
2016 IEEE/ACM 49th International Symposium on Microarchitecture

Towards Efficient Server Architecture for Virtualized Network

Function Deployment: Implications and Implementations

Yang Hu*, Mingcong Song*, Huixiang Chen, Tao Li

IDEAL Lab, University of Florida

Gainesville, FL, USA

{huyang.ece, songmingcong, stanley.chen}@ufl.edu, taoli@ece.ufl.edu

Abstract—Recent years have seen a revolution in network in-

frastructure brought on by the ever-increasing demands for data

volume. One promising proposal to emerge from this revolution

is Network Functions Virtualization (NFV), which has been wide-

ly adopted by service and cloud providers. The essence of NFV is

to run network functions as virtualized workloads on commodity

Standard High Volume Servers (SHVS), which is the industry

standard.

However, our experience using NFV when deployed on mod-

ern NUMA-based SHVS paints a frustrating picture. Due to the

complexity in the NFV data plane and its service function chain

feature, modern NFV deployment on SHVS exhibits a unique

processing pattern—heterogeneous software pipeline (HSP), in

which the NFV traffic flows must be processed by heterogeneous

software components sequentially from the NIC to the end re-

ceiver. Since the end-to-end performance of flows is cooperative-

ly determined by the performance of each processing stage, the

resource allocation/mapping scheme in NUMA-based SHVS must

consider a thread-dependence scheduling to tradeoff the impact

of co-located contention and remote packet transmission.

In this paper, we develop a thread scheduling mechanism that

collaboratively places threads of HSP to minimize the end-to-end

performance slowdown for NFV traffic flow. It employs a dy-

namic programming-based method to search for the optimal

thread mapping with negligible overhead. To serve this mecha-

nism, we also develop a performance slowdown estimation model

to accurately estimate the performance slowdown at each stage of

HSP. We implement our collaborative thread scheduling mecha-

nism on a real system and evaluate it using real workloads. On

average, our algorithm outperforms state-of-the-art NUMA-

aware and contention-aware scheduling policies by at least 7%

on CPU utilization and 23% on traffic throughput with negligible

computational overhead (less than 1 second).

Keywords—NFV; Networking; thread scheduling; NUMA

I. INTRODUCTION

Today’s service providers need greater performance, flexi-
bility, and adaptability from the network services that support
them. Gartner forecasts that the number of devices connected
to the Internet of Things (IoT) will reach 26 billion by 2020,
and impose an unprecedented challenge to data transmission
services and data center network infrastructures [1]. To meet
the rapidly increasing volume of traffic and deliver both capital
(Capex) and operational (Opex) expenditure advantages, thir-
teen of the world’s largest service providers (AT&T, Verizon,
China Mobile, CenturyLink, etc.) propose Network Functions
Virtualization (NFV) [2]. NFV allows data center networking

functions such as load balancing, firewalls, and switching to be
implemented as software or virtual machine-based Virtualized
Network Functions (VNF). The VNFs are consolidated on
Standard High Volume Servers (SHVS) with software switch-
ing instead of fixed-function specialized hardware. By doing
so, NFV creates highly flexible and adaptable network re-
sources that can be deployed quickly to respond to changing
demands at lower cost. To date, NFV has gained over 220 in-
dustry participants including the European Telecommunica-
tions Standards Institute (ETSI) [3], the Linux Foundation
OPNFV [5], and Oracle [6]. According to a recent study, the
global NFV market is expected to grow 52% from 2013-2018
[7].

Because SHVS are expected to continue to serve as the
backbone for network infrastructure, their performance when
running VNFs must be considered. Intel has proposed an initial
x86-based reference server architecture, Intel Open Network
Platform [8], to enable NFV deployment. However, we ob-
serve current SHVS architecture support for NFV deployment
falls short on generality and flexibility, and is not fully pre-
pared for NFV. For example, although existing hardware-based
high performance I/O technologies such as Single Root I/O
Virtualization (SR-IOV) [9] and Data Direct I/O (DDIO) [10]
can achieve line rate VM-to-network throughput by bypassing
the hypervisor layer, they do not support overlay-based net-
work virtualization for multi-tenant and VM migration, making
them less flexible in modern SDN/NFV deployment. More
importantly, VM-to-VM traffic, which is dominant in NFV
enabled environments, must traverse the PCI Express bus in
SR-IOV and DDIO, leading to throughput that is inferior to the
throughput in a software switch.

In this study, we characterize the architectural overhead of
SHVS using real Telco and cloud NFV workloads. We observe
that NFV deployment presents more performance demanding
and complex processing patterns than typical IT workloads. In
a NFV environment, a packet flow needs to traverse the end-to-
end data path, namely the NFV data plane, which includes a
variety of software components that reside within VNFs (e.g.
virtual NICs and packet processing routines within VNFs) and
hypervisor virtualization stacks (e.g. physical NICs, hypervisor
I/O handler, virtual switch threads). A VNF may also process
traffic flows in tandem with other VNFs in service chains. We
term this packet processing style as a Heterogeneous Software
Pipeline (HSP).

The software pipeline [11] is a parallel application that con-
sists of several communicating stages that process streams of
input data in tandem. This processing style demands end-to-

978-1-5090-3508-3/16/$31.00 ©2016 IEEE

* Authors with equal contribution.

2016 IEEE/ACM 49th International Symposium on Microarchitecture

end performance guarantees (either throughput or latency) for
network flows. This indicates that the performance of an HSP
is cooperatively determined by the performance of each pro-
cessing stage throughout the processing path. In other words,
the end-to-end performance slowdown of an NFV flow is the
aggregated slowdown at each pipeline stage.

Since all software components in the pipeline are deployed
on the shared computing resources of SHVS, finding efficient
and effective resource allocation/mapping schemes for these
software components, or threads, is of the utmost importance.
However, existing SHVS hardware resource allocation
schemes and performance estimation models lack support for
software pipeline-style applications. Specifically, when a pack-
et is passed between software components or threads that be-
long to neighboring pipeline stages, the performance slowdown
for this packet at this stage can be decomposed into the slow-
down caused by resource interference and the slowdown
caused by inter-thread communication.

Though current thread and core allocation methods [12-14]
can manage the former slowdown, they overlook the perfor-
mance slowdown caused by inter-stage data transfer overheads.
Considering that Non-Uniform Memory Access (NUMA) [15]
architectures are ubiquitously adopted in contemporary SHVS,
the message pass/packet transfer between stages in HSP causes
the thread to access data from the memory of its predecessor
thread, while its predecessor’s memory may reside in remote
NUMA nodes. Therefore, the inter-thread communication
overheads must be factored in the performance slowdown es-
timation model in accordance with interference based model to
provide thread-dependence scheduling in each stage of the
software pipeline.

Designing the aggregated performance slowdown estima-
tion model for end-to-end data path in NFV raises several
questions. How can one quantify the performance slowdown
caused by interference and communication at each stage?
Moreover, how can these be combined into a comprehensive
slowdown model? Finally, how can one compare the perfor-
mance slowdown in the presence of varying resource sensitivi-
ties at each stage? To address these issues, we present a new
performance model for estimating the end-to-end performance
slowdown of flows in software pipeline processing environ-
ments such as NFV. Our model assesses the intra-stage per-
formance slowdown caused by hardware resource contention
and inter-thread/core communication overheads. It also esti-
mates the end-to-end performance slowdown by summing the
weighted inter-stage slowdown at each stage.

Leveraging our holistic performance estimation model, we
design vFlowComb, a dynamic thread mapping mechanism
that enables thread-dependence mapping for NFV service
chains. To achieve this goal, vFlowComb features a Collabora-
tive Thread Scheduling (CTS) mechanism that guarantees to
minimize the end-to-end performance slowdown for each NIC
hardware queue. CTS exploits a novel Dynamic Programming-
Based Mechanism (DPBM) to find the thread-core mapping
with the minimum aggregate performance slowdown, while
considerably reducing the performance sampling and decision-
making overheads.

