services interface to 
Sprout for retrieving authentication credentials and user profile 
information; providing a subscriber server and employs 
Cassandra as the backing store for its managed data. 

2) Testing Methodology for Clearwater 
We deploy Clearwater as virtual machines in our character-

ization and evaluation (the detailed configuration is described 
in Section 3.1). In this paper, we use SIPp [20] to generate real 
world Telco NFV traffic. It is a performance-testing tool for 
Telco infrastructure and can establish and release multiple calls 
to an NFV cluster. We choose user registration and deregistra-
tion (reg-dereg) calls for the traffic flow in this paper. A reg-
dereg call consists of three requests: one for registration, one 
for authentication, and one for deregistration. SIPp initiates 
each call with an initiated call rate. If a response to a request 
times out (10s), the call will be tagged as failed. SIPp initiates 
call with an initiated call rate. Each round of experiment runs 
for 300s. We run 5 trials and take the average results. We use 
the Successful Call Rate (SCR), which is used as an indicator 
of the service quality of the NFV system. SCR gives the ratio 
of the successful call rate to the initiated call rate. The maxi-
mum SCR is 1. 

C. Network I/O NUMA 

With NUMA architectures, each socket (i.e. processor 
node) is associated with a local memory node through the 
memory controller. Multiple cores in one socket share the last 
level cache, memory controller, and PCI-e interface (e.g. NIC) 
through the intra-socket interconnect. Inter-socket 
communications are enabled through point-to-point high-speed 
interconnects (e.g. Intel’s QPI). In a multi-socket server with 
NUMA enabled, the PCI devices are associated with a 
subgroup of NUMA nodes, as shown in Figure 2. 

III. CHARACTERIZING NFV WORKLOADS IN SHVS 

In this section, we characterize the performance of NFV 
flow to identify inefficiencies in current NUMA-based SHVS 
from the viewpoint of architecture level. 
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A. Characterization Setup 

Hardware Platform: Our physical platform configuration 
is shown in Figure 3. The system uses four Intel X520 SPF+ 10 
Gigabit Ethernet NICs divided into two groups and are associ-
ated with two NUMA nodes respectively. To clearly expose 
the bottlenecks, we configured the IBM x3850 system as 2 
sockets and only use one NIC in the characterization.  

Software Platform: We use the open source cloud plat-
form OpenStack Kilo [21] to build a full-fledged cloud envi-
ronment for NFV deployment. Our test cloud consists of three 
compute nodes, one cloud controller node, and one networking 
node. All compute nodes run RHEL 6.4. The network service 
Neutron helps tenants to build their own private software de-
fined networks and Open vSwitch based virtual switches. All 
VNFs and tenant VMs are deployed as virtual machines with 2 
vCPU and 4GB memory. The VMs are consolidated on 
NUMA-based SHVS. They communicate with each other us-
ing GRE [16]. The networking hierarchy is shown in Figure 3. 

Workloads: Our real world NFV workloads are introduced 
in Section 2. To clearly identify the bottlenecks, we also use 
the network intensive micro-benchmark Netperf [22] to gener-
ate UDP STREAM and TCP STREAM as stable and control-
lable traffic loads. As shown in Figure 3, we deploy NFV work-
loads or simple networking workloads on VNFs/tenant VMs as 
packet receivers. We deploy client VMs on other machines as 
load generators. 

B. Characterization of Heterogeneous Software Pipeline on 

NUMA based SHVS 

We investigate the performance and architectural behaviors 
of current NUMA-based SHVS when executing heterogeneous 
software component pipeline in NFV deployment. We vary the 
thread-to-socket/core mapping and co-located contentions to 
examine the performance trade-offs in HSP. These results indi-
cate that new performance modeling tools are needed. 

1) Methodology 
As we described in Section 2, the flow path in the NFV 

data plane can be seen as a packet traversing the software 
components. The software components in the NFV data plane 
are the ksoftirq kernel thread that handles the NAPI routine 

and the virtual switch routing process in which the packets are 
written to TAP’s socket buffer, and the vhost-net thread 

that copies the packets from the socket buffer to the VM’s 
vNIC buffer. In this characterization, we focus on the packet 
receiving process (i.e. incoming flow processing) since it 
contains all of the critical software components in the NFV 
data plane. We collect the architectural statistics using Intel’s 
Performance Counter Monitor tools [23]. 

2) Impacts of Inter-socket Communications 
We first vary the thread-to-socket mappings to investigate 

the impact of inter-socket communication (CPU-to-CPU and 
CPU-to-RAM) on the performance of HSP.  

