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Abstract

We consider the problem of distributed formation control ofa large number of vehicles. An individual vehicle in the formation

is assumed to be a fully actuated point mass. A distributed control law is examined: the control action on an individual vehicle

depends on (i) its own velocity and (ii) the relative position measurements with a small subset of vehicles (neighbors) in the

formation. The neighbors are defined according to aninformation graph.

In this paper we describe a methodology for modeling, analysis, and distributed control design of such vehicular formations

whose information graph is aD-dimensional lattice. The modeling relies on an approximation based on a partial differential

equation (PDE) that describes the spatio-temporal evolution of position errors in the formation. The analysis and control design

is based on the PDE model. We deduce asymptotic formulae for the closed-loop stability margin (absolute value of the real

part of the least stable eigenvalue) of the controlled formation. The stability margin is shown to approach0 as the number of

vehiclesN → ∞. The exponent on the scaling law for the stability margin is influenced by the dimension and the structure of

the information graph. We show that the scaling law can be improved by employing a higher dimensional information graph.

Apart from analysis, the PDE model is used for a mistuning-based design of control gains to maximize the stability margin.

Mistuning here refers to small perturbation of control gains from their nominal symmetric values. We show that the mistuned

design can have a significantly better stability margin evenwith a small amount of perturbation. The results of the analysis with

the PDE model are corroborated with numerical computation of eigenvalues with the state-space model of the formation.

I. I NTRODUCTION

We consider the problem of controlling a group of vehicles sothat they maintain a desired formation geometry while

following a desired trajectory. The desired formation geometry is specified in terms of desired relative positions between pairs

of vehicles. The desired trajectory of the formation is supplied to a subset of the vehicles, which are called reference vehicles.

The problem is relevant to a number of applications such as formation control of aerial, ground, and autonomous vehicles

for transportation, surveillance, reconnaissance and mine-sweeping [1–4]. In many of these applications, a centralized control

solution that requires all-to-all or all-to-one communication is impractical. This motivates distributed control architectures

where an individual vehicle exchanges information only with a small set of other vehicles to make control decisions.

Each vehicle is modeled as a fully actuated point mass. This means that (i) the dynamics of each coordinate of the vehicle’s

position are modeled using a double integrator, (ii) the coordinate dynamics are decoupled, and (iii) an independent force
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actuation is assumed for each coordinate. A distributed control law is examined: the control action on an individual vehicle

depends on (i) its own velocity and (ii) the relative position measurements with a small subset of vehicles (neighbors) in the

formation. The neighbor relationship is defined according to an information graph, which has been recognized to play an

important role in closed-loop stability of the formation [5, 6]. A node in the graph represents a vehicle, and an edge connecting

two nodes represents direct information exchange between those nodes. This information exchange may occur due to one

vehicle measuring the other vehicle’s relative position byon-board sensors, or due to one vehicle communicating its state

information to the other via a communication channel. The information graph is undirected, meaning that if vehiclei can get

information about vehiclej, thenj can get information abouti.

The objective of this paper is to study how the stability margin (the absolute value of the real part of the least stable

eigenvalue) of the closed-loop scales with the number of vehicles, structure of theD-dimensional information graph, and the

choice of the control gains. For a specific case, whenD = 1, the stability margin of the platoons and its dependence of

asymmetry in control gains was examined in our own earlier work [7]. The extension to 2D formations appears in [8]. This

paper is an extension of these previous works.

In this paper, we restrict ourselves to information graphs that belong to the class ofD-dimensional (finite) lattices. A formal

definition of lattice appears in Section II; see Figure 2 for afew examples. Lattices arise naturally as information graphs when

the vehicles in the group are arranged in a regular pattern inspace and the exchange of information occurs between pairs

of vehicles that are physically close. However, lattices also allow for a flexibility to model much more general information

exchange architectures. They are often used as informationgraph in concensus and vehicular formation problems [9]. Inthis

paper, we make an important distinction between the dimension of the position vector of a vehicle and the dimension of the

lattice that defines the information graph. For example, a one-dimensional platoon may have a two-dimensional lattice as its

information graph (see Figure 1).

A. Related literature

An analysis of the stability margin is important to understand the scalability of control solutions as the number of vehicles

in the formation,N , increases. In the formation control literature, the scalability question has been investigated primarily for

a one-dimensional vehicle formation, which is usually referred to as aplatoon. An extensive literature exists on the platoon

control problem; see [10–14] and references therein. The most widely studied information exchange structures for distributed

control of platoons arepredecessor following controlandbidirectional control. In predecessor following control, every vehicle

uses information from the vehicle immediately ahead. In bidirectional control, each vehicle uses information from thevehicle

immediately ahead of it and the one behind it. Scenarios in which information exchange occurs with vehicles beyond those

physically closest, are studied in [15, 16]. The focus of much of the research in this area has been on the so-calledsymmetric

control, in which every vehicle uses the same control law. Such a simplifying assumption is motivated in part by a lack of

tools for analysis and design of distributed control laws. The symmetry assumption is used to simplify the design and analysis.

References that studied non-symmetric control design include [16, 17].

For platoons, the distributed control architectures with symmetric control are known to scale poorly, both in terms of

closed-loop stability margin and sensitivity to external disturbances. In a symmetric bidirectional architecture, the least stable

closed-loop eigenvalue approaches zero asN increases [7]. This progressive loss of stability margin causes the closed-loop

performance to become arbitrarily sluggish as the number ofvehicles,N , increases. Small stability margin can also lead to long
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transients due to initial conditions, which can result in control saturation [18]. It is worthwhile to point out that thestability

margin for a platoon is known to scale poorly as a function ofN even with the centralized LQR control [19]. In addition

to the loss of stability margin, the sensitivity of the closed-loop platoon to external disturbances increases withoutbound

as a function ofN . This effect is also referred to asstring instability [20, 21] or slinky-type effect[13]. String instability is

observed for both symmetric predecessor following and symmetric bidirectional control [22, 23]. Non-symmetric control design

within the bidirectional architecture was proposed in [7] that helps improve the closed-loop stability margin. A non-symmetric

control design within the framework of predecessor architecture was proposed in [17], which ameliorates string instability at

the expense of control gains that increase without bound asN increases.

Control of platoons with inter-vehicle communication thatallows for information exchange with vehicles that are not just

nearest neighbors was considered in [15, 16]. It was concluded in [15] that to eliminate string instability with symmetric

control, the number of vehicles that each vehicle communicates with has to grow without bound asN increases. It was shown

in [16] that heterogeneity in control gains does not significantly alter string instability if certain constraints are imposed on

integral absolute error and high frequency response of the loop transfer function.

Bamieh et. al. studied controlled vehicle formations with aD-dimensional torus as the information graph [9]. Scaling

laws with symmetric control are obtained for certain performance measures that quantify the sensitivity of the closed-loop to

stochastic disturbance. It is shown in [9] that the scaling of these performance measures withN is strongly dependent on

the dimensionD of the information graph. In [24], Pantet. al. introduced the notion of mesh-stability for two-dimensional

formations with a “look-ahead” information exchange structure, which refers to a particular kind of directed information flow.

The scenario considered in our paper, with undirected information graphs, does not fall under the look-ahead information

exchange structure.

B. Contributions of this paper

In this paper we describe a methodology for modeling, analysis, and distributed control design of vehicular formations

whose information graph belongs to the class ofD-dimensional lattices. The approach is to use a partial differential equation

(PDE) based continuous approximation of the (spatially) discrete platoon dynamics. Just as a PDE can be discretized using a

finite difference approximation, we can carry out the procedure in reverse: the spatial difference terms in the discretemodel

are approximated by spatial derivatives. The resulting PDEyields the original set of ordinary differential equationsupon

discretization. This approach is motivated by earlier workon PDE modeling of one-dimensional platoons [7]. The PDE model

is used for analysis of stability margin and for mistuning-based design of distributed control laws.

There are two contributions of this work that are summarizedbelow.

First, we obtain scaling laws of the stability margin of the closed-loop formation with symmetric control. We show that

the stability margin scales asO( 1
n2
1

) wheren1 is the number of vehicles along a certain axis of the information graph. By

choosing the structure of the information graph in such a waythat n1 increases slowly in relation toN , the reduction of the

stability margin as a function ofN can be slowed down. In fact, by holdingn1 to be a constant independent of the number

of vehiclesN , the stability margin can be bounded away from zero even as the number of vehicles increase without bound.

It turns out, however, that keepingn1 fixed whileN increases causes the number of reference vehicles to increase. When the

information graph is a squareD-dimensional lattice (equal number of nodes on each side of the lattice), the stability margin

scales asO( 1
N2/D ) in the limit of largeN . This formula is a generalization of the estimate given in [7] for a one-dimensional

formation.
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The second contribution of this work is a procedure to designasymmetriccontrol gains so that the stability margin scaling

law is significantly improved over that with symmetric control. For the case of square information graphs, we show that an

arbitrarily small asymmetry in the proportional control gains from their nominal symmetric values results in stability margin

scaling asO( 1
N1/D ). In contrast to theO( 1

N2/D ) scaling seen in the symmetric case, this is an order of magnitude improvement.

The resulting control design is called amistuning-based design since the control gains are changed only slightly, i.e., mistuned,

from their values in the nominal, symmetric case. Mistuning-based approaches have been used for stability augmentation in

several applications [25–28], and recently for distributed control of one-dimensional platoons [7].

The advantage of using a PDE-based analysis is that the PDE reveals, better than the state-space model does, the mechanism

of loss of stability and suggests the mistuning-based approach to ameliorate it. Numerical computations of eigenvalues of the

state-space model of the formation is used to confirm the scaling laws with symmetric as well as mistuned control. Although

the PDE model approximates the (spatially) discrete formation dynamics in the limitN → ∞, numerical calculations show

that the conclusions drawn from the PDE-based analysis holds even for small number of vehicles.

The remainder of this paper is organized as follows. SectionII presents the problem statement and the main results of this

paper. Section III describes the state-space and PDE modelsof the formation control problem. Analysis and control design results

together with their numerical verification appear in Sections IV and V, respectively. In Section VI, we present time-domain

simulations to illustrate these results, and comment on various aspects of the proposed design and analysis methodology.