This paper makes the following contributions:

 We explore the deployment of modern NFV workloads on

current SHVS architectures. We observe that NFV adopts a

heterogeneous software pipeline (HSP) processing style,

which presents significant challenges for current thread

mapping mechanisms and performance estimation tools.

 We explore the performance slowdown in the HSP on

modern NUMA architectures. We propose a performance

estimation model that evaluates the performance slowdown

of each stage of HSP by considering hardware resource

contention and inter-thread/core communication overheads.

 Based on our performance slowdown estimation model, we

propose vFlowComb; a thread mapping mechanism that

minimizes the end-to-end performance slowdown. We

implement vFlowComb using Open vSwitch and OpenStack.

The rest of this paper is organized as follows. Section 2

gives a brief introduction of the NFV data plane and network
I/O NUMA issue. Section 3 characterizes the NFV deployment
on NUMA-based SHVS and proposes performance slowdown
estimation model. Section 4 presents the collaborative thread
scheduling mechanism for heterogeneous software pipelines.
Section 5 evaluates our design. Section 6 discusses related
work and Section 7 presents our conclusions.

II. BACKGROUND AND MOTIVATION

A. Network Functions Virtualization

1) Control/Data Plane
In software-defined networks, the network environment can

be split into three planes: the application plane, the control
plane, and the data plane. Tenants interact with the application
plane, requesting deployment of their virtual private networks.
The control plane responds to these requests and instantiates
virtual links between tenant VMs and VNFs using tunneling
techniques [16] or encapsulation policies. The data plane in-
stantiates configurations furnished by the control plane and
provides a network traffic backbone for each tenant’s virtual
private network. The data plane consists of all tenant VMs and
VNFs, and the virtual switches by which they are connected.
All components are consolidated on a SHVS architecture and
are allocated on shared computing resources. Figure 1(a) shows
a simple tenant virtual network with a VM and a firewall. In
this setup, all incoming traffic must pass through a firewall
before entering the tenant VM. Each packet will traverse the

Tenant VM

VNF
Physical Machine

Firewall Software

Protocol Stack

vNIC Driver

vhost

pNIC Driver

pNIC

Virtual Switch

vNIC

Tenant VM
Physical Machine

Application

Protocol Stack

vNIC Driver

vhost

pNIC Driver

pNIC

Virtual Switch

vNIC

Virtual

Network

Function

Virtualization

Stack

Firewall VNF

Switch Fabric

Internet

Network

(a)

(b)
Figure 1. Heterogeneous software pipeline (HSP) in NFV data plane

2016 IEEE/ACM 49th International Symposium on Microarchitecture

software components before being processed in the VNF and
the VM.

2) Software Pipeline in Data Plane
Here, we describe the detailed processing patterns of the

software pipeline in NFV data plane and illustrate a software
pipeline implementation based on the Linux kernel with NAPI,
a virtual machine, and an Open vSwitch-based software switch.
Each software component receives packets from its pre-
decessor, processes them based on its functionality, and sends
them to the successor components, as shown in Figure 1(b).

When an incoming packet arrives at the input buffer of a
physical NIC, it will be DMA’d to the kernel DMA RX-buffer,
sk_buff, which is allocated in main memory. In multi-10G
networks, this buffer allocation/de-allocation could
significantly stress the memory subsystem (tens of millions of
allocations per second). Once in the buffer, a hardware
interrupt is triggered. An interrupt handler associated with one
of the processor cores is called and schedules a softIRQ
context to its local core or another CPU core. All CPU cores
examine their poll queue using the poll method and process the
queued softIRQ context. Modern NICs support multiple
receive and transmit descriptor queues (multi-queue)
technique. The NIC controller computes a hash value for each
incoming packet. Based on these hash values, the NIC assigns
packets of the same data flow to a single queue and distributes
traffic flows evenly across queues. To maximize the network
transmission performance in multi-core server systems,
Receive-side Scaling (RSS) [17] and Receive Packet Steering
(RPS) are used. RSS enables multiple NIC queues to have their
own associated CPU core while RPS assigns a specific core for
a softIRQ context. These core assignments should be carefully
designed to avoid unbalanced CPU loads.

Virtual Switch: In virtual machines, the hypervisor pro-
vides intra-server networking connectivity for virtual
machines. In this virtual network, the hypervisor creates one or
more virtual NICs (vNICs) for each VM to connect to physical
NICs (pNICs) of the host server and facilitates network
connection between the VM network stack and hypervisor
network stack through virtualized switches (e.g. Linux Net
bridge and Open vSwitch) [18]. When using virtual switches,
the intra-server network connection is no longer limited by
network speed but memory bandwidth since no packet must
pass through PCI-E links to special purpose hardware. This
enables high-performance communication among VMs. More
importantly, virtual switches enable cross-server bridging in a
way that makes the underlying server architecture transparent.
A virtual switch within one server can transparently join with
another virtual switch in another server, simplifying VM
migration.

B. NFV Workloads

In this paper, we use Clearwater [19] as our NFV plat-form.
Clearwater is a cloud-based Telco-grade IP Multimedia
Subsystem (IMS). IMS is widely adopted by large Telcos to
provide IP-based voice, video, and messaging services based
on soft-switching. Clearwater consists of a series of typical
function components with various resource utilization patterns

in a Telco data center, and could be easily deployed as VNFs in
NFV environment.

1) Workloads Description
Bono is a scalable edge proxy in the NFV environment. It

serves as a gateway and provides connections to the Clearwater
system for clients. Sprout processes the incoming requests
from Bono, acting as a registrar and authoritative routing proxy.
The Sprout cluster includes a memcached cluster to store client
registration data. Homestead provides web services interface to
Sprout for retrieving authentication credentials and user profile
information; providing a subscriber server and employs
Cassandra as the backing store for its managed data.

2) Testing Methodology for Clearwater
We deploy Clearwater as virtual machines in our character-

ization and evaluation (the detailed configuration is described
in Section 3.1). In this paper, we use SIPp [20] to generate real
world Telco NFV traffic. It is a performance-testing tool for
Telco infrastructure and can establish and release multiple calls
to an NFV cluster. We choose user registration and deregistra-
tion (reg-dereg) calls for the traffic flow in this paper. A reg-
dereg call consists of three requests: one for registration, one
for authentication, and one for deregistration. SIPp initiates
each call with an initiated call rate. If a response to a request
times out (10s), the call will be tagged as failed. SIPp initiates
call with an initiated call rate. Each round of experiment runs
for 300s. We run 5 trials and take the average results. We use
the Successful Call Rate (SCR), which is used as an indicator
of the service quality of the NFV system. SCR gives the ratio
of the successful call rate to the initiated call rate. The maxi-
mum SCR is 1.

C. Network I/O NUMA

With NUMA architectures, each socket (i.e. processor
node) is associated with a local memory node through the
memory controller. Multiple cores in one socket share the last
level cache, memory controller, and PCI-e interface (e.g. NIC)
through the intra-socket interconnect. Inter-socket
communications are enabled through point-to-point high-speed
interconnects (e.g. Intel’s QPI). In a multi-socket server with
NUMA enabled, the PCI devices are associated with a
subgroup of NUMA nodes, as shown in Figure 2.

III. CHARACTERIZING NFV WORKLOADS IN SHVS

In this section, we characterize the performance of NFV
flow to identify inefficiencies in current NUMA-based SHVS
from the viewpoint of architecture level.

L1/L2 L1/L2 L1/L2L1/L2

Interconnect

PCIe/F

LL cache

core

Ethernet

MC

S
to

 S
 I/

F

uncore

Sk_b
u

ff

m
em

o
ry

NIC A

L1/L2 L1/L2 L1/L2L1/L2

Interconnect

PCIe/F

LL cache

core

Ethernet

MC

uncore

m
em

o
ry

NIC A
Dest-
VM

S
to

 S
 I/

F

Figure 2. I/O NUMA. We interchangeably use NUMA node, socket

and processor in this paper.