In this experiment, we study seven different thread-to-
socket mappings with different socket affinities for the 
ksoftirq kernel thread, the vhost-net thread, and the 

VM thread. The different configurations, A-G, are shown in 
Figure 4(a). A local node consists of a NUMA node and a NIC. 
Different threads on the same socket are mapped onto different 
cores. We consider three network traffic loads. We use Netperf 
to generate 1400B UDP packets and 64KB TCP packets. We 
also use SIPp to generate a traffic flow at a rate of 300 
calls/second. We report the cache miss per packet and received 
packet throughput (packet per second) in Figure 5(a). For the 
NFV loads, we report the successful call rate as defined in Sec-
tion 2. 

Observations: For the UDP flow we can observe approximate-
ly 30 LLC misses per packet in the ksoftirq in configura-

tion G. This is caused by the inter-socket DMA transmission 
overhead since the incoming packets should be brought into 
LLC for ksoftirq processing on the remote NUMA node. 

In configuration E, we can observe there are around 5 LLC 
misses per packet in the vhost-net and VM threads, and 

nearly no LLC misses at ksoftirq. This is because vhost-

net needs to access the vNIC of the target VM across the 

sockets. We can also observe the traffic throughput increases 
from 1.2Mpps to 1.45Mpps, while the collocated ksoftirq, 

vhost-net, and VM gain the high-est throughput at 

1.71Mpps. 

To examine a real NFV deployment scenario, we increase 
the VM consolidation (5 VMs) and traffic flow and re-run the 
tests. We present the results in Figure 5(b). We can observe the 
performance in configuration E experiences a severe drop. The 
LLC misses per packet for the VM and vhost-net threads 

increase to around 20 misses per packet and the traffic 
throughput drops from 1.4Mpps to 1.02Mpps. This is because 
intensive inter-socket communication occurs between the 
vhost-net thread and the vNIC buffers. 

Finding 1: In this experiment, we observe that the inter-

socket communication overheads caused by asymmetry in 

NUMA-based SHVS significantly impact the performance of 

heterogeneous software pipeline workloads like NFV.  

TABLE I.  PLATFORM CONFIGURATIONS 

Item Value 

SHVS system IBM x3850 X5, 8-socket NUMA 

Processor Intel Xeon X7550, 2.0GHz (Nehalem) 

8 physical cores (16 with Hyper-Threading)/socket 

18MB L3 cache for each socket 

64KB L1 cache and 256KB L2 cache for each core 

Memory 64GB, DDR3 for each socket, 512GB in total 

Interconnection Intel QuickPath Interconnect, 6.4GT/s 

NIC Intel X520 10GB, Mellanox 40GB 

Associate with socket 0 and 4 
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Finding 2: The thread heterogeneity of each stage in a soft-

ware pipeline exhibits sensitivity to hardware resources and 

inter-socket communication overheads, while also being relat-

ed to workload intensity. For example, we can observe the 

inter-thread communication between ksoftirq and 

vhost-net is more sensitive to inter-socket access than 

inter-thread communication between the NIC driver and 

ksoftirq when more VMs are consolidated. 

Finding 3. The thread heterogeneity of each stage incurs 
heterogeneous performance slowdown at each stage. However, 
the low-performance slowdown at an earlier stage does not 
necessarily result in a low end-to-end performance slowdown 
for the whole pipeline. In Figure 5(b), it is clear that 
configuration E exhibits lower slowdown at the NIC-
ksoftirq stage than configuration G does, even though its 

end-to-end throughput is lower than G. 

3) Impacts of Intra-socket Co-located Contentions 

We further investigate the performance of a heterogeneous 

software pipeline in the presence of intra-socket co-located 

contention. We study the performance slowdown caused by 

the contention of co-located software components and other 

user workloads to derive the performance implications. 

We first investigate the impact of thread-to-core mappings. 

We design six thread-to-core mappings as shown in Figure 4(b). 

In each mapping, all threads (ksoftirq kernel thread, 

vhost-net thread, and VM thread) are mapped onto the 

same NUMA socket and may use SMT sharing. We repeat the 

procedure from Section 3.2.2, using 4VMs in this case due to 

the limits of available cores, and report the cache miss per 

packet and traffic throughput in Figure 6. 

We observe that the throughput in configurations A, B and 

E is significantly lower to the other configurations in the sin-

gle VM scenario. In addition, the LLC misses per packet at 

ksoftirq and VM are very high (around 35 misses per 

packet). This is because the VM is running in user space while 

the ksoftirq is running in kernel space. The frequent con-

text switching leads to severe performance degradation.  