II. PROBLEM STATEMENT AND MAIN RESULTS

A. Problem statement

We consider the formation control ofN identical vehicles. The position of each vehicle is aDs-dimensional vector (with

Ds = 1, 2 or 3); Ds is referred to as thespatial dimensionof the formation. Letp(d)i ∈ R be thed-th coordinate of thei-th

vehicle’s position, whose dynamics are modeled by a double integrator:

p̈
(d)
i = u

(d)
i , d = 1, . . . , Ds, (1)

whereu(d)i ∈ R is the control input (acceleration or deceleration command). The underlying assumption is that each of the

Ds coordinates of a vehicle’s position can be independently actuated. We say that the vehicles arefully actuated. The spatial

dimensionDs is 1 for a platoon of vehicles moving in a straight line,Ds = 2 for a formation of ground vehicles andDs = 3

for a formation of aerial vehicles flying in the three dimensional space.

The control objective is to make the group of vehicles track apre-specified desired trajectory while maintaining a desired

formation geometry. The desired formation geometry is specified by a desired relative position vector∆i,j := p∗i (t)−p∗j (t) for

everypair of vehicles(i, j), wherep∗i (t) is the desired trajectory of the vehiclei. The desired inter-vehicular spacings have to

be specified in a mutually consistent fashion, i.e.∆i,j = ∆i,k+∆k,j for every triplei, j, k. Desired trajectory of the formation

is specified in the form of a few fictitious “reference vehicles”, each of which perfectly tracks its own desired trajectory. The

reference vehicles are generalization of the fictitious leader and follower vehicles in one-dimensional platoons [7, 10, 19]. A

subset of vehicles can measure their relative positions with respect to the reference vehicles, and these measurementsare used

in computing their control actions. In this way, desired trajectory information of the formation is specified only to a subset of

the vehicles in the group. In this paper we consider the desired trajectory of the formation to be of a constant-velocity type,

so that∆i,j ’s don’t change with time.

Next we define aninformation graphthat makes it convenient to describe distributed control architectures.
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(a) The desired formation geometry of a 1D spatial platoon
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(b) The desired formation geometry of a 2D
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(c) The information graph for both the 1D

platoon and the 2D formation shown in (a)

and (b).

Fig. 1. (a, b): Two distinct spatial formations that have thesame associated information graph (c). Red (filled) circlesrepresent reference vehicles and black

(unfilled) circles represent real vehicles. Dashed lines (in (a), (b)) represent desired relative positions, while solid lines represent edges in the information

graph.

Definition 1: An information graphis an undirected graphG = (V,E), where the set ofnodesV = {1, 2, . . . , N,N +

1, . . . , N + Nr} consists ofN real vehicles andNr reference vehicles. The set of edgesE ⊂ V × V specify which pairs

of nodes (vehicles) are allowed to exchange information to compute their local control actions. Two nodesi andj are called

neighborsif (i, j) ∈ E, and the set of neighbors ofi are denoted byNi. �

Note that information exchange may or may not involve an explicit communication network. For example, if vehiclei

measures the relative position of vehiclej with respect to itself by using a radar and uses that information to compute its

control action, we consider it as “information exchange” between i and j. If a vehicle i has access to desired trajectory

information then there is an edge betweeni and a reference vehicle.

In this paper we consider the followingdistributedcontrol law, whereby the control action at a vehicle dependson i) its

own velocity and ii) therelative position measurementswith its neighbors in the information graph:

u
(d)
i =

∑

j∈Ni

−k(d)(i,j)(p
(d)
i − p

(d)
j −∆

(d)
i,j )− b

(d)
i (ṗ

(d)
i − v∗(d)), i = 1, . . . , N, (2)

where v∗(d) is the d-th component of the desired velocity of the formation,k
(d)
(·) is the proportional gain andb(d)(·) is the

derivative gain. Note that all the variables in (2) are scalars. It is assumed that vehiclei knows its own neighbors (the setNi),

desired spacing∆(d)
i,j , and the desired velocityv∗(d).

Example 1:Consider the two formations shown in Figure 1 (a) and (b). Their spatial dimensions areDs = 1 andDs = 2,

respectively. The information graph, however, is the same in both cases:

V = {1, 2, . . . , 9}, E = {(1, 2), (1, 4), (1, 7), (2, 3), (2, 5), (2, 8), (3, 6), (3, 9), (4, 5), (5, 6), (7, 8), (8, 9)}.

A drawing of the information graph appears in Figure 1 (c). Although the information graph is the same, the desired spacings

∆i,j ’s are different in the two formations. For example,∆
(1)
2,5 6= 0 in the one-dimensional formation shown in Figure 1 (a)

whereas∆(1)
2,5 = 0 in the two-dimensional formation shown in Figure 1 (b).

In this paper we restrict ourselves to a specific class of information graph, namely a finite rectangular lattice:

Definition 2 (D-dimensional lattice):A D-dimensional lattice, specifically an1 × n2 × · · · × nD lattice, is a graph with

n1n2 . . . nD nodes. In theD-dimensional spaceRD, the coordinate ofi-th node is~i := [i1, . . . , iD]T , wherei1 ∈ {0, 1, . . . , (n1−
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O x1

(a) A 1D 4 lattice.

O x1

x2

(b) A 2D 4× 4 lattice.

O

x1

x2

x3

(c) A 3D 2× 3× 3 lattice.

Fig. 2. Examples of 1D, 2D and 3D lattices.

1)}, i2 ∈ {0, 1, . . . , (n2 − 1)}, . . . and iD ∈ {0, 1, . . . , (nD − 1)}. An edge exists between two nodes~i and~j if and only if

‖~i − ~j‖ = 1, where‖ · ‖ is the Euclidean norm inRD. A n1 × n2 × · · · × nD lattice is denoted byZn1×n2×···×nD . With a

slight abuse of notation, “thei-th node” is used to denote the node on the lattice with coordinate~i. �

Figure 2 depicts three examples of lattices. AD-dimensional lattice is drawn inRD with a Cartesian reference frame whose

axes are denoted byx1, x2, . . . , xD. Note that these coordinate axes may not be related to the coordinate axes in the physical

spaceRDs .

In this paper an information graphG is always a latticeZn1×n2···×nD , wheren1n2 . . . nD = N + Nr. For a givenN ,

the choice ofNr, D, n1, n2, . . . , nD serves to determine the specific choice of the information graph within the class. An

information graph is said to besquareif n1 − 1 = n2 = . . . = nD.

For the ease of exposition and notational simplicity, we make the following two assumptions regarding the reference vehicles

and the distributed control architecture (2):

Assumption 1:For each(i, j) ∈ E, the gaink(d)(i,j) does not depend ond, and for eachi ∈ V, b(d)i does not depend ond.

�

Assumption 2:The reference vehicles are arranged so that a nodei in the information graph corresponds to a reference

vehicle if and only ifi1 = n1 − 1. �

Assumption 1 means that the local control gains do not explicitly depend upon the coordinated. Such an assumption is not

restrictive because of the fully actuated assumption. If the local control gains are allowed to depend upond then one could

repeat the analysis of this paper separately for each value of d. Note that the assumption does not mean that the control gains

are spatially homogeneous; for example, the control gainsk
(1)
(i,j) 6= k

(2)
(i,j) for the same(i, j) ∈ E.

Assumption 2 means that all reference vehicles are assumed to be arranged on a single “face” of the lattice, and every

vehicle on this face is a reference vehicle. Assumption 2 implies thatN = (n1 − 1)n2 . . . nD andNr = n2 . . . nD. Other

arrangements of reference vehicles do not significantly change the main conclusions of this paper. Some of these extensions

are discussed in Sec. VI.

As a result of the Assumption 1, we can rewrite (2) as

ui =
∑

j∈Ni

−k(i,j)(pi − pj −∆i,j)− bi(ṗi − v∗), (3)

where the superscript(d) has been suppressed.
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Remark 1:The dimensionD of the information graph is distinct from the spatial dimensionDs. Figure 1 shows an example

of two formations in space, one withDs = 1 and the other withDs = 2. The information graph for both the formations is

the same3× 3 two-dimensional lattice, i.e.,D = 2. On account of the fully actuated dynamics and Assumption 1,the spatial

dimensionDs plays no role in the results of this paper. The dimension of the information graphD, on the other hand, will

be shown to play a crucial role.

Remark 2:Analysis of the control law (3) is relevant even when there are additional dynamic elements in the controller.

There are several reasons for this. First, a dynamic controller cannot have a zero at the origin, for that will result in a pole-

zero cancellation, causing the steady-state errors to growwithout bound asN increases [23]. Second, a dynamic controller

cannot have an integrator either. If it does, the closed-loop platoon dynamics become unstable for a sufficiently large value

of N [23]. Thus, any allowable dynamic compensator must essentially act as a static gain at low frequencies. The results

of [15, 23] indicate that the low frequency behavior is the dominant factor in the control of large networks of agents with

double integrator dynamics. Hence, the issues that arise with the control law (3) are also relevant to the case where additional

dynamic elements appear in the control law.

B. Main result I: Stability margin with symmetric control and D-dimensional information graph

Definition 3: The stability margin is the absolute value of the real part of the least stable eigenvalue of the closed-loop

system. �

Definition 4: The control law (3) issymmetricif all the vehicles use the same control gains:k(i,j) = k0, for all (i, j) ∈ E

andbi = b0 for all i ∈ V, wherek0 andb0 are positive constants.

The first main result gives an asymptotic formula for controlled formation with symmetric control:

Theorem 1:Consider anN -vehicle formation with vehicle dynamics (1) and control law (2), with Assumptions 1 and 2.

With symmetric control, the stability margin of the closed-loop is given by the formula

S =
π2k0
4b0

1

(n1 − 1)2
+O(

1

n4
1

), (4)

that holds whenn1 → ∞. �

We remark that the stability margin depends only uponn1 – the number of vehicles along thex1 axis. Thex1 axis is special

because it is normal to the face with the reference vehicles;see Assumption 2. In the PDE model, the boundary condition isof

the Dirichlet type on this face (see (28)). Analogous estimates also hold with different arrangement of the reference vehicles

(see Section VI for details).

a) Square information graph:For a square information graph,N = (n1 − 1)n2 . . . nD = (n1 − 1)D, and we have the

following corollary:

Corollary 1: Consider anN -vehicle formation with vehicle dynamics (1) and control law (2), with Assumptions 1 and 2.

When the information graph is a squareD-dimensional lattice, the closed-loop stability margin with symmetric control is given

by the asymptotic formula

S =
π2k0
4b0

1

N2/D
+O(

1

N4/D
). (5)

�

The special case of Corollary 1 forD = 1 was established in [7].

