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Abstract— Recently it has been shown that an aggregation
of Thermostatically Controlled Loads (TCLs) can be utilized
to provide fast regulating reserve service for power grids and
the behavior of the aggregation can be captured by a stochastic
battery with dissipation. In this paper, we address two practical
issues associated with the proposed battery model. First, we
address clustering of a heterogeneous collection and show
that by finding the optimal dissipation parameter for a given
collection, one can divide these units into a few clusters and
improve the overall battery power limit and energy capacity.
Second, we analytically characterize the impact of imposing
a no-short-cycling requirement on TCLs as constraints on the
ramping rate of the regulation signal. We support our theorems
by providing simulation results.

I. INTRODUCTION

A. Renewable Integration and Regulating Reserve Service

Vast and deep integration of Renewable Energy Resources
(RESs) into the existing power grid is essential in achieving
the envisioned sustainable energy future. Environmental,
economical, and political issues associated with the current
power grid have motivated many countries around the globe
as well as many states in the U.S. to setup aggressive
renewable portfolios. The state of California, as an example,
has targeted a 33% RES portfolio by 2020 [1]. Volatility,
stochasticity, and intermittency characteristics of renewable
energies, however, present a challenge for integrating these
resources into the existing grid in a large scale as the proper
functioning of an electric grid requires a continuous power
balance between supply and demand.

Ancillary services such as regulating reserve (or fre-
quency regulation) and load following play an important
role in maintaining a functional and reliable grid under
normal conditions [2]–[4]. While load following handles
more predictable and slower changes in load, regulating
reserve handles imbalances at faster time scales [5]. On the
other hand, an increased penetration of RES results in higher
regulation requirements on the grid [2]–[4]. For instance, it
has been shown that if California adopts its 33% renewable
penetration target by 2020, the regulation procurement is
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anticipated to increase from 0.6 GW to 1.3 GW [6], [7]. Such
requirements can be lowered if faster responding resources
are available [8]. For instance, it has been shown that if
California Independent System Operator (CAISO) dispatches
fast responding regulation resources, it would reduce its
regulation procurement by 40% [9].

B. Demand-Side Flexibility for Frequency Regulation

Frequency regulation is one of the most important ancil-
lary services for maintaining the power balance in normal
conditions [5]. It is deployed in seconds (up to one minute)
time scales to compensate for the short term fluctuations in
the total system load and uncontrolled generation. This ser-
vice has been traditionally provided by either fast responding
generators or grid-scale energy storage units. However, the
current storage technologies such as batteries have high cost
while generation has both cost and an environmental foot-
print. Moreover, traditional generators have slow ramping
rates and cannot track the fast changing regulation signal
very well. These factors coupled with the search for cleaner
sources of flexibility as well as regulatory developments
such as Federal Energy Regulatory Commission (FERC)
order 755 have motivated a growing interest in tapping
fast responding demand-side resources for enabling deep
penetration of RESs into the grid.

C. Aggregation of Flexible Loads Modeled as a Battery

Flexible loads such as Electric Vehicles (EVs) and Ther-
mostatically Controlled Loads (TCLs) have been recently
considered as good candidates for providing ancillary ser-
vices to the grid [10]–[14]. Residential TCLs such as air
conditioners, heat pumps, water heaters, and refrigerators,
represent about 20% of the total electricity consumption in
the United States [15], [16], and thus present a large potential
for providing various ancillary services to the grid. TCLs
have inherent thermal storage, so that electricity consumption
can be varied while still meeting the desired comfort level
and temperature requirements of the end user. In fact, it has
been recently shown that the aggregate flexibility offered by a
collection of TCLs can be succinctly modeled as a stochastic
battery with dissipation [17], [18]. The power limits and
energy capacity of this battery model can be calculated in
terms of TCL parameters and exogenous variables such as
ambient temperature and user-specified set-points.

D. Main Contributions

In this paper, we address some practical aspects associated
with the proposed battery model. First, we consider the



impact of dividing a heterogeneous collection of TCLs into
clusters and show that by finding the optimal dissipation
parameter for a given collection of TCLs, one can divide
these units into a few stochastic batteries and increase the
net capacity. Second, we consider the effect of enforcing a
requirement of no-short-cycling. In order to avoid damage,
TCL manufacturers will state a minimum time that a unit
must remain ON or OFF after a switch between the two
states. If this minimum time is not met, the unit is said to be
short-cycled. We show that the no-short-cycling constraint
can be expressed simply as constraints on the first difference
of the regulation or Automatic Generation Control (AGC)
signal. Thus, a characterization of regulation signals that
can be feasibly met by a TCL aggregation is simply the
intersection of signals feasible for the stochastic battery, and
this new constraint on successive changes of the regulation
signal.