2016 IEEE/ACM 49th International Symposium on Microarchitecture

A. Characterization Setup

Hardware Platform: Our physical platform configuration
is shown in Figure 3. The system uses four Intel X520 SPF+ 10
Gigabit Ethernet NICs divided into two groups and are associ-
ated with two NUMA nodes respectively. To clearly expose
the bottlenecks, we configured the IBM x3850 system as 2
sockets and only use one NIC in the characterization.

Software Platform: We use the open source cloud plat-
form OpenStack Kilo [21] to build a full-fledged cloud envi-
ronment for NFV deployment. Our test cloud consists of three
compute nodes, one cloud controller node, and one networking
node. All compute nodes run RHEL 6.4. The network service
Neutron helps tenants to build their own private software de-
fined networks and Open vSwitch based virtual switches. All
VNFs and tenant VMs are deployed as virtual machines with 2
vCPU and 4GB memory. The VMs are consolidated on
NUMA-based SHVS. They communicate with each other us-
ing GRE [16]. The networking hierarchy is shown in Figure 3.

Workloads: Our real world NFV workloads are introduced
in Section 2. To clearly identify the bottlenecks, we also use
the network intensive micro-benchmark Netperf [22] to gener-
ate UDP STREAM and TCP STREAM as stable and control-
lable traffic loads. As shown in Figure 3, we deploy NFV work-
loads or simple networking workloads on VNFs/tenant VMs as
packet receivers. We deploy client VMs on other machines as
load generators.

B. Characterization of Heterogeneous Software Pipeline on

NUMA based SHVS

We investigate the performance and architectural behaviors
of current NUMA-based SHVS when executing heterogeneous
software component pipeline in NFV deployment. We vary the
thread-to-socket/core mapping and co-located contentions to
examine the performance trade-offs in HSP. These results indi-
cate that new performance modeling tools are needed.

1) Methodology
As we described in Section 2, the flow path in the NFV

data plane can be seen as a packet traversing the software
components. The software components in the NFV data plane
are the ksoftirq kernel thread that handles the NAPI routine

and the virtual switch routing process in which the packets are
written to TAP’s socket buffer, and the vhost-net thread

that copies the packets from the socket buffer to the VM’s
vNIC buffer. In this characterization, we focus on the packet
receiving process (i.e. incoming flow processing) since it
contains all of the critical software components in the NFV
data plane. We collect the architectural statistics using Intel’s
Performance Counter Monitor tools [23].

2) Impacts of Inter-socket Communications
We first vary the thread-to-socket mappings to investigate

the impact of inter-socket communication (CPU-to-CPU and
CPU-to-RAM) on the performance of HSP.

In this experiment, we study seven different thread-to-
socket mappings with different socket affinities for the
ksoftirq kernel thread, the vhost-net thread, and the

VM thread. The different configurations, A-G, are shown in
Figure 4(a). A local node consists of a NUMA node and a NIC.
Different threads on the same socket are mapped onto different
cores. We consider three network traffic loads. We use Netperf
to generate 1400B UDP packets and 64KB TCP packets. We
also use SIPp to generate a traffic flow at a rate of 300
calls/second. We report the cache miss per packet and received
packet throughput (packet per second) in Figure 5(a). For the
NFV loads, we report the successful call rate as defined in Sec-
tion 2.

Observations: For the UDP flow we can observe approximate-
ly 30 LLC misses per packet in the ksoftirq in configura-

tion G. This is caused by the inter-socket DMA transmission
overhead since the incoming packets should be brought into
LLC for ksoftirq processing on the remote NUMA node.

In configuration E, we can observe there are around 5 LLC
misses per packet in the vhost-net and VM threads, and

nearly no LLC misses at ksoftirq. This is because vhost-

net needs to access the vNIC of the target VM across the

sockets. We can also observe the traffic throughput increases
from 1.2Mpps to 1.45Mpps, while the collocated ksoftirq,

vhost-net, and VM gain the high-est throughput at

1.71Mpps.

To examine a real NFV deployment scenario, we increase
the VM consolidation (5 VMs) and traffic flow and re-run the
tests. We present the results in Figure 5(b). We can observe the
performance in configuration E experiences a severe drop. The
LLC misses per packet for the VM and vhost-net threads

increase to around 20 misses per packet and the traffic
throughput drops from 1.4Mpps to 1.02Mpps. This is because
intensive inter-socket communication occurs between the
vhost-net thread and the vNIC buffers.

Finding 1: In this experiment, we observe that the inter-

socket communication overheads caused by asymmetry in

NUMA-based SHVS significantly impact the performance of

heterogeneous software pipeline workloads like NFV.

TABLE I. PLATFORM CONFIGURATIONS

Item Value

SHVS system IBM x3850 X5, 8-socket NUMA

Processor Intel Xeon X7550, 2.0GHz (Nehalem)

8 physical cores (16 with Hyper-Threading)/socket

18MB L3 cache for each socket

64KB L1 cache and 256KB L2 cache for each core

Memory 64GB, DDR3 for each socket, 512GB in total

Interconnection Intel QuickPath Interconnect, 6.4GT/s

NIC Intel X520 10GB, Mellanox 40GB

Associate with socket 0 and 4

NUMA compute

host

Neutron

compute host

Controller

Network node

Open vSwitch

Neutron

Open vSwitch

vport

Gre tunnel

Ethernet

VM VM VM VM

vportvport vport

Load generators Packet receivers

Figure 3. Framework setup

2016 IEEE/ACM 49th International Symposium on Microarchitecture

Finding 2: The thread heterogeneity of each stage in a soft-

ware pipeline exhibits sensitivity to hardware resources and

inter-socket communication overheads, while also being relat-

ed to workload intensity. For example, we can observe the

inter-thread communication between ksoftirq and

vhost-net is more sensitive to inter-socket access than

inter-thread communication between the NIC driver and

ksoftirq when more VMs are consolidated.

Finding 3. The thread heterogeneity of each stage incurs
heterogeneous performance slowdown at each stage. However,
the low-performance slowdown at an earlier stage does not
necessarily result in a low end-to-end performance slowdown
for the whole pipeline. In Figure 5(b), it is clear that
configuration E exhibits lower slowdown at the NIC-
ksoftirq stage than configuration G does, even though its

end-to-end throughput is lower than G.

3) Impacts of Intra-socket Co-located Contentions

We further investigate the performance of a heterogeneous

software pipeline in the presence of intra-socket co-located

contention. We study the performance slowdown caused by

the contention of co-located software components and other

user workloads to derive the performance implications.

We first investigate the impact of thread-to-core mappings.

We design six thread-to-core mappings as shown in Figure 4(b).

In each mapping, all threads (ksoftirq kernel thread,

vhost-net thread, and VM thread) are mapped onto the

same NUMA socket and may use SMT sharing. We repeat the

procedure from Section 3.2.2, using 4VMs in this case due to

the limits of available cores, and report the cache miss per

packet and traffic throughput in Figure 6.

We observe that the throughput in configurations A, B and

E is significantly lower to the other configurations in the sin-

gle VM scenario. In addition, the LLC misses per packet at

ksoftirq and VM are very high (around 35 misses per

packet). This is because the VM is running in user space while

the ksoftirq is running in kernel space. The frequent con-

text switching leads to severe performance degradation.

Finding 4: The ksoftirq and VM threads are very con-

tentious. It would be better to co-locate them on separate

CMP cores, not on single core with SMT.
Finding 5: All scenarios will come across performance

bottlenecks when more VMs are consolidated. Intensive
resource sharing causes very high cache misses at all threads,
limiting throughput due to resource contention.

C. Performance Slowdown Model

Motivated by our characterizations of the HSP inter-socket

communication overheads and intra-socket co-located conten-

tion overheads, we observe the necessity to find the best trade-

off between them. Though many prior studies have explored

application slowdown caused by resource sharing or asymmet-

ric communication overheads [13], [14], [24-35], they are

designed for evaluating the overall slowdown for applications.

There is not an explicit model to measure the inter-stage per-

formance slowdown that coordinately considers both the

communication overhead and application slowdown at each

thread core in HSP. We develop an enhanced estimation mod-

el to solve this problem.