The result from Corollary 1 shows that for a constant choice of symmetric control gainsk0 and b0, the stability margin

approaches0 asN → ∞. The dimensionD of the information graph determines the scaling. Specifically, the stability margin
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scales asO(1/N2) for 1D information graph, asO(1/N) for 2D information graph, and asO(1/N2/3) for 3D information

graph. Thus,for the same control gains, increasing the dimension of the information graph improves the stability margin

significantly. In practice, this may require a communication network withlong range connections in the physical space. Note

that an information graph is only a drawing of the connectivity. A neighbor in the information graph need not be physically

close.

Remark 3: It was shown in [19] that the closed-loop stability margin for a circular platoon approaches zero asO(1/N2) even

with the centralized LQR controller. It is interesting to note that distributed control (with an information graph of dimension

D > 1) yields a better scaling law for the stability margin than centralized LQR control.

b) Non-square information graph:It follows from Theorem 1 that by choosing the structure of the information graph

in such a way thatn1 increases slowly in relation toN , the loss of the stability margin as a function ofN can be slowed

down. In fact, whenn1 is held at a constant value independent ofN , it follows from Theorem 1 that the stability margin

is a constant independent of the total number of vehicles. More generally, consider an information graph withn1 = O(N c),

wherec ∈ [0, 1] is a fixed constant. Using Theorem 1, it follows thatS = O(1/N2c) asN → ∞. If c < 1
D , the resulting

reduction ofS with N is slower than that obtained for a square lattice; cf. Corollary 1. This shows that within the class of

D dimensional lattices (for a fixedD), certain information graphs provide better scaling of thestability margin than others.

The price one pays for improving stability margin by reducing n1 is an increase in the number of reference vehicles. This is

because the number of reference vehiclesNr is related ton1 by Nr = N/(n1 − 1) (see Assumption 2).

It is important to stress that not all non-square graphs are advantageous. For example, ifn1 = O(N) andn2 throughnD

areO(1), it follows from Theorem 1 that the stability margin isS = O(1/N2). This is the same trend as in a 1-D information

graph. In this case, we can say that theD dimensional information graph effectively behaves as a onedimensional graph.

Figure 3 shows a few examples of information graph that are relevant to the discussion above. The 2D information graph

shown in Figure 3 (a) hasn1 = O(1) andn2 = O(N), whereas the one in Figure 3 (b) hasn1 = O(N) andn2 = O(1). The

graph shown in Figure 3 (c) is approximately square, bothn1 andn2 areO(
√
N).

Figure 4 provides numerical corroboration of the discussion above. The stability margin as a function ofN for three distinct

2D information graphs (that are described in Figure 3) are shown in this figure. The stability margin is computed by computing

the eigenvalues of the closed-loop state matrix; the state space model is described in (12) in Section III. The control gains

used arek0 = 0.01, b0 = 0.5. The plots show that the formula (4) in Theorem 1 makes an excellent prediction of the trend

of stability margin. The asymptotic nature of the result in Theorem 1 (and Corollary 1) is seen from the plot: the prediction

becomes more and more accurate asN increases.

C. Main result II: Stability margin with non-symmetric control andD-dimensional information graph

The second main result of this work is that for a fixed information graph, the scaling law for stability margin can be improved

by choosing a non-symmetric control law. We call the resulting design amistuning-based design because it relies on small

changes from the symmetric control. The improvement is achieved by making small perturbations to the proportional gains

alonek(i,j); changing derivative gains alone do not have the same disproportionate effect, it only effects theO(1/n2
1) term in

the stability margin. The mistuning-based design and the resulting scaling law is summarized with the aid of the following

theorem:
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(a) Non-square information graph,S = O(1)

x1

x2

O
n1 = O(N)

n
2
=

O
(1

)

(b) Non-square information graph,S = O(1/N2)
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O
n1 = O(

√
N)

n
2
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O
(√

N
)

(c) “Approximately” square information graph,

S = O(1/N)

Fig. 3. (a) A 2-dimensional information graph in which the first dimensionis held constant, resulting in a stability margin that is independent ofN ,

S = O(1). (b) A 2-dimensional information graph that is ”asymptotically” 1D (asN → ∞) since the size of the first dimension increases linearly with N ,

resulting in a stability margin scaling lawS = O(1/N2), which is the same as that with an 1D information graph. (c) A2-dimensional information graph

in which both sides are of lengthO(
√
N), for which we haveS = O(1/N), the same behavior as that of a square 2D graph.

Theorem 2:Consider anN -vehicle formation with vehicle dynamics (1) and control law (2) under Assumptions 1 and 2,

with nominal symmetric control gainsk0 andb0. Now consider the problem of maximizing the stability margin by designing the

proportional control gainsk(i,j), where the gains are required to satisfy|k(i,j) − k0| ≤ ε for every(i, j) ∈ E, with ε ∈ (0, k0)

being an arbitrary and small pre-specified constant. For vanishingly small values ofε, the optimal control gains of thei-th

vehicle (i = 1, . . . , N ) are given by:

k(i,i1+) = k0 + ε, k(i,i1−) = k0 − ε, k(i,j) = k0 for all other neighborsj, (6)

wherei1+ denotesi’s neighbor in the positivex1 direction (in the drawing of the information graph) relative to nodei and

i1− denotesi’s neighbor in the negativex1 direction. The resulting stability margin is given by

S =
2ε

b0

1

n1 − 1
+O(

1

n2
1

), (7)

The formula is asymptotic in the sense that it holds whenn1, . . . , nD → ∞ andǫ→ 0. �

For the special case of a square information graph, we have the following corollary.

Corollary 2: For a vehicular formation ofN vehicles with square information graph and mistuned control design described

in Theorem 2, the stability margin is given by

S =
2ε

b0

1

N1/D
+O(

1

N2/D
), (8)

whereε is defined in Theorem 2. �

We note that the additional information needed by each vehicle i to implement the mistuned control comprises of (i) the

parameterε and (ii) the knowledge of which one of its neighbors is the neighbor i1+ and which isi1−. The special case of

Corollary 2 forD = 1 was established in [7].

Comparing Theorems 1 and 2 (similarly, Corollaries 1 and 2),we see that the effect of mistuning is to introduce a square

root in the stability margin formula. Thus, even for a smallε, mistuning can improve the closed-loop stability margin bya
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n1 − 1 = 5 (SSM)
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√
N (SSM)

n1 − 1 = 5 (Theorem 1)
n1 − 1 = N/5 (Theorem 1)
n1 − 1 =

√
N (Corollary 1)

Fig. 4. Stability margin predicted by Theorem 1 for a vehicleformation with information graphs of various “shapes” as shown in Figure 3. The legend

”SSM” means computed from the ”state space model” (12), which is presented in Section III. For the first case,n1 − 1 = 5 andn2 = N/5. Theorem 1

predicts that in this caseS = O(1) even asN → ∞. In the second case,n2 = 5 andn1 − 1 = N/5, which leads toS = O(1/N2). The third case is that

of a square information graph,n1 − 1 = n2 =
√
N , which leads toS = O(1/N). Theorem 1 and corollary 1 predicts the stability margin quite accurately

in each of the cases. The control gains used in all the calculations arek0 = 0.01 andb0 = 0.5.

large amount, especially whenN is large. Numerical verification of the conclusion of Theorem 2 is presented in Section V;

see, in particular, Figure 10. Figure 5 depicts the optimal mistuned control gains for the case where the information graph is

a 3× 3 lattice.

III. C LOSED-LOOP DYNAMICS: STATE-SPACE ANDPDE MODELS

A. State-space model of the controlled vehicle formation

The dynamics of thei-th vehicle is obtained by combining the open loop dynamics (1) with the control law (3), which

yields

p̈i =
∑

j∈Ni

−k(i,j)(pi − pj −∆i,j)− bi(ṗi − v∗), i = 1, . . . , N. (9)

Let p∗i (t) denote the desired trajectory of thei-th vehicle. The trajectory is uniquely determined from thetrajectories of the

reference vehicles and the desired formation geometry. Forexample, suppose the trajectory of a reference vehicler is v∗t. If

the d-th coordinate of the desired gap between a vehiclei and the reference vehicler is ∆
(d)
i,r , then thed-th coordinate of the

desired trajectory ofi is p∗(d)(t) = v∗(d)t+∆
(d)
i,r .

To facilitate analysis, we define the following coordinate transformation:

p̃i := pi − p∗i ⇒ ˙̃pi = ṗi − v∗. (10)

Substituting (10) into (9), we have

¨̃pi =
∑

j∈Ni

−k(i,j)(p̃i − p̃j)− bi ˙̃pi. (11)
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O x1

x2

k(i,i1+)

k(i,i2+)

k(i,i1−)

k(i,i2−)

k0 + ε

k0 − ε

k0

Fig. 5. Optimal mistuned proportional control gains for a formation of 6 vehicles with3 reference vehicles whose information graph is a3 × 3 lattice. In

general, each vehicle in the2-dimensional information graph has4 proportional gains (as shown on the top of the right figure),k(i,i1+), k(i,i1−), k(i,i2+)

andk(i,i2−). The gaink(i,i1+) is the proportional gain with respect to the neighbor in the positive x1 direction of vehiclei. The other three proportional

gains have similar interpretations. Notice that the optimal mistuned control gains are achieved by simply makingk(i,i1+) larger than the nominal gaink0 by

ε and makingk(i,i1−) smaller than the nominal gaink0 by ε. The other proportional gains remain the same as the nominalgain.

Since the trajectory of a reference vehicle is assumed to be equal to its desired trajectory,̃pi = 0 if i is a reference vehicle.

To express the closed-loop dynamics of the formation compactly, we define:

p̃ := [p̃1, p̃2, · · · , p̃N ]T , ṽ := ˙̃p = [ ˙̃p1, ˙̃p2, · · · , ˙̃pN ]T

Using (11), the state-space model of the vehicle formation can now be written compactly as:



˙̃p

˙̃v



 = A




p̃

ṽ



 ⇔ ψ̇ = Aψ (12)

whereψ := [p̃; ṽ] is the state vector andA the closed-loop state matrix.

Example 2 (Example 1 contd.):Consider the 1D and the 2D spatial formations depicted in Figure 1 (a) and (b), respectively.