E. Related Work
Flexible loads in general and TCLs in particular have

been recently considered for providing load following and
regulation services to the grid [10], [11], [13], [19], [20].
A battery model with no dissipation is considered in [13].
Clustering and no-short-cycling of TCLs have been reported
in [21], [22]. However, to the best of our knowledge, our
work is the first to analytically characterize the aggregate
flexibility of TCLs as a stochastic battery, their optimal
clustering, and no-short-cycling constraints.

F. Paper Organization
The remainder of the paper is organized as follows.

Section II describes preliminaries on individual TCL models.
In Section III, we summarize the stochastic battery model.
Optimal dissipation and clustering of a collection of TCLs
are presented in Section IV. We address the no-short-cycling
of TCLs in Section V. Whenever needed and within each sec-
tion, we provide simulation results to support our theorems.
The paper ends with Conclusions given in Section VI.

II. THERMOSTATICALLY CONTROLLED LOADS

The temperature evolution of a TCL can be described by
a standard hybrid-system model

θ̇(t) =

{
−a(θ(t)− θa)− bPm + w(t), ON state,
−a(θ(t)− θa) + w(t), OFF state,

(1)

where θ(t) is the internal temperature of the TCL at time t, θa
is the ambient temperature, Pm is the rated electrical power,
a := 1

CR , b := η
C , and R, C, and η are model parameters

as described in Table I. For more details on the TCL model,
please see [10], [17], [19].1 Each TCL has a temperature
set-point θr with a hysteretic ON/OFF local control within a
deadband [θr −∆, θr + ∆]. The operating state q(t) evolves
as

lim
ε→0

q(t+ ε) =

{
q(t), |θ(t)− θr| < ∆,

1− q(t), |θ(t)− θr| = ∆,

1Four types of TCLs are: (i) air conditioners, (ii) heat pumps, (iii) water
heaters, and (iv) refrigerators. See [18], [23] for more details.

TABLE I
TYPICAL PARAMETER VALUES FOR A RESIDENTIAL AIR CONDITIONER.

Parameter Description Value Unit
C thermal capacitance 2 kWh/◦C
R thermal resistance 2 ◦C/kW
P rated electrical power 5.6 kW
η coefficient of performance 2.5
θr temperature set-point 22.5 ◦C
∆ temperature deadband 0.3125 ◦C
θa ambient temperature 32 ◦C

where q(t) = 1 when a TCL is ON and q(t) = 0 when it is
OFF. The average power consumed by a TCL over a cycle
is

Pa =
PmTON

TON + TOFF
,

where TON and TOFF are given by

TON = RC ln
θr + ∆− θa +RPmη

θr −∆− θa +RPmη
,

TOFF = RC ln
θr −∆− θa
θr + ∆− θa

,

and represent the ON and OFF state durations per cycle,
respectively. For a large collection of TCLs that is uncoordi-
nated, the instantaneous power drawn by this collection will
be very close to the combined average power requirement
due to the fact that any specific TCL will be at a uniformly
random point along its operating cycle. For a heterogeneous
collection of TCLs indexed by k, the baseline power is given
by

Pave :=
∑
k

P ka .

The aggregated instantaneous power consumption is

Pagg(t) :=
∑
k

qk(t)P km.

As an approximation to the hybrid model, we consider
a continuous thermal model. Here, a TCL accepts any
continuous power input p(t) ∈ [0, Pm] and the dynamics
are:

θ̇(t) = a(θa − θ(t))− bp(t).

Note that in this model, as common in the literature, the
disturbance w in Model (1) is assumed to be Gaussian
distributed with zero mean and small variance [10], [19],
[24], and thus neglected. Maintaining the temperature θ(t)
within the user-specified deadband θr±∆ is treated implicitly
as a constraint on the power signal p(t). When evaluating
the trajectory θ(t), it is assumed that θ(0) = θr. The
parameters that specify this continuous power model are
χ = (a, b, θa, θr,∆, Pm). The nominal power required to
keep a TCL at its set-point is

Po =
a(θa − θr)

b
=
θa − θr
ηR

.

We note that Po is a random process as it depends
on the ambient temperature and the user-defined set-point.
Simple calculations with typical parameters reveal that the



nominal power Po under the continuous power model closely
follows the average power Pa under the hybrid model for a
wide range of operating conditions. In [17], we showed the
aggregate behavior of a population of TCLs with the hybrid
model could be accurately approximated by the those using
the continuous power model. The continuous model was used
for analysis, and the hybrid model was used in numerical
experiments.