We partition an HSP into several stages; each stage consists

of a thread and its communication path. The intra-stage per-

formance slowdown is caused by the inter-socket communica-

tion overhead (potential) and application contention slowdown

at current stage thread, as depicted in Figure 7.

A B DC

local

ksoftirq thread

E F G

vhost-net VM

remote

(a) Thread-to-socket configurations

A B DC E F

(b) Thread-to-core configurations (threads are mapped on the same NUMA socket)

Figure 4. Thread-to-socket/core mapping configuration

A B C D E F G
0

10

20

30

40

50

P
a

c
k
e

t
th

ro
u

g
h

p
u

t(
M

p
p

s
)

C
a

c
h

e
 m

is
s
 p

e
r

p
a

c
k
e

t

 softirq_UDP vhost_UDP VM_UDP softirq_TCP vhost_TCP VM_TCP

 softirq_NFV vhost_NFV VM_NFV Throughput_UDP Throughput_TCP Throughput_NFV

0.0

0.4

0.8

1.2

1.6

2.0

A B C D E F G
0

10

20

30

40

50

P
a

c
k
e

t
th

ro
u

g
h

p
u

t
(M

p
p

s
)

C
a

c
h

e
 m

is
s
 p

e
r

p
a

c
k
e

t

 softirq_UDP vhost_UDP VM_UDP softirq_TCP vhost_TCP VM_TCP

 softirq_NFV vhost_NFV VM_NFV Throughput_UDP Throughput_TCP Throughput_NFV

0.0

0.4

0.8

1.2

1.6

2.0

(a) (b)

Figure 5. Performance and architectural behaviors of Inter-socket scenarios

A B C D E F
0

10

20

30

40

P
a
c
k
e
t

th
ro

u
g
h
p
u
t

(M
p
p
s
)

C
a
c
h
e
 m

is
s
 p

e
r

p
a
c
k
e
t

 softirq_UDP vhost_UDP VM_UDP softirq_TCP vhost_TCP VM_TCP

 softirq_NFV vhost_NFV VM_NFV Throughput_UDP Throughput_TCP Throughput_NFV

0.0

0.4

0.8

1.2

1.6

A B C D E F
0

10

20

30

40

P
a
c
k
e
t

th
ro

u
g
h
p
u
t

(M
p
p
s
)

C
a
c
h
e
 m

is
s
 p

e
r

p
a
c
k
e
t

 softirq_UDP vhost_UDP VM_UDP softirq_TCP vhost_TCP VM_TCP

 softirq_NFV vhost_NFV VM_NFV Throughput_UDP Throughput_TCP Throughput_NFV

0.0

0.4

0.8

1.2

1.6

(a) (b)

Figure 6. Performance and architectural behaviors of Intra-socket scenarios

2016 IEEE/ACM 49th International Symposium on Microarchitecture

We build our estimation model based on mature NUMA-

aware performance analysis models [15], [36] and our empiri-

cal studies. When a thread accesses remote memory (e.g. C2

accesses memory of C1), the performance degradation is

caused by four factors: memory controller contention (MC),

interconnect contention (IC), last-level cache (LC) and remote

access latency (RL). To estimate the inter-stage overheads

caused by inter-socket access, we explore how these factors

contribute to the HSP inter-stage performance degradation.

We conduct a series of experiments where the socket affinities

of ksoftirq, vhost-net, and VM threads (configurations

E, F, and G in Section 3.2) are gradually altered. We then vary

the contention flow number for each. We present the over-

heads contribution factors for all three stages, as shown in

Figure 8. We can observe that, though the four factors’ contri-

butions to performance degradation change slightly when in-

put flow numbers vary, different stages still manifest typical

distributions. For example, the ksoftirq is more sensitive

to LC and vhost-net is more sensitive to MC, which can

be expected based on the characterizations in Section 3.2.
Prior work [15] proposes to use Performance Monitoring

Units (PMU) to quantify the four factors. In this solution, the
reciprocal of last level cache hit rate (L3_hit) is used for
evaluating the LC. The cycle loss due to L3 misses (cycle_loss)
is used to evaluate the MC. The cycle_loss at the remote node
is used to measure IC. The RL is expressed by the ratio
between local IPC to remote IPC. The correlation coefficients
between some PMU readings and the corresponding NUMA
overheads are around 0.9. However, [15] estimates the NUMA
overheads by naively adding up all four PMU readings. This
may lead to less accurate evaluation results since different
NUMA performance factors have various contributions to the
inter-socket NUMA overhead at a stage. This is unacceptable
in HSP, because the accumulated error estimation at each stage
may lead to large deviations.

We present an enhanced model that estimates the intra-
stage overheads as a weighted sum of PMU readings. Take the
intra-stage overheads calculation between C1 and C2 for ex-
ample. There are four socket candidates for thread C2. For
each socket candidate, the required PMU metrics are: the
L3_hit|candidate_socket, the cycle_loss|C1_socket, the cycle_loss| candidate

_socket, and the IPC| C1_socket / IPC| candidate_socket. The required
PMU metrics are weighted to the corresponding overhead con-

tribution factor at this stage. The weighted sum indicates the
inter-socket overhead between the C1 socket and the candidate
sockets at this stage. We call this sum the performance slow-
down index.

Now we possess a performance estimation model that is
capable of evaluating the performance slowdown of a stage of
HSP. We validate this model by examining the end-to-end per-
formance slowdown in a series of experiments. In the valida-
tion, we test three scenarios, configurations E, F, and G as
shown in Figure 4(a), since they are the typical scenarios with
inter-socket communication at different stages in an HSP. We
vary the input flow number and present the corresponding per-
formance slowdown index, as shown in Figure 9. The results
illustrate that our revised architectural metrics can accurately
identify performance differences among different stages in
HSP. Given that, we can use it as an indicator for our thread
scheduling scheme that is tailored to HSP.

IV. VFLOWCOMB-EFFICIENT THREAD SCHEDULING FOR NFV

DEPLOYMENT

In this section, we present vFlowComb, an architecture
support thread mapping framework based on our HSP over-
heads estimation model. vFlowComb facilitates traffic load-
aware and priority-aware data plane hardware resource sched-
uling and provides a guarantee on the end-to-end NFV flow
performance on SHVS architecture. We introduce vFlowComb
based on the Open vSwitch implementation. To achieve this
goal, vFlowComb exploits a Collaborative Thread Mapping
Scheme (CTM). It features a dynamic programming-based
thread-mapping scheme (DPBM) to coordinate thread schedul-
ing in the NFV service chain.

A. Preliminary

Flexible and accurate NFV delivery requires that more data,
such as core affinity of VNFs, flow throughput, and NIC hard-
ware queue-flow mappings, be exposed to the NFV data plane.
Current NICs equipped with hardware-based packet classifica-
tion support this capability. Although beyond the scope of this

1vm 5vm 10vm 1vm 5vm 10vm 1vm 5vm 10vm
0%

20%

40%

60%

80%

100%

vhost-vmsoft-vhost

 MC

 IC

 LC

 RL

nic-soft

Figure 8. Architectural overheads contribution factors

1 flow 2 flows 4 flows 6 flows
0.0

0.4

0.8

1.2

1.6

P
e
rf

.
S

lo
w

d
o
w

n
 I

n
d
e
x

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e e f g metrics

0.0

0.3

0.6

0.9

1.2

Figure 9. Validation of performance slowdown index

Start C1 C2 End

Mem

S1 S2

C1
C2 ?

C2 ?

C2 ? C2 ?

Contention_slowdownComm_slowdown

Intra-stage slowdown

Figure 7 Intra-stage performance slowdown

2016 IEEE/ACM 49th International Symposium on Microarchitecture

paper, we can also implement software-/hardware-based packet
classification schemes for specific protocols to improve flexi-
bility and reduce Capex. In this study we assume that we can
obtain NIC hardware queue-flow mapping, thread affinities
and target VNF information for incoming flows, flow priori-
ties, and throughputs.