The information graph for both these formations is the same and drawn in Figure 1(c). We will now show that the closed-loop

dynamics of both the formations are the same; cf. Remark 1. Specifically, let us examine the dynamics (9) for the vehicle

i = 2. For the 1D formation (Ds = 1), we have

p̈
(1)
2 =− k

(1)
(2,1)(p

(1)
2 − p

(1)
1 −∆

(1)
2,1)− k

(1)
(2,3)(p

(1)
2 − p

(1)
3 −∆

(1)
2,3)− k

(1)
(2,5)(p

(1)
2 − p

(1)
5 −∆

(1)
2,5)

− k
(1)
(2,8)(p

(1)
2 − p

(1)
8 −∆

(1)
2,8)− b

(1)
2 (ṗ

(1)
2 − v∗(1)). (13)

For the purpose of illustration, we focus on the third term onthe right hand side of the above equation, and note that the

desired trajectories are defined with respect to reference vehicle7 (it can be defined with respect to any reference vehicle):

p
∗(1)
2 = v∗(1)t+∆

(1)
2,7, p

∗(1)
5 = v∗(1)t+∆

(1)
5,7. (14)

Using the notation in Eq. (10), the third term in the right hand side of (13) can now be expressed as

−k(1)(2,5)(p
(1)
2 − p

(1)
5 −∆

(1)
2,5) = −k(1)(2,5)(p̃

(1)
2 + p

∗(1)
2 − p̃

(1)
5 − p

∗(1)
5 −∆

(1)
2,5) = −k(1)(2,5)(p̃

(1)
2 − p̃

(1)
5 ),

where the first equality follows from (14) and∆(1)
2,7 − ∆

(1)
5,7 = ∆

(1)
2,5, which follows from the definition∆i,j = p∗i − p∗j . By

evaluating the other terms in a similar manner, we obtain

¨̃p
(1)
2 = −k(1)(2,1)(p̃

(1)
2 − p̃

(1)
1 )− k

(1)
(2,3)(p̃

(1)
2 − p̃

(1)
3 )− k

(1)
(2,5)(p̃

(1)
2 − p̃

(1)
5 )− k

(1)
(2,8)(p̃

(1)
2 − p̃

(1)
8 )− b

(1)
2

˙̃p
(1)
2 . (15)
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O x1

x2

i
i1+

i2+

i1−

i2−

Fig. 6. A pictorial representation of thei-th vehicle and its four nearby neighbors in a 2D informationgraph.i1+ stands for the neighbor of thei-th vehicle

in the x1 positive direction relative to vehiclei, and i1− stands for the neighbor of thei-th vehicle in thex1 negative direction relative to vehiclei. And

i2+ and i2− can be interpreted in the same way.

In case of the formation with spatial dimensionDs = 2, we examine the dynamics of the second component of the position

vector of vehicle2:

p̈
(2)
2 =− k

(2)
(2,1)(p

(2)
2 − p

(2)
1 −∆

(2)
2,1)− k

(2)
(2,3)(p

(2)
2 − p

(2)
3 −∆

(2)
2,3)− k

(2)
(2,5)(p

(2)
2 − p

(2)
5 −∆

(2)
2,5)

− k
(2)
(2,8)(p

(2)
2 − p

(2)
8 −∆

(2)
2,8)− b

(2)
2 (ṗ

(2)
2 − v∗(2)). (16)

For this formation, the desired trajectories are also defined with respect to reference vehicle7,

p
∗(k)
2 = v∗(k)t+∆

(k)
2,7 , p

∗(k)
5 = v∗(k)t+∆

(k)
5,7 , k = 1, 2, (17)

so that the third term on the right hand side of (16) can be expressed as

k
(2)
(2,5)(p

(2)
2 − p

(2)
5 −∆

(2)
2,5) = −k(2)(2,5)(p̃

(2)
2 + p

∗(2)
2 − p̃

(2)
5 − p

∗(2)
5 −∆

(2)
2,5) = −k(2)(2,5)(p̃

(2)
2 − p̃

(2)
5 ),

where the second equality follows from (17) and∆(2)
2,7 − ∆

(2)
5,7 = ∆

(2)
2,5, which follows from the definition∆i,j = p∗i − p∗j .

Repeating this procedure for each of the terms, one obtains:

¨̃p
(2)
2 = −k(2)(2,1)(p̃

(2)
2 − p̃

(2)
1 )− k

(2)
(2,3)(p̃

(2)
2 − p̃

(2)
3 )− k

(2)
(2,5)(p̃

(2)
2 − p̃

(2)
5 )− k

(2)
(2,8)(p̃

(2)
2 − p̃

(2)
8 )− b

(2)
2

˙̃p
(2)
2 . (18)

Under Assumption 1 that the gains are independent ofd, (18) has the same structure as (15). The same holds for all the

vehicles, which shows that the closed-loop dynamics (12) depends only on the information graph. �

Our goal is to analyze the closed-loop stability margin withincreasing number of vehiclesN and to devise ways to improve

it by appropriately choosing the controller gains. While inprinciple this can be done by numerically computing the eigenvalues

of the matrixA, such a computation does not clearly reveal the dependence of stability margin onN , control gains, graph

structure etc. For this purpose, we approximate the dynamics of the spatially discrete formation by a partial differential equation

(PDE) model that is valid for large values ofN . The PDE model is used for analysis and control design.

B. PDE model of the controlled vehicle formation

For a given choice of the information graph, thei-th vehicle has the coordinate~i = [i1, i2, . . . , iD]T in R
D. We interpretp̃i

as a function of the coordinate~i. In the following, we consider a continuous approximation of this function to write a PDE

model.
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1
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(c) function approximation

Fig. 7. Original lattice, its redrawn lattice and a continuous approximation of a discrete value function defined on the redrawn lattice. (a) is a 2D information

graph for a formation with3 × 3 vehicles and3 reference vehicles. (b) shows a redrawn information graph of (a), so that it lies in the unit 2-cell[0, 1]2.

(c) gives a pictorial representation of continuous approximation of a discrete function whose values are well defined onthe nodes in the redrawn lattice as

shown in (b).

For thei-th node with coordinate~i = [i1, . . . , iD]T , we useid+ andid− to denote the nodes with coordinates[i1, . . . , id−1, id+

1, id+1, . . . , iD]T and [i1, . . . , id−1, id − 1, id+1, . . . , iD]
T , respectively. ForD = 2, a nodei in the interior of the graph and

its four neighbors, i.e.,i1+, i1−,i2+, andi2−, are shown in Figure 6. The dynamics (11) can now be expressedas:

¨̃pi = −
D∑

d=1

k(i,id+)(p̃i − p̃id+)−
D∑

d=1

k(i,id−)(p̃i − p̃id−)− bi ˙̃pi, (19)

We define,

kd,f+b
i :=k(i,id+) + k(i,id−) kd,f−b

i :=k(i,id+) − k(i,id−), d ∈ {1, . . . , D}. (20)

where the superscriptsf andb denotefront andback, respectively. Substituting (20) into (19), we have

¨̃pi + bi ˙̃pi =−
D∑

d=1

kd,f+b
i + kd,f−b

i

2
(p̃i − p̃id+)−

D∑

d=1

kd,f+b
i − kd,f−b

i

2
(p̃i − p̃id−) (21)

To proceed further, we first redraw the information graph in such a way so that it always lies in the unitD-cell [0, 1]D,

irrespective of the number of vehicles. Note that in graph-theoretic terms, a graph is defined only in terms of its node andedge

sets. A drawing of a graph in an Euclidean space, also called an embedding [29], is merely a convenient visualization tool.

For the rest of this section, we will consider the following drawing (embedding) of the latticeZn1×···×nD in the Euclidean

spaceRD. The Euclidean coordinate of thei-th node, whose “original” Euclidean position was[i1, . . . , iD]T , is now drawn at

position [i1c1, i2c2, . . . , iDcD]T , where

cd :=
1

nd − 1
, d = 1, . . . , D. (22)

Figure 7 shows an example, where the original lattice, shownin Figure 7 (a), is redrawn to fit into[0, 1]2, which is shown in

Figure 7 (b).

The starting point for the PDE derivation is to consider a function p̃(~x, t) : [0, 1]D × [0, ∞) → R defined over the unit

D-cell in R
D that satisfies:

p̃i(t) = p̃(~x, t)|~x=[i1c1,i2c2,...,iDcD ]T (23)
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Figure 7(c) pictorially depicts the approach: functions that are defined at discrete points (the vertices of the latticedrawn in

[0, 1]D) will be approximated by functions that are defined everywhere in [0, 1]D. The original functions are thought of as

samples of their continuous approximations. We formally introduce the following scalar functionskfd , k
b
d, b : [0, 1]

D → R (for

d ∈ {1, . . . , D}) defined according to the stipulation:

k(i,id+) = kfd (~x)|~x=[i1c1,i2c2,...,iDcD]T ,

k(i,id−) = kbd(~x)|~x=[i1c1,i2c2,...,iDcD]T , (24)

bi = b(~x)|~x=[i1c1,i2c2,...,iDcD]T .

In addition, we define functionskf+b
d , kf−b

d : [0, 1]D → R as

kf+b
d (~x) := kfd (~x) + kbd(~x), kf−b

d (~x) := kfd (~x)− kbd(~x). (25)

Due to (24), these satisfy

kd,f+b
i = kf+b

d (~x)|~x=[i1c1,i2c2,...,iDcD ]T , kd,f−b
i = kf−b

d (~x)|~x=[i1c1,i2c2,...,iDcD]T .

To obtain a PDE model from (21), we first rewrite it as

¨̃pi + bi ˙̃pi =

D∑

d=1

kd,f−b
i cd

(p̃id+ − p̃id−)

2cd
+

D∑

d=1

kd,f+b
i

2
c2d

(p̃id+ − 2p̃i + p̃id−)

c2d
(26)

and then use the following finite difference approximationsfor everyd ∈ {1, . . . , D}:
[ p̃id+ − p̃id−

2cd

]

=
[∂p̃(~x, t)

∂xd

]

~x=[i1c1,i2c2,...,iDcD]T
,

[ p̃id+ − 2p̃i + p̃id−

c2d

]

=
[∂2p̃(~x, t)

∂xd2

]

~x=[i1c1,i2c2,...,iDcD]T
.