Finding 4: The ksoftirq and VM threads are very con-

tentious. It would be better to co-locate them on separate 

CMP cores, not on single core with SMT.  
Finding 5: All scenarios will come across performance 

bottlenecks when more VMs are consolidated. Intensive 
resource sharing causes very high cache misses at all threads, 
limiting throughput due to resource contention. 

C. Performance Slowdown Model 

Motivated by our characterizations of the HSP inter-socket 

communication overheads and intra-socket co-located conten-

tion overheads, we observe the necessity to find the best trade-

off between them. Though many prior studies have explored 

application slowdown caused by resource sharing or asymmet-

ric communication overheads [13], [14], [24-35], they are 

designed for evaluating the overall slowdown for applications. 

There is not an explicit model to measure the inter-stage per-

formance slowdown that coordinately considers both the 

communication overhead and application slowdown at each 

thread core in HSP. We develop an enhanced estimation mod-

el to solve this problem. 

We partition an HSP into several stages; each stage consists 

of a thread and its communication path. The intra-stage per-

formance slowdown is caused by the inter-socket communica-

tion overhead (potential) and application contention slowdown 

at current stage thread, as depicted in Figure 7.  
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Figure 4. Thread-to-socket/core mapping configuration 
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Figure 5. Performance and architectural behaviors of Inter-socket scenarios 
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We build our estimation model based on mature NUMA-

aware performance analysis models [15], [36] and our empiri-

cal studies. When a thread accesses remote memory (e.g. C2 

accesses memory of C1), the performance degradation is 

caused by four factors: memory controller contention (MC), 

interconnect contention (IC), last-level cache (LC) and remote 

access latency (RL). To estimate the inter-stage overheads 

caused by inter-socket access, we explore how these factors 

contribute to the HSP inter-stage performance degradation. 

We conduct a series of experiments where the socket affinities 

of ksoftirq, vhost-net, and VM threads (configurations 

E, F, and G in Section 3.2) are gradually altered. We then vary 

the contention flow number for each. We present the over-

heads contribution factors for all three stages, as shown in 

Figure 8. We can observe that, though the four factors’ contri-

butions to performance degradation change slightly when in-

put flow numbers vary, different stages still manifest typical 

distributions. For example, the ksoftirq is more sensitive 

to LC and vhost-net is more sensitive to MC, which can 

be expected based on the characterizations in Section 3.2.  
Prior work [15] proposes to use Performance Monitoring 

Units (PMU) to quantify the four factors. In this solution, the 
reciprocal of last level cache hit rate (L3_hit) is used for 
evaluating the LC. The cycle loss due to L3 misses (cycle_loss) 
is used to evaluate the MC. The cycle_loss at the remote node 
is used to measure IC. The RL is expressed by the ratio 
between local IPC to remote IPC. The correlation coefficients 
between some PMU readings and the corresponding NUMA 
overheads are around 0.9. However, [15] estimates the NUMA 
overheads by naively adding up all four PMU readings. This 
may lead to less accurate evaluation results since different 
NUMA performance factors have various contributions to the 
inter-socket NUMA overhead at a stage. This is unacceptable 
in HSP, because the accumulated error estimation at each stage 
may lead to large deviations. 

We present an enhanced model that estimates the intra-
stage overheads as a weighted sum of PMU readings. Take the 
intra-stage overheads calculation between C1 and C2 for ex-
ample. There are four socket candidates for thread C2. For 
each socket candidate, the required PMU metrics are: the 
L3_hit|candidate_socket, the cycle_loss|C1_socket, the cycle_loss| candidate 

_socket, and the IPC| C1_socket / IPC| candidate_socket. The required 
PMU metrics are weighted to the corresponding overhead con-

tribution factor at this stage. The weighted sum indicates the 
inter-socket overhead between the C1 socket and the candidate 
sockets at this stage. We call this sum the performance slow-
down index. 

Now we possess a performance estimation model that is 
capable of evaluating the performance slowdown of a stage of 
HSP. We validate this model by examining the end-to-end per-
formance slowdown in a series of experiments. In the valida-
tion, we test three scenarios, configurations E, F, and G as 
shown in Figure 4(a), since they are the typical scenarios with 
inter-socket communication at different stages in an HSP. We 
vary the input flow number and present the corresponding per-
formance slowdown index, as shown in Figure 9. The results 
illustrate that our revised architectural metrics can accurately 
identify performance differences among different stages in 
HSP. Given that, we can use it as an indicator for our thread 
scheduling scheme that is tailored to HSP. 