B. Collaborative Threads Scheduling

Contrasted to conventional thread scheduling mechanisms
that only focus on thread co-location contention mitigation
[14], we present a Collaborative Threads Scheduling (CTS)
mechanism that guarantees end-to-end performance in the
HSP. Specifically, we extend the existing contention-aware
thread scheduling mechanism by establishing a new dimension
that also considers inter-thread communication overhead be-
tween predecessor and successor threads in a service chain.

1) Problem Definition
We begin by introducing the system models. All software

components in an application constitute a software pipeline
(e.g. NFV service chains and virtual switch threads). Each ser-
vice chain, k, forms a pipeline, Pk, with Nk stages. All service
chains share the same source node, s, but terminate on a differ-
ent node, vd. Every stage, Sj, is characterized by its communi-
cation overhead, oj, with the predecessor stage, Sj-1. For exam-
ple, packets belonging to network flow Fk will be handled by
pipeline Pk and will be processed by a corresponding thread at
each stage. This thread will be mapped to core vm.

The problem can be defined as: given a set of K weighted
flows, F = {F1, F2, …, FK}, with weights, W = {w1, w2, . . . ,
wK}, where the weights express priority levels and each flow
has fixed source and destination nodes, optimize the overall
weighted system throughput/latency by finding the optimal
thread-core mapping for the individual flows. The problem is
analogous to a single source shortest path problem where the
communication overheads are used as distances.

2) Dynamic Programming Based Mapping (DPBM)
To find the optimal thread-core mapping, the thread sched-

uler must consider all possible thread-socket/core mapping
combinations for a given flow. However, an exhaustive search
would result in exponential complexity, O(cn), which cannot
meet the requirement of adaptive mappings at runtime. We
propose an algorithm based on dynamic programming (DP)
that derives optimal solutions for minimizing the end-to-end
performance slowdown using M cores to execute flow Fk. We
define a recursive function, δj(s, vm), for each core candidate,
vm, in stage Sj to store the thread-core mapping configuration
that achieves the minimized aggregated slowdown at stage Sj,
where o(u, v) is the performance slowdown between u and v.
Giving:

δj(s, v)= min{δ(s, u) + o(u, v) | u∉Sj, v∈Sj } (1)

Let Fk, j be a sub-flow of flow Fk that only includes stages
S1 to Sj of Fk. The goal is to find the optimal thread-core map-
ping that achieves the minimized aggregated slowdown for
flow Fk, j. In this scenario, the aggregated slowdown indicated
by δj(s, vm) at stage Sj only depends on the aggregated slow-
down indicated by δj(s, vl) at previous stage Sj-1 and the intra-

stage performance slowdown index, o(vl, vm), between vm and
vl. we can rewrite the function as:

δj(s, vm)= min{δj-1(s, vl) + o(vl, vm) | vm∈Sj, vl∈Sj-1 } (2)

The dynamic programming starts by computing the aggre-
gated slowdown at each core in stage S1. The DP continues to
compute the aggregated slowdown at each core in stage S2.
Since the programming already stored the minimized aggregat-
ed slowdown path from the source node to the cores at the first
stage, the minimized aggregated slowdown at a core in stage S2
can be easily calculated by choosing the minimal sum of the
aggregated slowdown at a given core in stage S1 and the slow-
down index between the stage S2 core and stage S1 core. Thus,
iteratively, an optimal solution is achieved because all combi-
nations of thread-core mappings are considered. However, the
complexity is reduced since optimal solutions are stored in
tables and do not need to be recomputed. Since vFlowComb
schedules thread mappings based on NIC queue, the space/time
complexity is O(MNk) for mapping one NIC hardware queue.

3) CTS in vFlowComb
We incorporate the CTS mechanism into vFlowComb to

handle thread-chain scheduling in a real NFV environment.
Figure 10 illustrates a typical workflow of CTS in vFlow-
Comb. We assume we can obtain the NIC queue-flow mapping
and destination VNFs for each flow by leveraging current NIC
hardware. Based on this initial mapping information, CTS aims
to efficiently map the software components (ksoftirq and

vhost-net threads) in NFV HSP to improve the perfor-

mance of NFV flows and resource utilization of SHVS.

The typical workflow of vFlowComb is as follows.

Dominant VNF identification: In this stage, vFlowComb
analyzes a snapshot of system flow patterns to identify the pri-
ority VNFs and critical flows. To achieve practical efficiency,
vFlowComb schedules threads for dominant flows of each NIC
queue instead of for a single flow. vFlowComb oversees the
flow distribution at each NIC queue and identifies a target
VNF with the highest incoming flow traffic (aggregated pack-
ets per second) from this NIC queue. vFlowComb then defines
this VNF as the dominant target VNF for this NIC queue and
schedules a thread chain between them. If vFlowComb detects
a dominant VNF is a priority VNF, the corresponding NIC
queue will be tagged as a priority queue. Finally, vFlowComb

Algorithm 1. Aggregated Slowdown Minimization

Input: K weighted flows F with Nk stages, Mj cores in stage Sj, the

aggregated slowdown o(vl, vm) at core vm,

Output: The thread-core mapping table R that achieves the mini-

mized aggregated slowdown for the flow F.

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

Initialize R, δ(s, v)

for j=1 to Nk do

for vm∈Sj do

if j=1 then

δ1(s, vm) = o(vm, s)

else

 δj(s, vm)= min{δj-1(s, vl) + o(vl, vm) | vl∈Sj-1}

endif

R.append(vm)

end

return R

2016 IEEE/ACM 49th International Symposium on Microarchitecture

obtains a queue group, {Q1, Q2, Q3…, Qm}, which is sorted by
priority and flow traffic.

Core pool allocation: vFlowComb collects the available
core information and divides the cores into different groups;
cores will either be in the ksoftirq core group, {kC1, kC2,

kC3,…, kCn}, or in the vhost-net core group, {vC1, vC2,

vC3,…, vCn}. The benefits of a differentiated core pool are
twofold. First, it helps the DP by greatly reducing the search
space, which increases the efficiency of CTS. Second, since
cores in certain stage only need to sample intra-stage overheads
to the cores/sockets in the next stage, it reduces the amount of
data collection in the performance slowdown model. When
allocating a core to the core pool, vFlowComb prefers the core
with the lowest utilization. This provides more performance
headroom for threads in early stages so that the global δ(s, vm)
for each core will not be refreshed frequently.

Intra-stage performance slowdown collection: Obtaining
intra-stage performance slowdown statistics is critical for im-
plementing CTS. During the data collection period, each core
in a stage (e.g. C1) traverses the core pool of the next stage
(e.g. C2) and queries the PMU readings. The data that is re-
turned will be preserved in a table that is maintained by the
core. In fact, for each PMU query, all returned PMU readings
are socket-based, which reduces the number of inter-processor
interrupts between queryer and queryee. From this, the intra-
stage performance slowdown between cores in neighboring
pools can be established.

Threads scheduling: We apply dynamic programming
based mapping (DPBM) to CTS to conduct thread-core sched-
uling. As shown in Figure 11, CTS assigns the ksoftirq

core and vhost-net core using DPBM for each queue in the

sequence. vFlowComb maintains the global δ(s, vm) for each
core, vm. After a queue is mapped, the intra-stage performance
slowdown and δ(s, vm) of all impacted cores will be refreshed
to avoid inaccurate scheduling for the next queue. We present
the overheads of the dynamic programming-based mapping
scheme in Section 5.

Our implementation is based on Receive Packet Steering
(RPS) feature provided by the Linux kernel. First, RPS selects
CPU cores to execute SoftIRQ based on hash values (skb-

>rxhash) calculated from received packet headers. Next, the

rps_get_cpu function selects a SoftIRQ core based on the

sock_flow_table that contains hash/core relation pairs.

Finally, the enqueue_to_backlog function executes

SoftIRQ on the core.

V. EVALUATION

vFlowComb provides end-to-end performance guarantees
for NFV workloads by cooperatively scheduling the critical
threads in the heterogeneous software pipeline. In this section,
we evaluate the effectiveness of leveraging vFlowComb to
improve the performance of heterogeneous software pipeline
on current NUMA-based SHVS platform. We also discuss the
design space in vFlowComb.