We emphasize thatx1, . . . , xD above are the coordinate directions in the Euclidean space in which the information graph is

drawn, which are unrelated to the coordinate axes of the Euclidean space that the vehicles physically occupy. Substituting the

expression (22) forcd, (26) is seen as a finite difference approximation of the following PDE:

( ∂2

∂t2
+ b(~x)

∂

∂t

)

p̃(~x, t) =

D∑

d=1

(kf−b
d (~x)

nd − 1

∂

∂xd
+

kf+b
d (~x)

2(nd − 1)
2

∂2

∂xd2

)

p̃(~x, t), (27)

The boundary conditions of PDE (27) depend on the arrangement of reference vehicles in the information graph. If there are

reference vehicles on the boundary, the boundary conditionis of Dirichlet type. If there are no reference vehicles, theboundary

condition is of the Neumann type. Under Assumption 2, the boundary conditions are of the Dirichlet type on that face of the

unit cell where the reference vehicles are, and Neumann on all other faces:

p̃(1, x2, . . . , xD, t) = 0,
∂p̃

∂x1
(0, x2, . . . , xD, t) = 0,

∂p̃

∂xd
(~x, t) = 0, ~x = [x1, . . . , xd−1, 0 or 1, xd+1, . . . , xD]T , (d > 1).

(28)

If other arrangements of reference vehicles are used, the boundary conditions may be different. For future use, we rewrite the

PDE (27) as
( ∂2

∂t2
+ b(~x)

∂

∂t

)

p̃(~x, t) = L( ∂

∂xd
,
∂2

∂xd2
)p̃(~x, t), (29)

where the linear operatorL is defined as

L( ∂

∂xd
,
∂2

∂xd2
) :=

D∑

d=1

kf−b
d (~x)

nd − 1

∂

∂xd
+

kf+b
d (~x)

2(nd − 1)2
∂2

∂xd2
. (30)

It can be verified in a straightforward manner that the PDE (27) yields the original set of coupled ODEs (19) upon discretization.
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IV. STABILITY MARGIN WITH SYMMETRIC CONTROL

A. PDE-based analysis of stability margin

Recall that in case of symmetric control we have

k(i,j) = k0, ∀(i, j) ∈ E, bi = b0, ∀i ∈ V,

wherek0 andb0 are positive scalars. In this case, using the notation in (20) and (24), we have

kf+b
d (~x) = 2k0, kf−b

d (~x) = 0, b(~x) = b0, d = 1, . . . , D.

The PDE (29) simplifies to a damped wave equation:
( ∂2

∂t2
+ b0

∂

∂t

)

p̃(~x, t) = L0(
∂2

∂xd2
)p̃(~x, t), (31)

whereL0(~x) is the Laplacian operator:

L0(
∂2

∂xd2
) = a21

∂2

∂x12
+ a22

∂2

∂x22
+ · · ·+ a2D

∂2

∂xD2
, (32)

where

a2d :=
k0

(nd − 1)2
, d = 1, . . . , D, (33)

are thewave-speeds. The closed-loop eigenvalues of the PDE model require consideration of the boundary value problem

L0(
∂2

∂xd2
)φ(~x) = −λφ(~x), (34)

For the given boundary condition of (28), the eigenvalues (different from the eigenvalue of PDE) and eigenfunctions ofL0

are respectively given by

λ~l =
( (2l1 − 1)π

2

)2

a21 + (l2π)
2a22 + · · ·+ (lDπ)

2a2D

= π2k0

( (2l1 − 1)2

4(n1 − 1)2
+

l22
(n2 − 1)2

+ · · ·+ l2D
(nD − 1)2

)

,

φ~l(~x) = cos
( (2l1 − 1)πx1

2

)
cos(l2πx2) · · · cos(lDπxD). (35)

wherel1 ∈ {1, 2, . . . } and l2, . . . , lD ∈ {0, 1, 2, . . .}. We use the notation~l = (l1, . . . , lD) to denote the wave vector andλ~l,

φ~l(~x) to denote the associated eigenvalue and eigenfunction given by (35). After taking a Laplace transform of both sides of

the PDE (31) with respect tot, we getPη(~x, s) = 0 whereP := s2 + b0s− L0 andη(~x, s) =
∑
φ~l(~x)α~l(s) is the Laplace

transform of p̃(~x, t) with α~l(s) being its weights. Note thatφ~l is also the~l-th basis of the null space of operatorP . The

eigenvalues of the PDE turn out to be the roots of the characteristic equation:

s2 + b0s+ λ~l = 0, (36)

wheres as the Laplace variable andλ~l is an eigenvalue of (34). The two roots of (36) are

s±~l :=
−b0 ±

√

b20 − 4λ~l

2
. (37)

We call s±~l the~l-th pair of eigenvalues. If the discriminant in (37) is positive, both the eigenvalues are real-valued. In this

case,s+~l is closer to the origin thans−~l ; so we calls+~l the~l-th less-stableeigenvalue. Theleast stableeigenvalue is the one

among them that is closest to the imaginary axis, and the stability margin is the absolute value of its real part:

smin = min
~l
s+~l
, S := |Re(smin)|. (38)
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Provided each of thend’s are large so that the PDE (27) with the boundary condition (28) is an accurate approximation of

the (spatially) discrete formation dynamics (12) under Assumption 2, the least stable eigenvalue of the PDE (29) provides

information on the stability margin (see Definition 3) of theclosed-loop formation dynamics. We are now ready to prove the

Theorem 1 that was stated in Section II.

Proof of Theorem 1.Consider the eigenvalue problem for PDE (31) with mixed Dirichlet and Neumann boundary condi-

tions (28). Since the less stable eigenvalues are given bys+~l
= 1

2 (−b0 +
√

b20 − 4λ~l). If the discriminantb20 − 4λ~l is positive,

both of the eigenvalues are real-valued. In this case,s+~l is closer to the origin thans−~l ; so we calls+~l the ~l-th less-stable

eigenvalue. It follows from (37) that the least stable amongthem is the one that is obtained by minimizingλ~l over theD-tuples

(l1, . . . , lD). Using (35), this minimum is achieved atl1 = 1, l2 = · · · = lD = 0, whereλ(1, 0, . . . , 0) = 0.25π2k0/(n1 − 1)2.

Therefore,

smin = min
(l1,...,lD)

s+ =
b0
2
(−1 +

(

1− π2k0
b20(n1 − 1)2

)1/2

) = − π2k0
4b0(n1 − 1)2

+O(
1

n4
1

)

where the last equality holds whenn1 ≫ 1+ π
√
k0

b0
. Due to the definition of stability margin (38), the result follows immediately

from the equation above.
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Fig. 8. Numerical comparison of closed-loop eigenvalues with symmetric control predicted by the state-space model (SSM) (12) and PDE model (39) with

mixed Dirichlet-Neumann boundary conditions. Eigenvalues shown are for a square information graph with26 × 25 nodes (625 vehicles), and the control

gains used arek0 = 0.01, b0 = 0.05. Only a few eigenvalues are compared in the figure. PDE eigenvalues are computed using a Galerkin method [30].

B. Numerical comparison of eigenvalues between SSM and PDE

We now present numerical computations that corroborates the PDE-based analysis. We consider a26 × 25 square two-

dimensional information graph with symmetric control. Thegains are

k(i,i1+) = k(i,i1−) = k(i,i2+) = k(i,i2−) = k0 = 0.01, bi = b0 = 0.05.
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The associated PDE model is given by

(
∂2

∂t2
+ b0

∂

∂t
)p̃(~x, t) =

( k0
(n1 − 1)2

∂2

∂x21
+

k0
(n2 − 1)2

∂2

∂x22

)

p̃(~x, t). (39)

The eigenvalues of the state matrixA in (12) are compared against the eigenvalues of the PDE (39) with mixed Neumann-

Dirichlet boundary conditions in Figure 8. The eigenvaluesof the PDE are computed numerically using a Galerkin method

with Fourier basis [30]. The comparison in Figure 8 shows that the PDE eigenvalues match the state-space model eigenvalues

well, especially the ones close to the imaginary axis. Figure 9 shows, as a function ofN , the stability margin computed from

the PDE and the state-space model. The prediction from the asymptotic formula (5) in Corollary 1 is also shown. We see from

Figure 9 that the least stable eigenvalue of the closed-loopis well captured by both the PDE model as well as the asymptotic

formula (5) that is derived from analysis of the PDE.
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Fig. 9. The stability margin of the closed-loop formation dynamics with symmetric control (k0 = 0.01 andb0 = 0.5) as a function of number of vehicles:

the legends of SSM, PDE and Corollary 1 stand for the stability margin computed from the state space model, from the PDE model, and from the asymptotic

formula (5) in Corollary 1.

V. M ISTUNING-BASED CONTROL DESIGN

With symmetric control, one obtains anO( 1
n2
1

) scaling law for the least stable eigenvalue because the coefficient of the

∂2

∂x1
2 term in the PDE (31) isO( 1

n2
1

) and the coefficient of the∂
∂x1

term is 0. Any asymmetry between the forward and the

backward gains will lead to non-zerokf−b
d (~x) and the presence ofO( 1

n1
) term as coefficient of ∂

∂x1
. By a judicious choice

of asymmetry, there is thus a potential to improve the stability margin fromO( 1
n2
1

) to O( 1
n1

). The subsequent analysis shows

that this is indeed so, and a control design is proposed to achieve theO( 1
n1

) trend. One should also note that this insight into

the control design problem is difficult to obtain from the examination of the state matrixA.

A. Reducing loss of stability by mistuning

In this section, we consider the problem of designing the control gain functionskfd (x) and kbd(x) so as to improve the

stability margin over symmetric control. Specifically, we consider the problem of minimizing the least-stable eigenvalue smin
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of the PDE (29) by changing the control gains slightly (mistuned) from their values in the symmetric case. We begin by

considering the forward and backward position feedback gain profiles

kfd (~x) = k0 + εk̃fd (~x), kbd(~x) = k0 + εk̃bd(~x), (40)

whereε > 0 is a small parameter signifying the amount of mistuning andk̃fd (~x), k̃
b
d(~x) are functions defined over[0, 1]D that

capture gain perturbation from the nominal valuek0. Define

k̃sd(~x) := k̃fd (~x) + k̃bd(~x), k̃md (~x) := k̃fd (~x)− k̃bd(~x). (41)

Due to the definition ofkf+b
d andkf+b

d in (25), we have

kf+b
d (~x) = 2k0 + εk̃sd(~x), kf−b

d (~x) = εk̃md (~x).