IV. VFLOWCOMB-EFFICIENT THREAD SCHEDULING FOR NFV 

DEPLOYMENT 

In this section, we present vFlowComb, an architecture 
support thread mapping framework based on our HSP over-
heads estimation model. vFlowComb facilitates traffic load-
aware and priority-aware data plane hardware resource sched-
uling and provides a guarantee on the end-to-end NFV flow 
performance on SHVS architecture. We introduce vFlowComb 
based on the Open vSwitch implementation. To achieve this 
goal, vFlowComb exploits a Collaborative Thread Mapping 
Scheme (CTM). It features a dynamic programming-based 
thread-mapping scheme (DPBM) to coordinate thread schedul-
ing in the NFV service chain. 

A. Preliminary 

Flexible and accurate NFV delivery requires that more data, 
such as core affinity of VNFs, flow throughput, and NIC hard-
ware queue-flow mappings, be exposed to the NFV data plane. 
Current NICs equipped with hardware-based packet classifica-
tion support this capability. Although beyond the scope of this 
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paper, we can also implement software-/hardware-based packet 
classification schemes for specific protocols to improve flexi-
bility and reduce Capex. In this study we assume that we can 
obtain NIC hardware queue-flow mapping, thread affinities 
and target VNF information for incoming flows, flow priori-
ties, and throughputs. 

B. Collaborative Threads Scheduling 

Contrasted to conventional thread scheduling mechanisms 
that only focus on thread co-location contention mitigation 
[14], we present a Collaborative Threads Scheduling (CTS) 
mechanism that guarantees end-to-end performance in the 
HSP. Specifically, we extend the existing contention-aware 
thread scheduling mechanism by establishing a new dimension 
that also considers inter-thread communication overhead be-
tween predecessor and successor threads in a service chain. 

1) Problem Definition 
We begin by introducing the system models. All software 

components in an application constitute a software pipeline 
(e.g. NFV service chains and virtual switch threads). Each ser-
vice chain, k, forms a pipeline, Pk, with Nk stages. All service 
chains share the same source node, s, but terminate on a differ-
ent node, vd. Every stage, Sj, is characterized by its communi-
cation overhead, oj, with the predecessor stage, Sj-1. For exam-
ple, packets belonging to network flow Fk will be handled by 
pipeline Pk and will be processed by a corresponding thread at 
each stage. This thread will be mapped to core vm.  

The problem can be defined as: given a set of K weighted 
flows, F = {F1, F2, …, FK}, with weights, W = {w1, w2, . . . , 
wK}, where the weights express priority levels and each flow 
has fixed source and destination nodes, optimize the overall 
weighted system throughput/latency by finding the optimal 
thread-core mapping for the individual flows. The problem is 
analogous to a single source shortest path problem where the 
communication overheads are used as distances. 

2) Dynamic Programming Based Mapping (DPBM) 
To find the optimal thread-core mapping, the thread sched-

uler must consider all possible thread-socket/core mapping 
combinations for a given flow. However, an exhaustive search 
would result in exponential complexity, O(cn), which cannot 
meet the requirement of adaptive mappings at runtime. We 
propose an algorithm based on dynamic programming (DP) 
that derives optimal solutions for minimizing the end-to-end 
performance slowdown using M cores to execute flow Fk. We 
define a recursive function, δj(s, vm), for each core candidate, 
vm, in stage Sj to store the thread-core mapping configuration 
that achieves the minimized aggregated slowdown at stage Sj, 
where o(u, v) is the performance slowdown between u and v. 
Giving: 

δj(s, v)= min{δ(s, u) + o(u, v) | u∉Sj, v∈Sj }                     (1) 

Let Fk, j be a sub-flow of flow Fk that only includes stages 
S1 to Sj of Fk. The goal is to find the optimal thread-core map-
ping that achieves the minimized aggregated slowdown for 
flow Fk, j. In this scenario, the aggregated slowdown indicated 
by δj(s, vm) at stage Sj only depends on the aggregated slow-
down indicated by δj(s, vl) at previous stage Sj-1 and the intra-

stage performance slowdown index, o(vl, vm), between vm and 
vl. we can rewrite the function as: 

δj(s, vm)= min{δj-1(s, vl) + o(vl, vm) | vm∈Sj, vl∈Sj-1 }       (2) 