III. STOCHASTIC BATTERY MODEL

Each TCL can accept perturbations around its nominal
power consumption (pk(t) = P ko + ek(t)) that will meet
user-specified comfort bounds. Define

Ek :=

{
ek(t)

∣∣∣ 0 ≤ P ko + ek(t) ≤ P km,
P ko + ek(t) maintains |θk(t)− θkr | ≤ ∆k

}
.

This set of power signals represents the flexibility of the k-th
TCL with respect to its nominal. The aggregate flexibility of
the collection of TCLs is defined as the Minkowski sum

U =
∑
k

Ek.

The geometry of the set U is, in general, unwieldy. In [17],
however, we showed that the aggregate flexibility U can be
captured by two generalized battery models.

Definition 1: A Generalized Battery Model B is a set of
signals u(t) that satisfy

−n− ≤ u(t) ≤ n+, ∀ t > 0,

ẋ(t) = −αx(t)− u(t), x(0) = 0 ⇒ |x(t)| ≤ C, ∀ t > 0.

The model is specified by non-negative parameters φ =
(C, n−, n+, α), and we write this compactly as B(φ).

One can regard u(t) as the power drawn from or supplied
to a battery and x(t) as its State of Charge (SoC). One should
note that the parameters φ are random and depend on ambient
temperature and participation rates. As a result, we regard
B(φ) as a stochastic battery. This battery model provides
an succinct and compact framework to characterize the
aggregate power limits and energy capacity of a population
of TCLs. The following theorem is derived in [17].

Theorem 1 ( [17]): Consider a heterogeneous collection
of TCLs modeled by the continuous-power model with
parameters χk. Let α > 0 be the dissipation parameter and
define

fk := ∆k/(bk(1 + |1− α/ak|)).

The aggregate flexibility U of the collection satisfies

B(φ1) ⊆ U ⊆ B(φ2),

where the necessary battery model parameters are given by

φ2 :


C =

∑
k

(
1 +

∣∣∣1− ak

α

∣∣∣) ∆k

bk
,

n− =
∑
k P

k
o ,

n+ =
∑
k(P km − P ko ),

(2)

and the sufficient battery model parameters are any triple
(C, n−, n+) that for a given α, satisfies ∀k

φ1 :


βkn− ≤ P ko ,

βkn+ ≤ P km − P ko ,
βkC ≤ fk,

(3)

where βk ≥ 0 satisfies
∑
k β

k = 1. Further, if u(t) ∈ B(φ1),
the causal power allocation strategy

ek(t) = βku(t)

satisfies the deadband constraints |θk(t)− θkr | ≤ ∆k.
One should note that the gap between the proposed battery

models B(φ1) and B(φ2) in Theorem 1 depend on the choice
of allocation βk, the dissipation α, and heterogeneity level
of the considered collection of TCLs. In the next section,
we explain how we can obtain an optimal dissipation for
a given collection of TCLs. Moreover, we show how one
can improve the battery power limit and energy capacity by
means of clustering of units.

IV. OPTIMAL DISSIPATION AND CLUSTERING OF TCLS

As mentioned earlier, there exist different choices of βk
that satisfy (3). For each of these choices, a different battery
model B(φ1) will be obtained that assures feasibility. One
choice is

βk =
P km − P ko∑
k(P km − P ko )

, (4)

which yields the smallest gap between the necessary and
sufficient battery models on n+ as compared to other choices
of βk. However, it results in larger gaps for n− and C.2 Based
on this particular choice of βk,

φ1 :


C =

∑
k(P km − P ko ) mink

fk

Pk
m−Pk

o
,

n− =
∑
k(P km − P ko ) mink

Pk
o

Pk
m−Pk

o
,

n+ =
∑
k(P km − P ko ).

(5)

Note this result is valid for any fixed dissipation parameter
α.

A. Optimal Dissipation Parameter

While the bound on n+ is the tightest possible based on
the allocation (4), one would like to tighten the bound on C
as well. This can be done easily by considering the following
optimization problem:

α∗ := arg max
α

min
k

fk

P km − P ko
(6)

to find the optimal dissipation parameter α∗, for a given
heterogeneous collection of TCLs. While the general case
would require a numerical solution, there are analytical
results in the following specific heterogeneity scenarios.

2We can maximize the bounds on C and n− by choosing different
allocations βk . Please refer to [18] where we discuss how different choices
of βk would affect the bounds on power limits and energy capacity.