The mistuned version of the PDE (29) is thus given by

( ∂2

∂t2
+ b0

∂

∂t

)

p̃(~x, t) =

D∑

d=1

( k0
(nd − 1)2

∂2

∂x2d

)

p̃(~x, t) + ε

D∑

d=1

( k̃sd(~x)

2(nd − 1)2
∂2

∂x2d
+
k̃md (~x)

nd − 1

∂

∂xd

)

p̃(~x, t). (42)

We study the problem of improving the stability margin by judicious choice of̃ksd(~x) andk̃md (~x) while keeping the gains̃kfd (~x)

and k̃bd(~x) within certain pre-specified bounds. The results of our investigation, described in the following sections, provide a

systematic framework for designing control gains in the formation by introducing small changes to the symmetric design.

To design the “mistuning” profiles̃ksd(~x) and k̃md (~x) to minimize the least stable eigenvaluesmin, we first obtain an explicit

asymptotic formula for the eigenvalues whenε is small. The result is presented in the following theorem. The proof appears

in the Appendix.

Theorem 3:Consider the eigenvalue problem of the mistuned PDE (42) with mixed Dirichlet and Neumann boundary

condition (28). The least stable eigenvalue is given by the following formula that is valid whenε→ 0 andn1, n2, . . . , nD → ∞:

smin = s
(0)
min − ε

π

2b0(n1 − 1)

∫ 1

0

k̃m1 (~x) sin
(
πx1

)
dx1 − ε

π2

4b0(n1 − 1)2

∫ 1

0

k̃s1(~x) cos
2(
π

2
x1) dx1 + O(ε2), (43)

wheres(0)min is the least stable eigenvalue without mistuning, i.e., of PDE (31) with the same boundary conditions. �

It follows from Theorem 3 that to minimize the least stable eigenvalue, one needs to choose onlyk̃m1 (~x) carefully; all other

k̃md ’s and all k̃sd’s can be set to0. The reason is that onlỹkm1 (~x) and k̃s1(~x) affect the least stable eigenvalue, and the term

involving k̃s1(~x) is of order1/(n1 − 1)2, whereas the term involving̃km1 (~x) is of order1/(n1 − 1). For largen1 the effect of

the functionk̃m1 (~x) on the least stable eigenvalue will be far greater than that of k̃s1(~x). Therefore, we choose

k̃sd(~x) ≡ 0 ≡ k̃md (~x) for d = 2, . . . , D, and k̃s1(~x) ≡ 0.

This means that the perturbations to the “front” and “back” gains satisfỹkfd (~x) = k̃bd(~x) = 0 for d = 2, . . . , D. For d = 1, the

choicek̃s1(~x) ≡ 0 leads to

k̃f1 (~x) = −k̃b1(~x) ⇔ k̃m1 (~x) = 2k̃f1 (~x).

The most beneficial gains can now be readily obtained from Theorem 3. To minimize the least stable eigenvalue withk̃s1(~x) ≡ 0,

we should choosẽkm1 (~x) to make the integral
∫ 1

0 k̃
m
1 (~x) sin(πx1)dx1 as large as possible, which is achieved by settingk̃m1 (~x)

to be the largest possible value everywhere in the unit cell.This result is summarized in the next Corollary.
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Corollary 3: Consider the problem of minimizing the least-stable eigenvalue of the PDE (42) with mixed Dirichlet and

Neumann boundary condition (28) in the limit asε → 0 by choosingk̃f1 (~x), k̃
b
1(~x) ∈ L∞([0, 1]) with the constraint that

‖k̃f1 (~x)‖∞ = ‖k̃b1(~x)‖∞ = 1, where‖ · ‖∞ denotes the sup-norm. The solution to this optimization problem is given by

k̃f1 (~x) = 1, k̃b1(~x) = −1, ∀~x ∈ [0, 1]D. �

The proof of Theorem 2 now follows in a straightforward manner from Corollary 3.

Proof of Theorem 2.Note that ensuring|k(i,j)−k0| < ε in the formation is equivalent to keeping|kfd−k0| ≤ ε and|kbd−k0| ≤ ε

for d = 1, . . . , D in the PDE domain; cf. (24). This is equivalent to keeping‖k̃fd‖∞ ≤ 1 and‖k̃bd‖∞ ≤ 1 for eachd; cf. (40).

In this case, the optimal gains are those given in Corollary 3. It follows from (24) that the optimal gains for the vehiclesare

k(i,i1+) = (k0 + εk̃f1 (~x))|~x=[i1c1,...,iDcD]T = k0 + ε, ∀ i ∈ V

k(i,i1−) = (k0 + εk̃b1(~x))|~x=[i1c1,...,iDcD]T = k0 − ε, ∀ i ∈ V

k(i,id+) = k(i,id−) = k0, d > 1, ∀ i ∈ V.

The resulting least stable eigenvalue is, from Theorem 3,

smin = −ε π

b0(n1 − 1)

∫ 1

0

sin(πx1)dx1 + s
(0)
min = −ε 2

b0(n1 − 1)
+O(

1

n2
1

),

sinces(0)min = O(1/n2
1). The result follows upon taking absolute value ofsmin.

B. Comparison of eigenvalues between mistuned SSM and PDE

Figure 10 depicts the numerically obtained mistuned and nominal eigenvalues for both the PDE and state-space model for

a 2D square information graph. The nominal control gains arek0 = 0.01, b0 = 0.5, and the mistuned gains used are the ones

shown in Figure 5, withε = 0.001. The figure shows that

1) the closed-loop poles match the PDE eigenvalues accurately over a range ofN ;

2) the mistuned eigenvalues show large improvement over thenominal case even though the controller gains differ from

their nominal values only by±10%. The improvement is particularly noticeable for large values ofN , while being

significant even for small values ofN .

For comparison, the figure also depicts the asymptotic eigenvalue formula given in Theorem 2. The improvement in the

stability margin with mistuning is remarkable since the gains are changed from their symmetric values by only±10%. Another

interesting aspect of the result in Corollary 2 is that the improvement fromO(1/N2/D) to O(1/N1/D) can be achieved by

arbitrarily small changesto the nominal gains. In addition, the optimal mistuned gainprofile is quite simple to implement. For

a vehicle formation with arbitrary dimensional information graph and with a maximum variation of±10% from the symmetric

gains, the optimal gains are obtained by lettingk(i,i1+) be 10 percent larger than the nominal gaink0 and lettingk(i,i1−) be

10 percent smaller than the nominal gain.

VI. D ISCUSSION

A. Relationship between the stability margins of the coupled-ODE and PDE models

In this paper, all the analysis and control design are based on the stability margin of the PDE model, which is an approximation

of the coupled-ODE model under the assumption that eachni (i ∈ {1, 2, . . . , D}) is very large. This raises the question: how
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Fig. 10. Stability margin improvement by mistuning for a vehicle formation with 2D square information graph. The nominal control gains arek0 = 0.01,

b0 = 0.5, and the mistuned gains used are the ones shown in Figure 5, with ε = 0.001. The symbolN on thex-axis is the number of vehicles andS on

the y-axis is the stability margin. The legends “Nominal SSM” and“Nominal PDE” stand for the stability margin computed from the state-space model and

the PDE model, respectively, with symmetric control. The legends “Mistuned SSM” and “Mistuned PDE” stand for the stability margin computed from the

state-space model and PDE model, respectively, with mistuned control. We see that the (i) the PDE model predicts the stability margin quite accurately, and

(ii) the stability margin is improved significantly by mistuning control design even with±10% variation from the symmetric gains, especially for largeN .

large is the difference between the stability margin of the PDE (continuous problem) and the coupled-ODE (discrete problem)

model? In this section, we provide an analysis on the difference between the stability margins of the continuous and the discrete

problems, which we call thestability margin approximation error. The results are summarized in the following lemma.

Lemma 1:Consider anN -vehicle formation with vehicle dynamics (1) and control law (2), under Assumptions 1 and 2.

With symmetric control (respectively, mistuning design),the stability margin approximation error between the PDE model (27)

with boundary condition (28) and the discrete model isO(1/n3
1) (respectively,O(1/n2

1) +O(ε2)). �

In particular, for a square information graph, the stability margin approximation error bounds for symmetric control and

mistuning design areO(1/N3/D) andO(1/N2/D) +O(ε2) respectively.

Recall that for symmetric control (respectively, mistuning design), the stability margin scales asO(1/n2
1) (respectively,

O(1/n1)). Comparing with the above lemma, we can see that the PDE model provides an accurate approximation to the

coupled-ODE model, and the approximation error can be ignored even for a moderate value ofn1, which is the number of

vehicles along thex1 axis of the information graph. For the ease of description, we only provide the proof for a formation

with 1-dimensional information graph, i.e. the caseD = 1. Figure 11 depicts a picture of the 1D information graph. Theproof

for higher dimensional case follows in a similar manner, upon using the closed form expressions of the eigenvalues for the

discrete case [31].

Proof of Lemma 1.GivenD = 1, consider the following coupled-ODE and PDE models:

¨̃pi + bi ˙̃pi = −k(i,i−1)(p̃i − p̃i−1)− k(i,i+1)(p̃i − p̃i+1),
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Fig. 11. Pictorial representation of a 1D information graph.

∂2p̃(x1, t)

∂t2
+ b(x1)

∂p̃(x1, t)

∂t
=
kf−b
1 (x1)

n1 − 1

∂p̃(x1, t)

∂x1
+

kf+b
1 (x1)

2(n1 − 1)
2

∂2p̃(x1, t)

∂x12
.

Using the optimal control gains given in (6) of Theorem 2, theabove models are simplified to:

¨̃pi + b0 ˙̃pi = −(k0 − ε)(p̃i − p̃i−1)− (k0 + ε)(p̃i − p̃i+1), (44)

∂2p̃(x1, t)

∂t2
+ b0

∂p̃(x1, t)

∂t
= ε

2

n1 − 1

∂p̃(x1, t)

∂x1
+

k0

(n1 − 1)
2

∂2p̃(x1, t)

∂x12
. (45)

Notice that whenε = 0, it corresponds to the symmetric control case. Now considerthe following discrete and continuous

eigenvalue problem:

1) −λp̃i = −(k0 − ε)(p̃i − p̃i−1)− (k0 + ε)(p̃i − p̃i+1), (46)

where i ∈ {1, 2, . . . , n1 − 2}, and for the0-th vehicle, there is no neighbor behind it, so its equation is given by−λp̃0 =

−(k0 + ε)(p̃0 − p̃1). And also, recall that the reference vehicle indexed by “n1 − 1” has the property that̃pn1−1 = 0.