The dynamic programming starts by computing the aggre-
gated slowdown at each core in stage S1. The DP continues to 
compute the aggregated slowdown at each core in stage S2. 
Since the programming already stored the minimized aggregat-
ed slowdown path from the source node to the cores at the first 
stage, the minimized aggregated slowdown at a core in stage S2 
can be easily calculated by choosing the minimal sum of the 
aggregated slowdown at a given core in stage S1 and the slow-
down index between the stage S2 core and stage S1 core. Thus, 
iteratively, an optimal solution is achieved because all combi-
nations of thread-core mappings are considered. However, the 
complexity is reduced since optimal solutions are stored in 
tables and do not need to be recomputed. Since vFlowComb 
schedules thread mappings based on NIC queue, the space/time 
complexity is O(MNk) for mapping one NIC hardware queue. 

3) CTS in vFlowComb 
We incorporate the CTS mechanism into vFlowComb to 

handle thread-chain scheduling in a real NFV environment. 
Figure 10 illustrates a typical workflow of CTS in vFlow-
Comb. We assume we can obtain the NIC queue-flow mapping 
and destination VNFs for each flow by leveraging current NIC 
hardware. Based on this initial mapping information, CTS aims 
to efficiently map the software components (ksoftirq and 

vhost-net threads) in NFV HSP to improve the perfor-

mance of NFV flows and resource utilization of SHVS. 

The typical workflow of vFlowComb is as follows. 

Dominant VNF identification: In this stage, vFlowComb 
analyzes a snapshot of system flow patterns to identify the pri-
ority VNFs and critical flows. To achieve practical efficiency, 
vFlowComb schedules threads for dominant flows of each NIC 
queue instead of for a single flow. vFlowComb oversees the 
flow distribution at each NIC queue and identifies a target 
VNF with the highest incoming flow traffic (aggregated pack-
ets per second) from this NIC queue. vFlowComb then defines 
this VNF as the dominant target VNF for this NIC queue and 
schedules a thread chain between them. If vFlowComb detects 
a dominant VNF is a priority VNF, the corresponding NIC 
queue will be tagged as a priority queue. Finally, vFlowComb 

Algorithm 1. Aggregated Slowdown Minimization 

Input: K weighted flows F with Nk stages, Mj cores in stage Sj, the 

aggregated slowdown o(vl, vm) at core vm, 

Output: The thread-core mapping table R that achieves the mini-

mized aggregated slowdown for the flow F. 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

Initialize R, δ(s, v) 

for j=1 to Nk do 

for vm∈Sj do 

if j=1 then 

δ1(s, vm) = o(vm, s) 

else 

  δj(s, vm)= min{δj-1(s, vl) + o(vl, vm) | vl∈Sj-1} 

endif 

R.append(vm) 

end 

return R 
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obtains a queue group, {Q1, Q2, Q3…, Qm}, which is sorted by 
priority and flow traffic.  

Core pool allocation: vFlowComb collects the available 
core information and divides the cores into different groups; 
cores will either be in the ksoftirq core group, {kC1, kC2, 

kC3,…, kCn}, or in the vhost-net core group, {vC1, vC2, 

vC3,…, vCn}. The benefits of a differentiated core pool are 
twofold. First, it helps the DP by greatly reducing the search 
space, which increases the efficiency of CTS. Second, since 
cores in certain stage only need to sample intra-stage overheads 
to the cores/sockets in the next stage, it reduces the amount of 
data collection in the performance slowdown model. When 
allocating a core to the core pool, vFlowComb prefers the core 
with the lowest utilization. This provides more performance 
headroom for threads in early stages so that the global δ(s, vm) 
for each core will not be refreshed frequently. 

Intra-stage performance slowdown collection: Obtaining 
intra-stage performance slowdown statistics is critical for im-
plementing CTS. During the data collection period, each core 
in a stage (e.g. C1) traverses the core pool of the next stage 
(e.g. C2) and queries the PMU readings. The data that is re-
turned will be preserved in a table that is maintained by the 
core. In fact, for each PMU query, all returned PMU readings 
are socket-based, which reduces the number of inter-processor 
interrupts between queryer and queryee. From this, the intra-
stage performance slowdown between cores in neighboring 
pools can be established. 