1) Thermal Capacity: Consider the case where all of the
parameters are homogenous and the only heterogeneity is in
Ck.3 Under this assumption the battery capacity is

C(α) = N∆(min
k
gk)/η,

where gk := Ck/(1+|1−αRCk|). Note that the dependance
of the capacity on α has been made explicit.

Lemma 1: Consider a heterogeneous collection of TCLs
where the heterogeneity is only in Ck. Then

C∗ := max
α
C(α) = N∆Cmin/η and α∗ = 1/RCmin,

where Cmin := mink C
k.

Proof: See Appendix.
2) Deadband: Consider the case where all of the param-

eters are homogenous and the only heterogeneity is in ∆k’s.
Under this assumption,

C(α) = NC(min
k
gk)/(η(1 + |1− αRC|)),

where gk := ∆k.
Lemma 2: Consider a heterogeneous collection of TCLs

where the heterogeneity is only in ∆k’s. Then

C∗ = NC∆min/η and α∗ = 1/RC,

where ∆min := mink ∆k.
Proof: See Appendix.

One can derive similar results for cases where more
parameters contain heterogeneity. For example, when the
heterogeneity is in both Ck and ∆k, then C(α) =

N(mink g
k)/η where gk := Ck∆k

1+|1−αRCk| . One can show that
under this assumption,

C∗ ' NCmin∆min/η and α∗ / 1/RCmin.

B. Optimal Clustering

As the diversity of the TCL model parameters increases,
the gap between B(φ1) and B(φ2) increases. Fig. 1 illustrates
how the sufficient and necessary capacity values provided by
B(φ1) and B(φ2), respectively, increases as the heterogeneity
level increases. In order to improve the battery models, one
can divide a heterogenous collection TCLs into a few clusters
and derive battery models for each of those clusters. The
number of clusters should be small in order to keep the
benefits of aggregation within each battery model, while
limiting the complexity of the overall model. In the following
analysis, we assume the number of clusters m is small and
given.

Consider the case where only Ck contains heterogeneity.
We know that from our previous analysis, for a given col-
lection of N TCLs with heterogeneous Ck’s, N∆Cmin/η is
the maximum energy capacity (Lemma 1). Let’s assume we
want to divide N units into m clusters where Ni is the size of
cluster i such that

∑m
i=1Ni = N . The goal is to find optimal

cluster sizes such that the overall energy capacity of the

3In total there are 6 parameters whose heterogeneity can affect C in (5):
Ck , Rk , ηk , ∆k , Pkm, and θkr .

collection is maximized. The following theorem provides the
optimal cluster sizes and optimal capacity under clustering
when there is a uniform distribution on Ck’s.

Theorem 2: Consider a heterogenous collection of N
TCLs with model (1) where Ck has a uniform distribution as
Ck ∼ U(Cmin, Cmax) but all other parameters are identical
between units. Then, an optimal clustering is achieved by
sorting the units based on their Ck value and then putting
the first N/m units in the first cluster, the second N/m units
in the second cluster, etc, with an optimal cluster size of

N∗i = N/m, i = 1, 2, . . . ,m, (7)

where m is the number of clusters. The optimal capacity is

C∗m =
(
Cmin +

(Cmax − Cmin)

2

N

(N − 1)

(m− 1)

m

)
N∆/η,

(8)
where C∗m is the optimal capacity with m clusters.

Proof: See Appendix.
Remark 1: Similar results can be achieved when more

parameters contain heterogeneity (and even with different
heterogeneity distributions) following the steps explained in
the proof of Theorem 2 and based on the optimal dissipation
parameters as discussed in Section IV-A.

Fig. 1 illustrates how the sufficient and necessary capacity
bounds change over different heterogeneity levels and under
different scenarios on the dissipation parameter and cluster-
ing. As can be seen, when a nominal (an average of the time
constants 1/RCk) dissipation is considered with no cluster-
ing, the gap between the sufficient and necessary capacity
bounds increases as the heterogeneity level increases. This
gap can be decreases when an optimal dissipation parameter
is used for the collection. Moreover, the gap can be further
tightened when we divide the collection into a few clusters
(in this example 3 clusters). Apparently when m = 1, the
optimal capacity is the same as provided by Lemma 1. A
keen reader would note that when m = N , the optimal
capacity (8) is

C∗N =
N∆C

η
,

which is the capacity bound of a homogenous collection [17],
[18]. As mentioned earlier, we keep m small such that the
complexity of the overall battery model is as low as possible.