2) −µp̃(~x, t) = ε
2

n1 − 1

∂p̃(~x, t)

∂x1
+

k0

(n1 − 1)2
∂2p̃(~x, t)

∂x12
(47)

where the boundary condition is given by∂p̃(0,t)∂x1
= 0, p̃(1, t) = 0.

For the discrete eigenvalue problem, we can write it compactly asλp̃ = Lp̃, wherep̃ := [p̃0, p̃2, · · · , p̃n1−2]
T andL is defined

as follows:

L =














k0 + ε −k0 − ε

−k0 + ε 2k0 −k0 − ε

· · · · · ·
−k0 + ε 2k0 −k0 − ε

−k0 + ε 2k0














. (48)

For the symmetric control case (ε = 0), the least eigenvalue of matrixL is given by4k0 sin
2 π

2(2n1−1) [32]. For the case of

mistuning design, under the assumption thatε is small, we can use matrix perturbation method to compute the least eigenvalue

of L (see [33]). Combining the results, we have the least eigenvalue for the discrete eigenvalue problem:

λ = 4k0 sin
2 π

2(2n1 − 1)
+ ε

2(1 + cos π
2n1−1 )

2n1 − 1
+O(ε2). (49)

By Taylor series expansion theorem, the above eigenvalue can be expressed as

λ =
k0π

2

4(n1 − 1)2
− k0π

2

4(n1 − 1)3
+ ε

2

n1 − 1
− ε

1

(n1 − 1)2
+O(ε2) + higher order terms. (50)

The continuous eigenvalue problem requires first to consider the following symmetric case (ε = 0):

−µp̃(~x, t) = k0

(n1 − 1)
2

∂2p̃(~x, t)

∂x12
(51)
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with boundary condition∂p̃(0,t)∂x1
= 0, p̃(1, t) = 0, which yields the least eigenvaluek0π

2

4(n1−1)2 , which follows from straightforward

algebra, see [Chapter 5] [34]. For the general case (mistuning design), we use the operator perturbation method [Chapter 9] [34],

the least eigenvalue for the continuous case is given by

µ =
k0π

2

4(n1 − 1)2
+ ε

2

n1 − 1
+O(ε2). (52)

Comparing (50) with (52), we have that for the symmetric case(ε = 0), the eigenvalue approximation error isO(1/(n1−1)3) =

O(1/n3
1), and for the mistuning design case, the error isO(1/(n1 − 1)2) + O(ε2) = O(1/n2

1) + O(ε2). Now, take Laplace

transform for both (44) and (45), the characteristic equations for the coupled-ODE and PDE models ares2 + b0s+λ = 0 and

s2 + b0s + µ = 0 respectively, which implies that the stability margin approximation error are alsoO(1/n3
1) for symmetric

control, andO(1/n2
1) +O(ε2) for the mistuning design case. This completes the proof.

B. Simulations

We now present results of some time-domain simulations thatshow the time-domain improvements – manifested in faster

decay of initial errors – with the mistuning-based design ofcontrol gains. These simulations provide further corroboration of

the two main conclusions of this paper:

1) Stability margin can be improved by using a higher-dimensional information graph with symmetric control.

2) Stability margin can be improved by using mistuned control gains for the same information graph.

For the first set of simulations, we considerN = 25 vehicles in a one-dimensional formation (Ds = 1). The initial position

and velocity of each vehicle are randomly drawn from a uniform distribution on[−0.01, 0.01]. We carry out simulations for two

distinct information graphs for the same physical formation which is consisted of25 vehicles: a26-node 1D lattice (including

1 reference vehicle) and6× 5-node 2D lattice (including5 reference vehicles). Figure 12 (a) and (b) show the time histories

of the relative position errors of the vehicles, for the 1D and 2D information graphs, respectively. In both cases, the control

strategy is symmetric with gainsk0 = 0.01, b0 = 0.05. On comparing Figure 12 (a) and (b), we see that the errors in the

initial conditions are reduced faster with a two-dimensional information graph compared to the one-dimensional case.This

observation is consistent with with the result of Theorem 1.

The second set of simulations are carried out to test the effect of mistuning, for which we consider a formation with225

vehicles with a square 2D information graph – a16 × 15 lattice (including15 reference vehicles). The initial position and

velocity of each vehicle was again chosen as a random small perturbation of the desired position and velocity. Figure 13 (a)

and (b) show the time history of the position errors with symmetric and mistuned control gains. For the symmetric control,

the control gains arek0 = 0.01, b0 = 0.05. For the mistuning caseε = 0.001, i.e., the gaink(i,j) is perturbed by±10%

from its nominal symmetric valuek0. On comparing Figure 13 (a) and (b), we see that the errors in the initial conditions are

reduced faster in the mistuned case compared to the symmetric case. This improvement is consistent with what is predicted

by Theorem 2.

C. Disturbance propagation

When external disturbances are present, we model the dynamics of vehiclei by p̈i = ¨̃pi = ui+wi, wherewi is the external

disturbance acting on the vehicle. Each component of the disturbance is assumed to be independent. In thep̃, ṽ coordinates,
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Fig. 12. Comparison of symmetric control’s performance in 1D and 2D information graphs. (a) shows the relative positionerrors as a function of time for an

25 vehicle platoon with a 1D lattice (25 vehicles and1 reference vehicles) as the information graph (see Figure 2 (a)). (b) shows the relative position errors

for the same platoon (with the same initial condition) with a2D square lattice (25 vehicles and5 reference vehicles) as the information graph (see Figure 2

(b)). In both cases, the gains used arek0 = 0.01 and b0 = 0.05, and the initial condition is such that making the position and velocity have arbitrary and

small (≤ 0.01) perturbation from the desired position and velocity.

the closed-loop dynamics of the formation is given by

ψ̇ = Aψ +




0

I





︸︷︷︸

B

w, (53)

whereψ := [p̃T , ṽT ]T is the state vector,w := [w1, w2, . . . , wN ]T is the vector of disturbances. We consider the vector of

errorse := [p̃1, . . . , p̃N ]T = p̃, wherep̃i = pi − p∗i , i = 1, 2, . . . , N , as the outputs:

e = Cψ, C = [I;0]

TheH∞ norm of the transfer functionGwe from the disturbancew to the errorse is a measure of the closed-loop’s sensitivity

to external disturbance. For one-dimensional platoons, such a norm has been used previously in [7, 16, 22]. Figure 14 depicts

theH∞ norm ofGwe as a function ofN , for the two cases described in Section VI-B. Part (a) of the figure compares the

H∞ norm of the one-dimensional and two-dimensional information graphs for the same formation with symmetric control.

Part (b) of the figure compares theH∞ norm of the symmetric and mistuned control for the two-dimensional formation. The

trends for theH∞ norm are consistent with the eigenvalue trends and the results of the time-domain simulations. In particular,

1) TheH∞ norm ofGwe is improved by using a higher-dimensional information graph with symmetric control.

2) For a particular information graph, theH∞ norm ofGwe is improved by using mistuned control gains over symmetric

control.

Analysis of these trends is beyond the scope of this work, andwill be undertaken in future work.

D. Other boundary conditions

In this paper, results are derived for an arrangement of reference vehicles on one of the boundaries of aD-dimensional

information graph (see Assumption 2). For a one-dimensional information graph, this means there is one reference vehicle.
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Fig. 13. Comparison of time-domain performance between symmetric and mistuned control with the same16× 15 2D square information graph. (a) shows

the relative position errors as a function of time with symmetric control; (b) shows the relative position errors as a function of time for the same formation

under mistuned control with control gains chosen accordingto the mistuned gains with parametersk0 = 0.01, b0 = 0.05, and ǫ = 0.001 (i.e., ±10%

variation from the symmetric gains). The initial conditionis the similar to that as described in Figure 12. Since there is a large amount of vehicles in the

formation, for the purpose of showing the figure more clearly, only the first10 vehicles’ traces are shown. The other traces have the same trend.

For aD-dimensional square information graph withN vehicles andD > 1, this means that there areN
1
D reference vehicles.

In terms of the methodology of this paper, the arrangement ofreference vehicles affects the boundary condition in the

PDE approximation but not the PDE itself. Under Assumption 2, the boundary condition is the Dirichlet boundary condition

at x1 = 1 and Neumann boundary conditions for other boundaries of[0, 1]D (see (28)). More generally, the presence of

reference vehicles on an additional boundary means that thePDE approximation will have Dirichlet boundary condition for

these boundaries. Figure 15 enumerates some of the possibilities for the two-dimensional case.

It is straightforward to extend the analysis and the conclusions of the preceding sections to handle these more general

boundary conditions. For asymptotic trend of the stabilitymargin withN does not change with the boundary conditions. The

presence of additional reference vehicles affects only theconstant in front of the asymptotic formula. Consider for example the

two-dimensional square information graph withN vehicles and4
√
N − 4 reference vehicles arranged along the4 boundaries.

The PDE approximation is again given by (27). The boundary conditions are all Dirichlet type. The scaling laws for this case

are described in our conference paper [8]. We summarize the results for the symmetric and the mistuned cases in the following

corollaries.

Corollary 4 (from Corollary 1 in [8]): Consider anN -vehicle formation with dynamics (1) and control law (2) under

Assumption 1, with nominal symmetric control gainsk0 and b0, whose information graph is a(
√
N + 2) × (

√
N + 2)

2D lattice. Let all the nodes on each of the4 faces of the information graph correspond to reference vehicles, so that the

boundary conditions of the PDE (29) are all of the Dirichlet type. The closed-loop stability margin is given by

S =
2π2k0
b0

1

N
+O(

1

N2
) �

Comparing this result with Corollary 1 (whenD = 2) shows that the benefit of extra information (four times as many

vehicles provided reference trajectory information) is a factor of8 improvement in the closed-loop stability margin.
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Fig. 14. H∞ norm of the transfer functionGwe from disturbancew to spacing errore. (a) compares theH∞ norm as a function ofN , with 1D and

2D information graphs, with all else remaining the same. (b)compares theH∞ norm in symmetric control and mistuned control (with±10% mistuning),

when the information graph is the same (a 2D lattice). In all cases, the gains used arek0 = 0.01 and b0 = 0.05. The mistuned gains used are those given

in Theorem 2, withε = 0.0001. Norms are computed using the Control Systems Toolbox in MATLAB c©.
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Fig. 15. A pictorial representation of the 3 of the several possible boundary conditions for a 2D information graph.