Threads scheduling: We apply dynamic programming 
based mapping (DPBM) to CTS to conduct thread-core sched-
uling. As shown in Figure 11, CTS assigns the ksoftirq 

core and vhost-net core using DPBM for each queue in the 

sequence. vFlowComb maintains the global δ(s, vm) for each 
core, vm. After a queue is mapped, the intra-stage performance 
slowdown and δ(s, vm) of all impacted cores will be refreshed 
to avoid inaccurate scheduling for the next queue. We present 
the overheads of the dynamic programming-based mapping 
scheme in Section 5. 

Our implementation is based on Receive Packet Steering 
(RPS) feature provided by the Linux kernel. First, RPS selects 
CPU cores to execute SoftIRQ based on hash values (skb-

>rxhash) calculated from received packet headers. Next, the 

rps_get_cpu function selects a SoftIRQ core based on the 

sock_flow_table that contains hash/core relation pairs. 

Finally, the enqueue_to_backlog function executes 

SoftIRQ on the core. 

V. EVALUATION 

vFlowComb provides end-to-end performance guarantees 
for NFV workloads by cooperatively scheduling the critical 
threads in the heterogeneous software pipeline. In this section, 
we evaluate the effectiveness of leveraging vFlowComb to 
improve the performance of heterogeneous software pipeline 
on current NUMA-based SHVS platform. We also discuss the 
design space in vFlowComb. 

A. Effectiveness of Collaborative Threads Scheduling 

We evaluate the effectiveness of CTS using various traffic 
loads and co-located contention intensities. 

1) Methodology 
NFV environment: The test scenarios are designed to 

mimic real service chains in NFV deployment, as shown in 
Figure 12. Each service chain consists of no more than 3 
VNFs. Each VNF uses 2 vCPU with 4GB memory. All VNFs 
are deployed on NUMA machine.  
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Figure 10. An overview of vFlowComb workflow 
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We set up 4 dedicated servers (2 clients and 2 receivers). 
Each server is connected to a 10GB NIC. We deploy 32 VMs 
on the clients and receivers as traffic generators and traffic 
sinks, respectively. They can generate a maximum of 32 traffic 
flows, which can be processed by 8 service chains. The traffic 
flows are processed by VNFs in the service chain in tandem 
through the virtual switches.  

NFV workloads: We evaluate vFlowComb using TCP 
traffic and Telco NFV traffic. For TCP traffic, we set all VNFs 
as packet forwarding components. For real NFV traffic, the 
VNFs are deployed as Clearwater components, as described in 
Section 2. We generate heavy and medium traffic by tuning the 
packet generation rate (packet per second) at the generators. At 
each client VM, we use Netperf to generate 512B 
TCP_STREAM traffic at 24Kpps (medium) and 32Kpps 
(heavy). We use a small packet size to maximize the system 
stress [37]. For the NFV workload reg-dereg, we set the input 
call rate as 300 call/s (medium) and 500 call/s (heavy) and for 
reg-invite, we set the input call rate as 100 call/s (medium) and 
150 calls/s (heavy). The gateway of the NFV deployment em-
ploys a load balancer so that the traffic flows are balanced 
among service chains based on VNF loads.  

Test cases: We test all three traffic loads (TCP STREAM, 
reg-dereg, and reg-invite) using input traffic capacity, VNF 
number in the service chain, and co-located contention. First, 
we vary the input traffic capacity. Second, we vary the differ-
ent VNF numbers in a service chain. For TCP traffic, we 
change the length of the service chain by adding or reducing 
the number of packet forwarding VMs. For the Telco traffics, 
we change the VNF number by consolidating the Clearwater 
function modules on the remaining VNFs. Finally, we vary the 
co-located contention on the NUMA machine. In the conten-
tion scenario we co-locate eight VMs running a single instance 
of GraphAnalytic from CloudSuite [38]. Each test case lasts 
300s. We report the average end-to-end traffic flow perfor-
mance and average system CPU utilization in Figure 13. Note 
that we report the normalized performance of different traffic 
loads. For TCP traffic, we report the packet receive rate, which 
is the ratio of received packets to the sent packets, with a max-

imum value of 1. For the Telco traffics, we report the success-
ful call rate as defined in section 2.2.2.  

Baseline scheduling polices: We use two baseline schedul-
ing policies. The first policy is a NUMA node-aware schedul-
ing policy (A). This policy schedules all threads in the flow 
data path onto the destination VNF socket. The second policy 
is a contention-aware scheduling policy (B). It places threads 
on the core with the least performance slowdown, but ignores 
the inter-socket communication overheads.  

2) Overall Performance Improvement Analysis 
To From Figure 13 we can draw several key insights that 

show the benefits of vFlowComb. 