A. Effectiveness of Collaborative Threads Scheduling

We evaluate the effectiveness of CTS using various traffic
loads and co-located contention intensities.

1) Methodology
NFV environment: The test scenarios are designed to

mimic real service chains in NFV deployment, as shown in
Figure 12. Each service chain consists of no more than 3
VNFs. Each VNF uses 2 vCPU with 4GB memory. All VNFs
are deployed on NUMA machine.

3

VM1 VM2 VM3 VM4 VM5

VM1 VM2 VM3 VM4 VM5

core core core core core

1 2 4 5

core1 core2 core3 core4

1 2 3 4

dominant

ordinary

Ksoftirq

affinity?

DPBM thread

mapping

Intra-stage

overheads collection

NIC

queue

Dominant

VM

Q1

VM1

Q2

VM2

Q3

VM3

Q4

VM4

vhost

affinity?

NFV data plane

IRQ handlers

NIC queue-dominant VM mapping

Figure 10. An overview of vFlowComb workflow

Empty?

End, to next step.

N

Y

Input NIC queue group

N

Fetch a NIC queue Q[i] from the NIC q group

DPBM

Pinning ksoftirq/vhost threads on selected core;

Y

Refreshing perf. Slowdown for cores.

i++

Input ksoftirq core group
Input vhost core group

Q1,Q2,Q3,…,Qm

Initial queue group

kC1,kC2,kC3,…,kCn

ksoftirq Core group

vC1,vC2,vC3,…,vCn
vhost Core group

Figure 11. Flowchart of decision making loop

2016 IEEE/ACM 49th International Symposium on Microarchitecture

We set up 4 dedicated servers (2 clients and 2 receivers).
Each server is connected to a 10GB NIC. We deploy 32 VMs
on the clients and receivers as traffic generators and traffic
sinks, respectively. They can generate a maximum of 32 traffic
flows, which can be processed by 8 service chains. The traffic
flows are processed by VNFs in the service chain in tandem
through the virtual switches.

NFV workloads: We evaluate vFlowComb using TCP
traffic and Telco NFV traffic. For TCP traffic, we set all VNFs
as packet forwarding components. For real NFV traffic, the
VNFs are deployed as Clearwater components, as described in
Section 2. We generate heavy and medium traffic by tuning the
packet generation rate (packet per second) at the generators. At
each client VM, we use Netperf to generate 512B
TCP_STREAM traffic at 24Kpps (medium) and 32Kpps
(heavy). We use a small packet size to maximize the system
stress [37]. For the NFV workload reg-dereg, we set the input
call rate as 300 call/s (medium) and 500 call/s (heavy) and for
reg-invite, we set the input call rate as 100 call/s (medium) and
150 calls/s (heavy). The gateway of the NFV deployment em-
ploys a load balancer so that the traffic flows are balanced
among service chains based on VNF loads.

Test cases: We test all three traffic loads (TCP STREAM,
reg-dereg, and reg-invite) using input traffic capacity, VNF
number in the service chain, and co-located contention. First,
we vary the input traffic capacity. Second, we vary the differ-
ent VNF numbers in a service chain. For TCP traffic, we
change the length of the service chain by adding or reducing
the number of packet forwarding VMs. For the Telco traffics,
we change the VNF number by consolidating the Clearwater
function modules on the remaining VNFs. Finally, we vary the
co-located contention on the NUMA machine. In the conten-
tion scenario we co-locate eight VMs running a single instance
of GraphAnalytic from CloudSuite [38]. Each test case lasts
300s. We report the average end-to-end traffic flow perfor-
mance and average system CPU utilization in Figure 13. Note
that we report the normalized performance of different traffic
loads. For TCP traffic, we report the packet receive rate, which
is the ratio of received packets to the sent packets, with a max-

imum value of 1. For the Telco traffics, we report the success-
ful call rate as defined in section 2.2.2.

Baseline scheduling polices: We use two baseline schedul-
ing policies. The first policy is a NUMA node-aware schedul-
ing policy (A). This policy schedules all threads in the flow
data path onto the destination VNF socket. The second policy
is a contention-aware scheduling policy (B). It places threads
on the core with the least performance slowdown, but ignores
the inter-socket communication overheads.

2) Overall Performance Improvement Analysis
To From Figure 13 we can draw several key insights that

show the benefits of vFlowComb.

Overall benefits: In all scenarios, we observe that vFlow-
Comb outperforms other methods in terms of average end-to-
end performance and global CPU usage. Though the end-to-
end performance improvement may be not significantly im-
proved in some scenarios, we can always expect at least 7%
global CPU usage savings brought by vFlowComb.

Benefits for the long service chain: When there are 3
VNFs in the service chain, both A and B suffer significant per-
formance degradation. The contention-aware policy performs
slightly better than NUMA-aware policy since global conten-
tion increases with the more consolidated VNFs. Nevertheless,
vFlowComb is still able to avoid performance degradation by
finding the best flow data path with the least end-to-end per-
formance slowdown, while saving global CPU resources.

Benefits for the latency sensitive traffic loads: The suc-
cessful call rate is determined by the request response time.

TCP Forwarding reg-dereg reg-invite TCP Forwarding reg-dereg reg-invite
0.0

0.2

0.4

0.6

0.8

1.0

Heavy-trafficMed-traffic

A
v
e
 C

P
U

 U
s
a
g
e

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e 1VNF_A 2VNF_A 3VNF_A 1VNF_B 2VNF_B 3VNF_B 1VNF_C 2VNF_C 3VNF_C CPU

0.0

0.2

0.4

0.6

0.8

1.0

1.2

TCP Forwarding reg-dereg reg-invite TCP Forwarding reg-dereg reg-invite
0.0

0.2

0.4

0.6

0.8

1.0

Heavy-trafficMed-traffic

A
v
e
 C

P
U

 U
s
a
g
e

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e 1VNF_A 2VNF_A 3VNF_A 1VNF_B 2VNF_B 3VNF_B 1VNF_C 2VNF_C 3VNF_C CPU

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) No contention

(b) With contention

Figure 13. Average end-to-end traffic flow performance and average system CPU utilization

Client

VM

Receiver

VM
VNF VNF VNF

......32 VM

NUMA

N
IC

N
IC N

IC

N
IC

N
IC

N
IC

Receiver
Receiver

N
IC

N
IC

Switch

Client

VM

Receiver

VM
VNF VNF VNF

Client
Client

Max. 32 flows, 8 service chains

Figure 12. NFV environment setup for evaluation.

2016 IEEE/ACM 49th International Symposium on Microarchitecture

1
2

3
4

5
6

7
8

16
32

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 8 16 32 64 128

1
2

3
4

5
6

7
8
1…
3…

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 8 16 32 64 128

TCP STREAM NFV reg-dereg

Figure 16. Computational overheads of our DPBM with various NFV

workloads. (X=system core number, Y=NIC queue number,

Z=computation time)

Both reg-dereg and reg-invite are TCP traffics with mixed
packet sizes. In medium traffic scenarios, vFlowComb demon-
strates about 20% more successful call rate than A and B.
When the input call rate is increased, vFlowComb can average
50% more successful calls than A and B. Compared to stable
stream traffic, vFlowComb performs a little worse when run-
ning Telco workloads (about 14% performance degradation).
This is because the packet size and flow direction vary fre-
quently in Telco traffic, while vFlowComb works under a low
PMU sampling rate (1 sample/s) to reduce the computation
overheads. Nevertheless, vFlowComb still outperforms the
baseline policies with performance improvements from 15% to
100%.