Corollary 5 (from Corollary 2 in [8]): Consider the same vehicle formation with the same information graph as stated in

Corollary 4. Now consider the problem of maximizing the stability margin by designing the proportional control gainsk(i,j),

where the gains are required to satisfy|k(i,j) − k0| ≤ ε for every(i, j) ∈ E, with ε ∈ (0, k0) being an arbitrary pre-specified

constant. For vanishingly small values ofε, the optimal control gains of thei-th vehicle (i = 1, . . . , N ) are given by the

following formula

k(i,i1+) = k0 + 2ε(H(i1c1 − 0.5)− 0.5),

k(i,i1−) = k0 − 2ε(H(i1c1 − 0.5)− 0.5),

k(i,i2+) = k0 + 2ε(H(i2c2 − 0.5)− 0.5),
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k(i,i2−) = k0 − 2ε(H(i2c2 − 0.5)− 0.5),

whereH(x) = 1 if x > 0, H(x) = 0 if x < 0, andH(0) = 0.5, andci is defined in (22). The resulting stability margin is

given by

S =
8ε

b0

1√
N

+O(
1

N
).

The formula is asymptotic in the sense that it holds whenn1, n2 → ∞ andε→ 0. �

Comparing this result with corollary 2 forD = 2 shows that with mistuning, having four times as many vehicles that have

reference trajectory information results in a factor of4 improvement in the stability margin.

E. Comparison to earlier work

There are connections between the results of this paper and the results in [9]. In [9], Bamiehet. al. proposed certain

macroscopic performance measures to quantify the sensitivity to disturbances of vehicular formations. The vehicles were

modeled as double integrators and the feedback control was symmetric. The information graph considered by Bamiehet.

al. was aD-dimensional torus, which is similar to aD-dimensional square lattice. It was shown in [9] that the measure of

disturbance amplification proposed in [9] grows without bound as a function ofN for D = 1 andD = 2, but it is uniformly

bounded with respect toN for D ≥ 3. In contrast, Corollary 1 shows that there is no uniform bound on stability margin in

any dimension for square lattices. The scaling law for the stability margin, however, improves with increasingD, as well as

with mistuning. In summary, the asymptotic behavior of the stability margin in dimensionsD = 1 andD = 2 is similar to

that of the macroscopic performance measure of Bamiehet. al. in [9]. However, the trends are quite different in dimensions

3 and higher.

VII. C ONCLUSION

We studied the closed-loop stability margin with distributed control of a network ofN double integrator agents. Information

graphs (within the class ofD dimensional lattices) that characterize the information exchange structure among vehicles were

examined. We first examined the case of symmetric control, inwhich every vehicle uses the same control gains. For a square

information graph, the stability margin approaches zero asO(1/N2/D) asN → ∞. Therefore, the stability margin can be

improved by increasing the dimension of the information graph. For a non-square information graph, the stability margin can be

made nearly independent of the number of vehicles by choosing the “aspect ratio” appropriately. The trade-off is that increasing

the dimension of the information graph or choosing a beneficial aspect ratio may require long range communication and/or

entail an increase in the number of reference vehicles. These results are therefore useful in investigating design trade-offs

between performance and the cost of designing information architectures for distributed control.

Second, a mistuning-based approach for stability margin improvement over symmetric control is proposed that consistsof

making small changes to the gains over their nominal values in the symmetric case. The scaling laws for the stability margin

with mistuned control showed that with arbitrarily small amount of mistuning, the stability margin can be improved significantly

over symmetric control. The mistuned control is simple to implement and therefore attractive for practical application.

A PDE approximation was derived to aid the analysis and design that was carried out in the paper. The control design

problem is much more tractable in the PDE domain than in the original state space domain. In particular, the PDE model

provides insight into the effect of asymmetry in the controlgains on the stability margin, which enabled the mistuning-based

design. Such insight is difficult to gain by examination of the state-space model. Although the PDE approximation is valid
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only for N → ∞, numerical calculations using the PDE model show that accurate predictions are obtained even for small

values ofN .

The information graphs studied in this paper are limited toD−dimensional lattices. More complex graph structures will

be explored in future work. We believe that the PDE approximation will be beneficial here, by allowing us to sample from

the continuous gain functions defined over a continuous domain to assign gains to spatially discrete agents. Another future

direction of research is the examination of the closed-loop’s sensitivity to external disturbances. For symmetric control, this

issue was investigated in [9]. Numerical tests reported in this paper show that mistuning reduces the closed-loop’s sensitivity

to external disturbances. Analysis of the effect of mistuning on the closed-loop’s sensitivity to external disturbances will be

carried out in future work.
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APPENDIX

Proof of Theorem 3.The proof proceeds by a perturbation method. Let the eigenvalues of the perturbed PDE (42) and the

Laplace transform of̃p(~x, t) be

s~l = s
(0)
~l

+ εs
(ε)
~l

+O(ε2), η = η(0) + εη(ε) +O(ε2)

respectively, wheres(0)~l
andη(0) are corresponding to the unperturbed PDE (31). Taking a Laplace transform of both sides of

the PDE (42) with respect tot, plugging in the expressions fors and η, and doing anO(1) balance leads to the eigenvalue

equation for the unperturbed PDE:

Pη(0) = 0, whereP :=
(

(s
(0)
~l

)2 + b0s
(0)
~l

− L0

)

whereL0 is the Laplacian operator defined in (32). Recall that the solution s(0)~l
, η(0) to this equation have been previously

given. Eq. (37) provides the formula fors(0)~l
(i.e s+~l ), andη(0) =

∑
φ~l(~x)α~l(s), whereφ~l(~x) is given by equation (35). Next

we do anO(ε) balance, which leads to:

Pη(ε) =
( D∑

d=1

kmd (~x)

nd − 1

∂

∂xd
+

D∑

d=1

ksd(~x)

2(nd − 1)2
∂2

∂x2d
− b0s

(ε) − 2s
(0)
~l
s
(ε)
~l

)

η(0) =: R

For a solutionη(ε) to exist,R must lie in the range space of the operatorP . SinceP is self-adjoint, its range space is orthogonal

to its null space. Thus, we have,

< R, φ~l(~x) >= 0 (54)

whereφ~l(~x) is also the(l1, l2, . . . , lD)th basis of the null space of operatorP . We now have the following equation:
∫ 1

0

· · ·
∫ 1

0

( D∑

d=1

kmd (~x)

nd − 1

∂η(0)

∂xd
+

D∑

d=1

ksd(~x)

2(nd − 1)2
∂2η(0)

∂x2d
− b0s

(ε)
~l
η(0) − 2s

(0)
~l
s
(ε)
~l
η(0)

)

φ~l(~x)dx1 · · · dxD = 0

Following straightforward manipulations, we got:

(b0 + 2s
(0)
~l

)s
(ε)
~l

∫ 1

0

· · ·
∫ 1

0

(φ~l(~x))
2dx1 · · · dxD =

− (2l1 − 1)π

4(n1 − 1)

∫ 1

0

· · ·
∫ 1

0

k̃m1 (~x) sin
(
(2l1 − 1)πx1

)
cos2(l2πx2) · · · cos2(lDπxD) dx1 · · · dxD

− l2π

2(n2 − 1)

∫ 1

0

· · ·
∫ 1

0

k̃m2 (~x) cos2
( (2l1 − 1)πx1

2

)
sin(2l2πx2) · · · cos2(lDπxD) dx1 · · · dxD

− . . .

− lDπ

2(nD − 1)

∫ 1

0

· · ·
∫ 1

0

k̃mD (~x) cos2
( (2l1 − 1)πx1

2

)
cos2(l2πx2) · · · sin(2lDπxD) dx1 · · · dxD

+

∫ 1

0

· · ·
∫ 1

0

( k̃s1(~x)

2(n1 − 1)2
∂2η(0)

∂x21
+ · · ·+ k̃sD(~x)

2(nD − 1)2
∂2η(0)

∂x2D

)

φ~l(~x) dx1 · · · dxD.

Whenn1, . . . , nD are very large,b0+2s
(0)
~l

≈ b0. Using this, and substituting the equation above intos~l = s
(0)
~l

+εs
(ε)
~l

+O(ε2),

we get the following:

s~l = s
(0)
~l
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− ε(2l1 − 1)π

4b0(n1 − 1)M

∫ 1

0

. . .

∫ 1

0

k̃m1 (~x) sin
(
(2l1 − 1)πx1

)
cos2(l2πx2) · · · cos2(lDπxD) dx1dx2 · · · dxD

− εl2π

2b0(n2 − 1)M

∫ 1

0

. . .

∫ 1

0

k̃m2 (~x) cos2
( (2l1 − 1)πx1

2

)
sin(2l2πx2) cos

2(l3πx3) · · · cos2(lDπxD) dx1dx2 · · · dxD

− . . .

− εlDπ

2b0(nD − 1)M

∫ 1

0

. . .

∫ 1

0

k̃mD (~x) cos2
( (2l1 − 1)πx1

2

)
· · · cos2(l(D−1)πx(D−1)) sin(2lDπxD) dx1dx2 · · · dxD

+
ε

b0M

∫ 1

0

· · ·
∫ 1

0

( k̃s1(~x)

2(n1 − 1)2
∂2η(0)

∂x21
+ · · ·+ k̃sD(~x)

2(nD − 1)2
∂2η(0)

∂x2D

)

φ~l(~x) dx1 · · · dxD +O(ε2), (55)

whereM :=
∫ 1

0 · · ·
∫ 1

0 (φ~l(~x))
2dx1 · · · dxD =

∫ 1

0 · · ·
∫ 1

0 cos2
( (2l1−1)πx1

2

)
cos2(l2πx2) · · · cos2(lDπxD)dx1 · · · dxD. Without

mistuning, the least stable eigenvalue is given bys
(0)
(1,0,0,... ) with an associated eigenfunctionφ(1,0,0,... )(~x) = cos(π2x1), which

is almost everywhere positive in[0, 1]D. As a consequence of the Sturm-Liouville theory for the elliptic boundary value

problems, the possibility of “eigenvalue cross-over” is precluded. That is, some other eigenvalue from becoming the least

stable eigenvalue in the presence of mistuning is ruled out.The standard argument relies on the positivity of the eigenfunction

corresponding tos(0)(1,0,0,... ); the reader is referred to [35] for the details. Thus, for vanishingly smallε, the least stable eigenvalue

is s(1,0,0,... ), even in the presence of mistuning. Settingl1 = 1 and ld = 0 for d > 1 in (55), we obtain the result.
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