V. NO-SHORT-CYCLING AND RAMPING RATE
CONSTRAINTS

In this section, we first present our priority-stack-based
control framework for manipulating the power consumption
of a population of TCLs and for providing regulation service
to the grid. We then augment our control structure with a
no-short-cycling constraint. Moreover, we analytically char-
acterize the no-short-cycling constraint in terms of bounds
on the ramping rate of the regulation signal.
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Fig. 1. The effect of optimal dissipation parameter and clustering on the
battery model. A collection of 1000 heterogenous TCLs are considered
whose parameter values are given in Table I. A uniform distribution is
considered as the heterogeneity pattern of Ck .

A. Priority-Stack-Based Control

We adopt a centralized control architecture. This choice is
dictated by the stringent power quality, auditing and teleme-
try requirements necessary to participate in regulation service
market [25]. At each sample time, the aggregator compares
the regulation signal r(t) with the aggregate power deviation
δ(t) = Pagg(t) − Pave, where Pagg(t) is the instantaneous
power drawn by TCLs and Pave is their baseline power.

If r(t) < δ(t), the population of TCLs needs to “dis-
charge” power to the grid which requires turning OFF
some of the ON units. Conversely, if r(t) > δ(t), then
the population of TCLs must consume more power. This
requires turning ON some of the OFF units. To track a
regulation signal r(t), the system operator needs to determine
appropriate switching actions for each TCL so that the power
deviation of TCLs, δ(t), follows the regulation signal r(t).

In practice, it is more favorable to turn ON (or OFF)
the units which are going to be turned ON (or OFF) by
their local hysteretic control law. To this end, we propose a
priority-stack-based control method. The unit with the high-
est priority will be turned ON (or OFF) first, and then units
with lower priorities will be considered in sequence until
the desired regulation is achieved. This priority-stack-based
control strategy minimizes the ON/OFF switching action for
each unit, reducing wear and tear of TCLs. Priority stacks are
illustrated in Fig. 2. The temperature distance is considered
as the sorting criteria, i.e., πk(t) = (θk(t)− θk)/∆k, where
θk = θkr − ∆k. The temperature distance is normalized to
account for heterogeneity. The priority-stack-based control
algorithm is summarized in Algorithm 1.

B. No-Short-Cycling Constraint

The proposed priority-stack-based control scheme at-
tempts to reduce the consecutive switching times of each
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Fig. 2. The ON and OFF priority stacks with explicit no-short-cycling
constraints. In general, a unit that is hotter has a higher priority to be
switched ON and a unit that is cooler has a higher priority to be turned
OFF. However, when no-short-cycling constraints are imposed, we are only
allowed to manipulate units that are Available ON or Available OFF. The
lower and upper temperature bounds are given by θk = θkr − ∆k and
θ
k

= θkr + ∆k .

Algorithm 1 Priority-stack-based control algorithm
loop

receive πk(t), P k(t), and availability of unit k;
construct priority stacks with no-short-cycling constraint;
read r(t);
compute δ(t) = Pagg(t)− Pave;
if δ(t) < r(t) then

find j∗ = min
{
j |j ≤ N1,

∑j
i=1 P

i(t) ≥ r(t)− δ(t)
}

;
turn ON units indexed by {1, 2, · · · , j∗}.

else if δ(t) > r(t) then
find j∗ = min

{
j |j ≤ N0,

∑j
i=1 P

i(t) ≥ δ(t)− r(t)
}

;
turn OFF units indexed by {1, 2, · · · , j∗}.

end if
end loop

TCL. However, it can not guarantee that none of the units
will not be switched quicker than allowed. To this end, one
should explicitly impose such no-short-cycling constraints on
the priority stacks. As shown in Fig. 2, the ON and OFF
priority stacks can be modified to account for such no-short-
cycling constraints. Once a unit is turned ON or OFF, it must
remain in that state for at least a certain amount of time (that
is specified by the manufacture) before it is switched again.

For clarity of presentation, we list some of the terms that
we will frequently use in this section in Table II. When the
controller must satisfy the short cycling constraints a certain
percentage of TCLs will be unavailable to be switched
from ON to OFF or OFF to ON. The effect of this loss
of use is to create an additional constraint on changes in
feasible regulation signals r(t). Quite simply, if there is no
available ON unit to be switched OFF, the regulation signal
cannot request decreased power draw (and similarly for
increased power draw). This means that to determine feasible
regulation signals, the battery model must be augmented with
the constraints

−η−(t) ≤ ∆r(t) ≤ η+(t), (9)

where ∆r(t) = r(t)−r(t−1), and η−(t) and η+(t) are time



TABLE II
NOMENCLATURE OF SOME OF THE FREQUENTLY-USED TERMS.