3) Zoomed Performance Improvement Analysis
To We further examine the effectiveness of vFlowComb

when processing extremely high throughput traffic flows. In
this test, we zoom in the packet receiving process. We employ
a client machine and a receiver machine to establish a peer-to-
peer network. We opt to use the Mellanox 40 GB NICs to
completely remove any NIC bottleneck. We deploy various
numbers of VMs (8, 16, 24, and 32) on the client machine and
deploy the corresponding number of destination VMs on
NUMA machine. For each client VM, we choose 3Kpps and
6Kpps TCP STREAMs for packet generation rate of medium
and heavy traffic, respectively. We report the packet receive
rate improvements over the baseline NUMA node-aware
policy, as shown in Figure 14. We can observe that
vFlowComb achieves an average of 20% more packet receive
rate than the NUMA node-aware scheduling policy. The high-
speed NIC can clearly reveal the bottlenecks in the NFV data
plane. Under these circumstances, vFlowComb can
intelligently place threads in the flow data path that minimizes
the end-to-end performance slowdown. Interestingly, in the
scenario with heavy traffic and small packet size (6Kpps,
256B), the performance improvement of vFlowComb drops
when increasing the number of VMs. This is because this
traffic poses a significant challenge to the I/O subsystem,
creating a CPU time slice discontinuity.

We explore the thread mapping decision distributions under
varying system traffic loads and co-located contentions to
further demonstrate the correlation between thread mapping

decisions and system traffic/contention status. We collect the
scheduling decisions statistics for each mapping pattern listed
in Figure 4. As shown in Figure 15a, we notice that the
distribution of mapping E is mainly adopted in the medium
traffic scenarios where ksoftirq is placed on a NIC node.

The mappings F and G are adopted when the traffic load
increases. In these situations, vFlowComb frequently schedules
ksoftirq and vhost-net to destination VM nodes to

avoid the expensive inter-socket communication at
ksoftirq-vhost and vhost-VM stages.

We then introduce co-located contention delve deeper into
the thread scheduling trends of vFlowComb. We deploy 4
single-node GraphAnalytic VMs on the NUMA machine to
stress the memory subsystem. To create an irregular memory
access pattern, we do not pin vCPUs to specific pCPU cores.
As shown in Figure 15(b), the mapping decisions are mainly
balanced among configuration E, F, and G, since contention
occurs irregularly on different NUMA sockets.

B. Overheads Analysis

In this section, we evaluate the overheads of DPBM based
CTS mechanism. We first evaluate the computation overhead
of our DPBM algorithm with various core and NIC hardware
queue numbers. In this case, we assume that the ksoftirq

core pool and vhost core pool are identical in size. We ex-

plore the performance of DPBM using TCP STREAM (3Kpps)
and reg-dereg (250 call/s) respectively.

As shown in Figure 16, we can observe that the DPBM-
based CTS can achieve optimal thread mappings within 0.77s
(TCP STREAM) and 1.22s (NFV workloads) in a standard
SHVS configuration (128 cores, 32 NIC queues).

VI. RELATED WORK

Recent studies highlight various opportunities for enhanc-
ing networking performance. While all of the prior studies ei-
ther focus on optimizing the I/O performance on NUMA sys-
tem or improving the virtual switch performance, our research
bridges the gap between networking function virtualization and
NUMA-based server systems to provide more flexible data
plane flow management.

Thread mapping on multicore and NUMA system. Sev-
eral research efforts have developed mechanisms that mitigate
hardware resource interference and improve the throughput on

256 512 1K 16K 256 512 1K 16K
0.0

0.1

0.2

0.3

6Kpps per VM3Kpps per VM

A
v
e
 C

P
U

 U
s
a
g
e

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e 4vm 8vm 16vm 32vm ave

0.0

0.1

0.2

0.3

Figure 14. Performance improvements over NUMA-aware policy

under extremely high throughput traffics.

16k

256

16k

256

0% 20% 40% 60% 80% 100%

 a

 b

 c

 d

 e

 f

 g

 others3
2
v
m

8
v
m

16k

256

16k

256

0% 20% 40% 60% 80% 100%

 a

 b

 c

 d

 e

 f

 g

 others3
2
v
m

8
v
m

(b) With contention(a) No contention

Figure 15. Thread mapping decision distribution under different

traffic loads, patterns are defined in Section 3.

2016 IEEE/ACM 49th International Symposium on Microarchitecture

multicore and multi-socket NUMA systems. Chadha et al. pro-
posed a run-time system to determine the optimal thread count,
processor voltage, and frequency [39]. Sirdharan et al. pro-
posed a model to predict optimal thread count [40]. Tang et al.
[25] develop an adaptive approach to achieve optimal thread-
to-core mappings in a data center to reduce the co-located in-
terference. Blagodurov et al. [36] observe the limitation of con-
tention-aware algorithms designed for UMA systems and pre-
sent new contention management algorithms for NUMA sys-
tems. Liu et al. [15] characterize the impact of architecture-
level NUMA access overhead on cloud workload consolidation
and incorporate the overhead into the hypervisor’s virtual ma-
chine memory allocation and page fault handling routines.

Networking I/O optimization. Several prior works have
been proposed to reduce the networking I/O overhead in the
operating system, either in kernel or user space. Among those,
Affinity-accept [41] and FastSocket [42] explore TCP connec-
tion traffic and improves the packet processing efficiency in
Linux kernel by affinitizing the incoming flows to one core.
However, they only address conventional network I/O issues in
the operating system and avoid providing analysis on NUMA
deployment and virtual switches.

NUMA-aware I/O optimization. Some recent works have
addressed the networking I/O performance on NUMA-based
hardware. Hyper-switch [43] employs a dynamic offloading
scheme to distribute packet processing to idle processor cores;
this scheme takes into account the impact of CPU cache locali-
ty and NUMA systems. NetVM [44] proposes a NUMA-aware
queue/thread management technique that keeps the consistency
of core-thread affinity of each flow on each NUMA node.
However, they did not consider thread dependencies and did
not design for HSP-based NFV deployment.

VII. CONCLUSION

NFV plays an important role in current Telco and cloud da-
ta centers. It relies heavily on the performance of commodity
standard high volume servers. We observe the processing style
of these workloads manifests as a heterogeneous software pipe-
line, in which the traffic flows are sequentially processed by
heterogeneous software components. We conduct intensive and
extensive characterizations of NFV deployment on current
NUMA-based SHVS using real world Telco workloads. Our
experimental results indicate that HSP introduces heterogene-
ous performance slowdown at different stages (intra-stage per-
formance slowdown). The intra-stage performance slowdown
is jointly determined by inter-socket communication overheads
and co-located contention. We build a performance slowdown
estimation model that accurately evaluates the intra-stage and
end-to-end performance slowdowns. We then design a collabo-
rative thread scheduling mechanism that is tailored to thread
mapping in HSP. It exploits a dynamic programming-based
end-to-end performance slowdown estimation method that
accurately maps threads in the NFV data plane to improve traf-
fic throughput (on average 23%) and increase the CPU utiliza-
tion (7%) with negligible overhead (decision making time less
than 1s).

ACKNOWLEDGMENT

We would like to thank Clay Hughes, James Poe, and Can
Duan for making this paper better. We appreciate our shepherd
Nam Sung Kim and anonymous reviewers for their valuable
suggestions. This work is supported in part by NSF grants
1527535, 1423090, 1320100,1117261, 0937869, 0916384,
0845721(CAREER), 0834288, 0811611, 0720476, by SRC
grants 2008-HJ-1798, 2007-RJ-1651G, by Microsoft Research
Trustworthy Computing, Safe and Scalable Multicore Compu-
ting Awards, and by three IBM Faculty Awards.

REFERENCES

[1] C. Li, Y. Hu, L. Liu, J. Gu, M. Song, X. Liang, J. Yuan, and T. Li,
“Towards sustainable in-situ server systems in the big data era,” Proc.
42nd Annu. Int. Symp. Comput. Archit. - ISCA ’15, pp. 14–26, 2015.

[2] C. Cui, H. Deng, D. Telekom, U. Michel, and H. Damker, “Network
functions virtualisation: An introduction, benefits, enablers, challenges
and call for action,” Netw. Funct. Virtualisation – Introd. White Pap.,
no. 1, pp. 1–16, 2012.

[3] ETSI ISG NFV, “Network Functions Virtualisation (NFV):
Architectural Framework,” 2013.

[4] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, P. Ingram, E. Jackson, A. Lambeth, R. Lenglet,
S.-H. Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan, S.
Shenker, A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt, A. Yip, and
R. Zhang, “Network Virtualization in Multi-tenant Datacenters,” Proc.
11th USENIX Symp. Networked Syst. Des. Implement. (NSDI 14), pp.
203–216, 2014.