Overall benefits: In all scenarios, we observe that vFlow-
Comb outperforms other methods in terms of average end-to-
end performance and global CPU usage. Though the end-to-
end performance improvement may be not significantly im-
proved in some scenarios, we can always expect at least 7% 
global CPU usage savings brought by vFlowComb.  

Benefits for the long service chain: When there are 3 
VNFs in the service chain, both A and B suffer significant per-
formance degradation. The contention-aware policy performs 
slightly better than NUMA-aware policy since global conten-
tion increases with the more consolidated VNFs. Nevertheless, 
vFlowComb is still able to avoid performance degradation by 
finding the best flow data path with the least end-to-end per-
formance slowdown, while saving global CPU resources.  

Benefits for the latency sensitive traffic loads: The suc-
cessful call rate is determined by the request response time. 
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Figure 13. Average end-to-end traffic flow performance and average system CPU utilization 

Client

VM

Receiver

VM
VNF VNF VNF

......32 VM

NUMA

N
IC

N
IC N

IC

N
IC

N
IC

N
IC

Receiver
Receiver

N
IC

N
IC

Switch

Client

VM

Receiver

VM
VNF VNF VNF

Client
Client

Max. 32 flows, 8 service chains

Figure 12. NFV environment setup for evaluation. 

 



2016 IEEE/ACM 49th International Symposium on Microarchitecture 

  

1
2

3
4

5
6

7
8

16
32

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 8 16 32 64 128

1
2

3
4

5
6

7
8
1…
3…

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 8 16 32 64 128

TCP STREAM NFV reg-dereg

 

Figure 16. Computational overheads of our DPBM with various NFV 

workloads. (X=system core number, Y=NIC queue number, 

Z=computation time) 

 

Both reg-dereg and reg-invite are TCP traffics with mixed 
packet sizes. In medium traffic scenarios, vFlowComb demon-
strates about 20% more successful call rate than A and B. 
When the input call rate is increased, vFlowComb can average 
50% more successful calls than A and B. Compared to stable 
stream traffic, vFlowComb performs a little worse when run-
ning Telco workloads (about 14% performance degradation). 
This is because the packet size and flow direction vary fre-
quently in Telco traffic, while vFlowComb works under a low 
PMU sampling rate (1 sample/s) to reduce the computation 
overheads. Nevertheless, vFlowComb still outperforms the 
baseline policies with performance improvements from 15% to 
100%. 

3) Zoomed Performance Improvement Analysis 
To We further examine the effectiveness of vFlowComb 

when processing extremely high throughput traffic flows. In 
this test, we zoom in the packet receiving process. We employ 
a client machine and a receiver machine to establish a peer-to-
peer network. We opt to use the Mellanox 40 GB NICs to 
completely remove any NIC bottleneck. We deploy various 
numbers of VMs (8, 16, 24, and 32) on the client machine and 
deploy the corresponding number of destination VMs on 
NUMA machine. For each client VM, we choose 3Kpps and 
6Kpps TCP STREAMs for packet generation rate of medium 
and heavy traffic, respectively. We report the packet receive 
rate improvements over the baseline NUMA node-aware 
policy, as shown in Figure 14. We can observe that 
vFlowComb achieves an average of 20% more packet receive 
rate than the NUMA node-aware scheduling policy. The high-
speed NIC can clearly reveal the bottlenecks in the NFV data 
plane. Under these circumstances, vFlowComb can 
intelligently place threads in the flow data path that minimizes 
the end-to-end performance slowdown. Interestingly, in the 
scenario with heavy traffic and small packet size (6Kpps, 
256B), the performance improvement of vFlowComb drops 
when increasing the number of VMs. This is because this 
traffic poses a significant challenge to the I/O subsystem, 
creating a CPU time slice discontinuity.  

We explore the thread mapping decision distributions under 
varying system traffic loads and co-located contentions to 
further demonstrate the correlation between thread mapping 

decisions and system traffic/contention status. We collect the 
scheduling decisions statistics for each mapping pattern listed 
in Figure 4. As shown in Figure 15a, we notice that the 
distribution of mapping E is mainly adopted in the medium 
traffic scenarios where ksoftirq is placed on a NIC node. 

The mappings F and G are adopted when the traffic load 
increases. In these situations, vFlowComb frequently schedules 
ksoftirq and vhost-net to destination VM nodes to 

avoid the expensive inter-socket communication at 
ksoftirq-vhost and vhost-VM stages.  