Term Description
Pk Power draw of unit k when ON
Ptot

∑
k P

k

Pko Average power draw of unit k
Pave

∑
k P

k
o

r(t) Regulation signal requesting power draw of Pave + r(t)
Available ON Units that have been ON for more than a certain amount of time

Unavailable ON Units that have been ON for less than a certain amount of time
Available OFF Units that have been OFF for more than a certain amount of time

Unavailable OFF Units that have been OFF for less than a certain amount of time
P lim

ON→OFF(t) Total power of units switched from ON to OFF at time t due to temperature bound
P lim

OFF→ON(t) Total power of units switched from OFF to ON at time t due to temperature bound
PON(t) Total power of ON units
POFF(t) Total power of OFF units
P avail

ON (t) Total power of units that are available ON
P unavail

ON (t) Total power of units that are unavailable ON
P avail

OFF (t) Total power of units that are available OFF
P unavail

OFF (t) Total power of units that are unavailable OFF

varying constraints.4 However, we will show that η− and η+

are easily estimated if the following information is available:
(i) power draw of each unit (when ON); (ii) average power
draw of each unit P ko ; and (iii) the total rated power for
units that are about to be turned ON or OFF due to their
temperature limits, denoted by P lim

OFF→ON(k) or P lim
ON→OFF(k),

respectively.
Theorem 3: Assume a collection of TCLs defined by

P k, P ko , and a minimum short cycle time of τ (samples).
If the regulation signal r(t) has been met through sample
time t, then the total power of units available at t is given
by

P avail
ON (t) = Pave+r(t)−

t∑
k=t−τ

(
P lim

OFF→ON(k) + [D(k)]+
)

and

P avail
OFF (t) = Ptot − Pave − r(t)−

t∑
k=t−τ

(
P lim

ON→OFF(k) + [−D(k)]+
)
,

where D(k) := ∆r(k)− (P lim
OFF→ON(k)− P lim

ON→OFF(k)) and
[x]+ := max(x, 0). In addition, feasible ∆r(t) satisfies (9)
with

η+(t) = P avail
OFF (t− 1)−max(P lim

ON→OFF(t), P lim
OFF→ON(t)),

η−(t) = P avail
ON (t− 1)−max(P lim

ON→OFF(t), P lim
OFF→ON(t)).

Proof: See Appendix.
In the following simulation, we run the controller with

the reference command shown as the solid line in Fig. 3 (a).
For comparison, the power limits found using the battery
model are also shown. We take P lim

OFF→ON(t) and P lim
OFF→ON(t)

as that reported by the local unit controllers, and use that

4There might exist other known constraints/bounds on changes ∆r(t)
specified by the system operator which we are not considering here.

information along with r(t) to calculate η+(t) and η−(t). In
Fig. 3 (b) these are plotted along with ∆r(t). Note that at
time 150 (s), the lower bound approaches zero, meaning that
negative ∆r(t) is no longer feasible, and this in-feasibility
continues even after r(t) moves up away from the lower
power limit after time 200 (s). In Fig. 3 (c) the difference
between the desired regulation signal and the actual power
draw Pagg(t)− Pave shows that regulation signal is not well
followed downward during the time that η− is close to zero.

VI. CONCLUSIONS

Thermostatically Controlled Loads (TCLs) present a large
potential to provide regulation service to grid. Our prior work
showed that the aggregate flexibility offered by a collec-
tion of TCLs could be succinctly modeled as a stochastic
battery model with dissipation. In this paper, we addressed
two practical issues associated with the proposed battery
model: clustering of heterogeneous units and preventing short
cycling. We showed that by finding the optimal dissipation
parameter and/or clustering a population of heterogeneous
units, the overall battery power limit and energy capacity
could be improved substantially. Moreover, we also derived
an explicit characterization of the constraints on upward and
downward movement of feasible regulation signals under the
no-short-cycling requirement.

APPENDIX

Proof of Lemma 1: Let Cmin := mink C
k and Cmax :=

maxk C
k. If α > 1/RCmin, then αRCk > 1, ∀k, and gk =

1/αR. If α < 1/RCmax, then αRCk < 1, ∀k, and gk =
Ck

2−αRCk . With a change of variable x := 1/RCk, gk(x) =

1/(2Rx − αR). If 1/RCmax < α < 1/RCmin, for Ck’s
such that Ck > 1/αR, gk = 1/αR, and for Ck’s such
that Ck < 1/αR, gk = Ck

2−αRCk . Figure shows these 3
different situations. Note that at x = α (the breakpoint),
1/(2Rx− αR) = 1/αR.