[5] L. Foundation, “Open Platform for NFV (OPNFV).” [Online].
Available: https://www.opnfv.org/.

[6] Oracle, “The Road to NFV Success Is Paved with Intelligent
Orchestration,” 2015.

[7] TechNavio, “Global Network Function Virtualization Market 2014-
2018,” 2014.

[8] W. Paper and S. Infrastructure, “Intel® Open Network Platform Server
Reference Architecture: SDN and NFV for Carrier-Grade Infrastructure
and Cloud Data Centers,” 2014.

[9] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan, “High
performance network virtualization with SR-IOV,” High Perform.
Comput. Archit. (HPCA), 2010 IEEE 16th Int. Symp., pp. 1–10, 2010.

[10] Intel, “Intel Data Direct I/O Technology (Intel DDIO): A Primer.”

[11] D. Sanchez, D. Lo, R. M. Yoo, J. Sugerman, and C. Kozyrakis,
“Dynamic fine-grain scheduling of pipeline parallelism,” Parallel Archit.
Compil. Tech. - Conf. Proceedings, PACT, pp. 22–32, 2011.

[12] W. Wang, J. W. Davidson, and M. Lou Soffa, “Predicting the Memory
Bandwidth and Optimal Core Allocations for Multi-threaded
Applications on Large-scale NUMA Machines,” pp. 419–431, 2016.

[13] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu, “The
Application Slowdown Model: Quantifying and Controlling the Impact
of Inter-Application Interference at Shared Caches and Main Memory,”
Int. Symp. Microarchitecture, 2015.

[14] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang, “Smite: Precise qos
prediction on real system smt processors to improve utilization in
warehouse scale computers,” 2014.

[15] M. Liu and T. Li, “Optimizing virtual machine consolidation
performance on NUMA server architecture for cloud workloads,” Proc. -
Int. Symp. Comput. Archit., pp. 325–336, 2014.

[16] P. Garg and Y.-S. Wang, “NVGRE: Network Virtualization using
Generic Routing Encapsulation,” 2014.

[17] “Scaling in the Linux Networking Stack.” [Online]. Available:
https://www.kernel.org/doc/Documentation/networking/scaling.txt.

[18] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J.
Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, A. Networks, and M.

2016 IEEE/ACM 49th International Symposium on Microarchitecture

Casado, “The Design and Implementation of Open vSwitch,” 12th
USENIX Symp. Networked Syst. Des. Implement., pp. 117–130, 2015.

[19] “Project Clearwater.”

http://www.projectclearwater.org/about-clearwater/.

[20] “Welcome to SIPp.” [Online]. Available: http://sipp.sourceforge.net/.

[21] “OpenStack Cloud Software.” [Online]. Available: www.openstack.org.

[22] R. Jones, “NetPerf: a network performance benchmark,” Inf. Networks
Div. Hewlett-Packard Co., 1996.

[23] R. S. Roman Dementiev, Thomas Willhalm, Otto Bruggeman, Patrick
Fay, Patrick Ungerer, Austen Ott, Patrick Lu, James Harris, Phil Kerly,
Patrick Konsor, Andrey Semin, Michael Kanaly, Ryan Brazones,
“Intel® Performance Counter Monitor - A better way to measure CPU
utilization.” .

[24] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness via Source
Throttling: A Configurable and High-Performance Fairness Substrate for
Multicore Memory Systems,” ACM Trans. Comput. Syst., vol. 30, no. 2,
pp. 1–35, 2012.

[25] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. Lou Soffa, “The
impact of memory subsystem resource sharing on datacenter
applications,” in ACM SIGARCH Computer Architecture News, 2011,
vol. 39, no. 3, p. 283.

[26] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. Lou Soffa, “Bubble-Up:
Increasing Utilization in Modern Warehouse Scale Computers via
Sensible Co-locations,” Proc. 44th Annu. IEEE/ACM Int. Symp.
Microarchitecture - MICRO-44 ’11, p. 248, 2011.

[27] O. Mutlu and T. Moscibroda, “Stall-time fair memory access scheduling
for chip multiprocessors,” in Proceedings of the Annual International
Symposium on Microarchitecture, MICRO, 2007, pp. 146–158.

[28] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared DRAM systems,” in
Proceedings - International Symposium on Computer Architecture,
2008, pp. 63–74.

[29] L. Liu, Y. Li, Z. Cui, Y. Bao, M. Chen, and C. Wu, “Going vertical in
memory management: Handling multiplicity by multi-policy,” Proc. -
Int. Symp. Comput. Archit., no. 1, pp. 169–180, 2014.

[30] L. Liu, Y. Li, C. Ding, H. Yang, and C. Wu, “Rethinking Memory
Management in Modern Operating System : Horizontal , Vertical or
Random ?,” vol. 65, no. 6, pp. 1–14, 2016.

[31] M. Song, Y. Hu, Y. Xu, C. Li, H. Chen, J. Yuan, and T. Li, “Bridging
the Semantic Gaps of GPU Acceleration for Scale-out CNN-based Big
Data Processing: Think Big, See Small,” 25th Int. Conf. Parallel Archit.
Compil. Tech., 2016.

[32] Y. Hu, C. Li, L. Liu, and T. Li, “HOPE: Enabling Efficient Service
Orchestration in Software-Defined Data Centers,” in Proceedings of the
2016 International Conference on Supercomputing, 2016, pp. 10:1–
10:12.

[33] B. Lepers, V. Quéma, and A. Fedorova, “Thread and Memory
Placement on NUMA Systems: Asymmetry Matters.,” USENIX Annu.
Tech. Conf., pp. 277–289, 2015.

[34] Q. Wang and B. C. Lee, “Modeling Communication Costs in Blade
Servers,” SIGOPS Oper. Syst. Rev., vol. 49, no. 2, pp. 75–79, Jan. 2016.

[35] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu, “A Software
Memory Partition Approach for Eliminating Bank-level Interference in
Multicore Systems,” in Proceedings of the 21st International Conference
on Parallel Architectures and Compilation Techniques, 2012, pp. 367–
376.

[36] S. Blagodurov, S. Zhuravlev, A. Fedorova, and M. Dashti, “A Case for
NUMA-aware Contention Management on Multicore Systems,” Proc.
19th Int. Conf. Parallel Archit. Compil. Tech., no. Llc, pp. 557–558,
2010.

[37] Intel, “Small Packet Traffic Performance Optimization for 8255x and
8254x Ethernet Controllers,” 2003.

[38] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D.
Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: a study of emerging scale-out workloads on
modern hardware,” in Proceedings of the seventeenth international
conference on Architectural Support for Programming Languages and
Operating Systems, 2012, pp. 37–48.

[39] G. Chadha, S. Mahlke, and S. Narayanasamy, “When less is more
(LIMO): controlled parallelism forimproved efficiency,” Int. Conf.
Compil. Archit. Synth. Embed. Syst., pp. 141–150, 2012.

[40] S. Sridharan, G. Gupta, and G. Sohi, “Adaptive, efficient, parallel
execution of parallel programs,” … SIGPLAN Conf. Program. …, pp.
169–180, 2014.

[41] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris, “Improving
network connection locality on multicore systems,” EuroSys’12, p. 337,
2012.

[42] X. Lin and Y. Chen, “Scalable Kernel TCP Design and Implementation
for Short-Lived Connections,” Asplos, pp. 339–352, 2016.

[43] K. K. Ram, A. L. Cox, M. Chadha, and S. Rixner, “Hyper-Switch: A
Scalable Software Virtual Switching Architecture,” Present. as part 2013
USENIX Annu. Tech. Conf. (USENIX ATC 13), pp. 13–24, 2013.

[44] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High
Performance and Flexible Networking Using Virtualization on
Commodity Platforms,” Proc. 11th USENIX Symp. Networked Syst.
Des. Implement. (NSDI 14), vol. 12, no. 1, pp. 445–458, 2014.