We then introduce co-located contention delve deeper into 
the thread scheduling trends of vFlowComb. We deploy 4 
single-node GraphAnalytic VMs on the NUMA machine to 
stress the memory subsystem. To create an irregular memory 
access pattern, we do not pin vCPUs to specific pCPU cores. 
As shown in Figure 15(b), the mapping decisions are mainly 
balanced among configuration E, F, and G, since contention 
occurs irregularly on different NUMA sockets. 

B. Overheads Analysis 

In this section, we evaluate the overheads of DPBM based 
CTS mechanism. We first evaluate the computation overhead 
of our DPBM algorithm with various core and NIC hardware 
queue numbers. In this case, we assume that the ksoftirq 

core pool and vhost core pool are identical in size. We ex-

plore the performance of DPBM using TCP STREAM (3Kpps) 
and reg-dereg (250 call/s) respectively.  

As shown in Figure 16, we can observe that the DPBM-
based CTS can achieve optimal thread mappings within 0.77s 
(TCP STREAM) and 1.22s (NFV workloads) in a standard 
SHVS configuration (128 cores, 32 NIC queues). 

VI. RELATED WORK 

Recent studies highlight various opportunities for enhanc-
ing networking performance. While all of the prior studies ei-
ther focus on optimizing the I/O performance on NUMA sys-
tem or improving the virtual switch performance, our research 
bridges the gap between networking function virtualization and 
NUMA-based server systems to provide more flexible data 
plane flow management. 

Thread mapping on multicore and NUMA system. Sev-
eral research efforts have developed mechanisms that mitigate 
hardware resource interference and improve the throughput on 
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Figure 14. Performance improvements over NUMA-aware policy 

under extremely high throughput traffics.  
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multicore and multi-socket NUMA systems. Chadha et al. pro-
posed a run-time system to determine the optimal thread count, 
processor voltage, and frequency [39]. Sirdharan et al. pro-
posed a model to predict optimal thread count [40]. Tang et al. 
[25] develop an adaptive approach to achieve optimal thread-
to-core mappings in a data center to reduce the co-located in-
terference. Blagodurov et al. [36] observe the limitation of con-
tention-aware algorithms designed for UMA systems and pre-
sent new contention management algorithms for NUMA sys-
tems. Liu et al. [15] characterize the impact of architecture-
level NUMA access overhead on cloud workload consolidation 
and incorporate the overhead into the hypervisor’s virtual ma-
chine memory allocation and page fault handling routines. 

Networking I/O optimization. Several prior works have 
been proposed to reduce the networking I/O overhead in the 
operating system, either in kernel or user space. Among those, 
Affinity-accept [41] and FastSocket [42] explore TCP connec-
tion traffic and improves the packet processing efficiency in 
Linux kernel by affinitizing the incoming flows to one core. 
However, they only address conventional network I/O issues in 
the operating system and avoid providing analysis on NUMA 
deployment and virtual switches.   

NUMA-aware I/O optimization. Some recent works have 
addressed the networking I/O performance on NUMA-based 
hardware. Hyper-switch [43] employs a dynamic offloading 
scheme to distribute packet processing to idle processor cores; 
this scheme takes into account the impact of CPU cache locali-
ty and NUMA systems. NetVM [44] proposes a NUMA-aware 
queue/thread management technique that keeps the consistency 
of core-thread affinity of each flow on each NUMA node. 
However, they did not consider thread dependencies and did 
not design for HSP-based NFV deployment. 

VII. CONCLUSION 

NFV plays an important role in current Telco and cloud da-
ta centers. It relies heavily on the performance of commodity 
standard high volume servers. We observe the processing style 
of these workloads manifests as a heterogeneous software pipe-
line, in which the traffic flows are sequentially processed by 
heterogeneous software components. We conduct intensive and 
extensive characterizations of NFV deployment on current 
NUMA-based SHVS using real world Telco workloads. Our 
experimental results indicate that HSP introduces heterogene-
ous performance slowdown at different stages (intra-stage per-
formance slowdown). The intra-stage performance slowdown 
is jointly determined by inter-socket communication overheads 
and co-located contention. We build a performance slowdown 
estimation model that accurately evaluates the intra-stage and 
end-to-end performance slowdowns. We then design a collabo-
rative thread scheduling mechanism that is tailored to thread 
mapping in HSP. It exploits a dynamic programming-based 
end-to-end performance slowdown estimation method that 
accurately maps threads in the NFV data plane to improve traf-
fic throughput (on average 23%) and increase the CPU utiliza-
tion (7%) with negligible overhead (decision making time less 
than 1s). 
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