Consequently, when α < 1/RCmin, mink g
k =

1/(2/Cmin − αR) and when α > 1/RCmin, mink g
k =
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Fig. 3. Illustration of the effect of short cycling and ramping rate
constraints. (a) The regulation signal and battery model bounds on power.
(b) ∆r(t) and its bounds given in Theorem 3. (c) The difference between
the desired regulation signal r(t) and the actual power draw Pagg(t)−Pave.
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Fig. 4. A collection of 1000 heterogenous TCLs considered whose
parameter values are given in Table I. The heterogeneity is in Ck . (a)
Capacity over time constant 1/RCk for various dissipation value. (b)
Capacity C(α) as a function of dissipation. A maximum is achieved at
α∗ = 1/RCmin.

1/αR. Figure shows C(α). The breakpoint is at α =
1/RCmin. Thus, when the heterogeneity is only in Ck we
have

max
α
C(α) = N∆Cmin/η, α∗ = 1/RCmin.

Proof of Lemma 2: If α > 1/RC, then C(α) =
N∆min/αηR. If α < 1/RC, then C(α) = N∆minC/η(2−
αRC). The breakpoint is at α = 1/RC. Thus, when the
heterogeneity is only in ∆k,

max
α
C(α) = NC∆min/η and α∗ = 1/RC.

Proof of Theorem 2: When the heterogeneity is only in
Ck, the optimal cluster sizes can be found by solving the
following optimization problem:

maximize
N1,...,Nm

f(1)N1 +

m∑
i=2

Nif
(
1 +

i−1∑
j=1

Nj
)

subject to
m∑
i=1

Ni = N,

(10)

where f(·) is a function that represents the sorted Ck

values in an ascending order. In the case where a uniform
distribution is assumed as the heterogeneity of Ck’s, the
sorted Ck values construct an affine function f between Cmin

and Cmax as

f(x) = Cmin +
Cmax − Cmin

N − 1
(x− 1),



where x only takes integer values between 1 and N . It can be
shown that under linearity assumption on f(·), the optimal
solution to (10) is

N∗1 = · · · = N∗m = N/m.

The proof is not presented here for the sake of saving space.
Consequently, the optimal capacity is derived by using the
optimal cluster sizes in the objective function of (10) as

C∗m =
(
Cmin +

(Cmax − Cmin)

2

N

(N − 1)

(m− 1)

m

)
N∆/η.

Proof of Theorem 3: Let PON(t) and POFF(t) denote the
total power of units ON and OFF, respectively. If r(t) is
satisfied, then by definition

PON(t) = Pave + r(t),

POFF(t) = Ptot − Pave − r(t).

Note that PON(t) + POFF(t) = Ptot. Let P unavail
ON (t) and

P unavail
OFF (t) be the total power of units that are unavailable

and ON or OFF, respectively. Clearly

P avail
ON (t) = PON(t)− P unavail

ON (t),

P avail
OFF (t) = POFF(t)− P unavail

OFF (t).

Now, P unavail
ON is given by the sum of the power of units that

have been turned ON in the last τ seconds. The first result
follows by noting that if r(t) is satisfied, then the power
of units turned ON at time t must balance the difference
between units turned ON and OFF due to local controllers,
along with the change in r(t). For example, the units turned
from OFF to ON must be given by

POFF→ON(t) = P lim
OFF→ON(t) + [D(k)]+ ,

where the second term represents the potential imbalance due
to a change in ∆r(t) plus a difference between P lim

OFF→ON(t)
and P lim

ON→OFF(t). Finally, the limits η+(t) and η−(t) are
achieved using the worst case assumption that all units that
hit the temperature limits are currently unavailable and no
units unavailable at time t− 1 become available.

REFERENCES

[1] California Energy Commission, “California renewable energy
overview and programs,” 2013. [Online]. Available: http:
//www.energy.ca.gov/renewables/index.html

[2] J. Smith, M. Milligan, E. DeMeo, and B. Parsons, “Utility wind
integration and operating impact state of the art,” IEEE Transactions
on Power Systems, vol. 22, no. 3, pp. 900 –908, aug. 2007.

[3] Y. Makarov, C. Loutan, J. Ma, and P. de Mello, “Operational impacts
of wind generation on california power systems,” IEEE Transactions
on Power Systems, vol. 24, no. 2, pp. 1039 –1050, may 2009.

[4] S. Meyn, M. Negrete-Pincetic, G. Wang, A. Kowli, and E. Shafieep-
oorfard, “The value of volatile resources in electricity markets,” in
CDC2010, 2010, pp. 1029 –1036, and submitted to IEEE TAC, 2012.

[5] B. Kirby, “Ancillary services: Technical and commercial insights,”
Report prepared for Wartsila, Tech. Rep., July 2007.

[6] U. Helman, “Resource and transmission planning to achieve a 33%
RPS in California–ISO modeling tools and planning framework,” in
FERC Technical Conference on Planning Models and Software, 2010.

[7] Market and Infrastructure Policy, “2013 flexible capacity procurement
requirement,” Tech. Rep., March 2012. [Online]. Available: http:
//www.CAISO.com/

[8] K. Vu, R. Masiello, and R. Fioravanti, “Benefits of fast-response
storage devices for system regulation in ISO markets,” in IEEE Power
Energy Society General Meeting, 2009, july 2009, pp. 1 –8.

[9] Y. V. Makarov, L. S., J. Ma, and T. B. Nguyen, “Assessing the value
of regulation resources based on their time response characteristics,”
Pacific Northwest National Laboratory, Richland, WA, Tech. Rep.
PNNL-17632, June 2008.

[10] S. Koch, J. Mathieu, and D. Callaway, “Modeling and control of ag-
gregated heterogeneous thermostatically controlled loads for ancillary
services,” in Proc. PSCC, 2011, pp. 1–7.

[11] J. Mathieu and D. Callaway, “State estimation and control of hetero-
geneous thermostatically controlled loads for load following,” in 2012
45th Hawaii International Conference on System Sciences. IEEE,
2012, pp. 2002–2011.

[12] J. L. Mathieu, S. Koch, and D. S. Callaway, “State estimation and
control of electric loads to manage real-time energy imbalance,” IEEE
Transactions on Power Systems, vol. 28, no. 1, pp. 430 –440, Feburary
2013.

[13] J. L. Mathieu, M. Kamgarpour, J. Lygeros, and D. S. Callaway,
“Energy arbitrage with thermostatically controlled loads,” in European
Control Conference (ECC), 2013.

[14] A. Nayyar, J. Taylor, A. Subramanian, K. Poolla, and P. Varaiya,
“Aggregate flexibility of a collection loads,” to appear in the 52-th
IEEE Conference on Decision and Control – CDC, 2013.

[15] “Buildings energy data book.” [Online]. Available: http:
//buildingsdatabook.eren.doe.gov/default.aspx

[16] “U.S. Energy Information Administration, annual energy review,”
2010. [Online]. Available: http://www.eia.gov/totalenergy/data/annual/
#consumption

[17] H. Hao, B. M. Sanandaji, K. Poolla, and T. L. Vincent, “A Generalized
Battery Model of a Collection of Thermostatically Controlled Loads
for Providing Ancillary Service,” to appear in proceedings of the
51-th Annual Allerton Conference on Communication, Control and
Computing, 2013.

[18] ——, “Aggregate flexibility of thermostatically controlled loads,”
submitted to the IEEE Transactions of Power Systems, 2013.

[19] D. S. Callaway, “Tapping the energy storage potential in electric loads
to deliver load following and regulation, with application to wind
energy,” Energy Conversion and Management, vol. 50, no. 5, pp.
1389–1400, 2009.

[20] S. Kundu, N. Sinitsyn, S. Backhaus, and I. Hiskens, “Modeling
and control of thermostatically controlled loads,” in the 17-th Power
Systems Computation Conference, 2011.

[21] W. Zhang, K. Kalsi, J. Fuller, M. Elizondo, , and D. Chassin,
“Aggregate model for heterogeneous thermostatically controlled loads
with demand response,” in proceedings of IEEE PES General Meeting,
San Diego, CA, 2012.

[22] C. Chang, W. Zhang, J. Lian, and K. Kalsi, “Modeling and control of
aggregated air conditioning loads under realistic conditions,” in pro-
ceedings of IEEE PES Innovative Smart Grid Technologies Conference
(ISGT), 2013.

[23] J. Mathieu, M. Dyson, and D. Callaway, “Using residential electric
loads for fast demand response: The potential resource and revenues,
the costs, and policy recommendations,” in 2012 ACEEE Summer
Study on Energy Efficiency in Buildings, 2012.

[24] R. Malhame and C.-Y. Chong, “Electric load model synthesis by dif-
fusion approximation of a high-order hybrid-state stochastic system,”
Automatic Control, IEEE Transactions on, vol. 30, no. 9, pp. 854–860,
1985.

[25] H. Hao, B. M. Sanandaji, K. Poolla, and T. L. Vincent,
“Frequency regulation from flexible loads: Potential, economics,
and implementation,” in American Control Conference, submitted,
September 2013. [Online]. Available: http://plaza.ufl.edu/hehao/
publication.html


