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On achieving size-independent stability margin of

vehicular lattice formations with distributed control

He Hao, Prabir Barooah

Abstract

We study the stability margin of a vehicular formation with distributed control, in which the control

at each vehicle only depends on the information from its neighbors in an information graph. We consider

a D-dimensional lattice as information graph, of which the 1-D platoon is a special case. The stability

margin is measured by the real part of the least stable eigenvalue of the closed-loop state matrix, which

quantifies the rate of decay of initial errors. In [1], it was shown that with symmetric control, in which

two neighbors put equal weight on information received from each other, the stability margin of a 1-D

vehicular platoon decays to 0 as O(1/N2), where N is the number of vehicles. Moreover, a perturbation

analysis was used to show that with vanishingly small amount of asymmetry in the control gains, the

stability margin scaling can be improved to O(1/N). In this paper, we show that, with judicious choice

of non-vanishing asymmetry in control, the stability margin of the closed loop can be bounded away

from zero uniformly in N . Asymmetry in control gains thus makes the control architecture highly

scalable. The results are also generalized to D-dimensional lattice information graphs that were studied

in [2], and the correspondingly stronger conclusions than those derived in [2] are obtained. In addition,

we show that the size-independent stability margin can be achieved with relative position and relative

velocity (RPRV) feedback as well as relative position and absolute velocity (RPAV) feedback, while the

analysis in [1], [2] was only for the RPAV case.
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I. INTRODUCTION

We study cooperative control of a large vehicular formation with distributed control. The

vehicles are modeled as double integrators, and the control action at each vehicle is computed

based on information from its neighbors, where the neighbor relationship is characterized by

a lattice information graph. The control objective is to make the vehicular formation track

a constant-velocity type desired trajectory while maintaining pre-specified constant separation

among neighbors. The desired trajectory of the entire vehicular formation is given in terms of

trajectories of a set of fictitious reference vehicles.

The problem of distributed control for multi-agent coordination is relevant to many applications

such as automated highway system, collective behavior of bird flocks and animal swarms, and

formation flying of unmanned aerial and ground vehicles for surveillance, reconnaissance and

rescue, etc. [3]–[8]. A typical issue faced in distributed control is that as the number of agents

increases, the performance of the closed loop degrades. Several recent papers have studied the

scaling of performance of vehicle formations as a function of the number of vehicles. The

references [1], [2] have studied the scaling of the stability margin of D-dimensional lattice

formations. The stability margin is defined as the absolute value of the real part of the least

stable eigenvalue of the closed loop. The stability margin characterizes the rate at which initial

errors decay. The references [9]–[13] have examined the sensitivity of 1-dimensional platoons

to external disturbances. However, among papers that examined sensitivity to disturbance, to

the best of our knowledge only [13] has considered asymmetric control, the rest are limited to

symmetric control. The control is called symmetric if between two neighboring vehicles i and j,

the weight i puts on the information from j is the same as the weight j puts on the information

from i.

In previous works on 1-D vehicular platoons, two types of feedback are respectively con-

sidered: relative position absolute velocity (RPAV) feedback [1], [12] and relative position

relative velocity (RPRV) feedback [11], [13], [14]. With symmetric control, the stability margin

of the vehicular platoon decays to 0 as O(1/N2) in both types of feedback. This result for

RPAV feedback was shown in [1], and for RPRV feedback was shown in [14]. The loss of

stability margin with symmetric control has also been recognized by other researchers [12],

[15]. Asymmetric control in the RPAV case was examined in [1], [2], where it was also shown
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that with vanishingly small asymmetry in the control gains, the stability margin can be improved

to O(1/N). Similar conclusions are also obtained for a vehicle formation with a D-dimensional

lattice as its information graph [2] - that decay of stability margin can be improved with

asymmetry. In case of RPRV feedback, a similar improvement to O(1/N) with asymmetry

was shown in [14], where only the relative velocity feedback gains were made asymmetric.

The analyses in [1], [2], [14] were based on a partial differential equation (PDE) approximation

of the closed loop dynamics and a perturbation method; the latter limited the results to only

vanishingly small asymmetry.

In this paper we provide a stronger result on the stability margin with asymmetric control

by avoiding the perturbation analysis of the aforementioned papers. We also avoid the PDE

approximation and analyze the state space model directly. In particular, we show that with

judicious choice of asymmetry in the control, the stability margin of the vehicular formation can

be uniformly bounded away from 0 (independent of N) and derive a closed-form formula for

the lower bound. This result makes it possible to design the control gains so that the stability

margin of the system satisfies a pre-specified value irrespective of how many vehicles are in the

formation. We also generalize the result to formations with D-dimensional information graphs,

and show that a similar, size-independent stability margin can be obtained by using asymmetry

in the control gains. These results are established for both RPAV and RPRV feedbacks.

The focus of this paper is on the stability margin, which is related to exponential stability

of the closed loop system. A related concept is that of “string stability” [16]. String stability is

usually interpreted as the system’s sensitivity to external disturbances; see [6], [10], [17], [18]

and references therein. We do not study sensitivity to external disturbances in this paper.

For ease of description, we first present the problem statement and main result for a vehic-

ular formation with 1-dimensional information graph (i.e. the vehicular platoon) in Section II.

Analysis of the stability margin and numerical verification appear in Section III. The extension

of the result to a vehicular formation with D-dimensional lattice information graph is presented

in Section IV. The paper ends with a summary in Section V.

September 30, 2011 DRAFT



4

...

O X∆(0,1)∆(N−1,N)

01N − 1N

Fig. 1. Desired geometry of a vehicular platoon with N vehicles and 1 “fictitious” reference vehicle. The filled vehicle in the

front of the platoon represents the reference vehicle, it is denoted by index 0.

II. PROBLEM STATEMENT AND RESULT FOR 1-D PLATOON

A. Problem statement

In this section we consider the formation control of N homogeneous vehicles which are moving

in 1-D Euclidean space, as shown in Figure 1. The position of the i-th vehicle is denoted by

pi ∈ R and the dynamics of each vehicle are modeled as a double integrator:

p̈i = ui, i ∈ {1, 2, · · · , N}, (1)

where ui ∈ R is the control input. This is a commonly used model for vehicle dynamics in

studying vehicular formations, which results from feedback linearization of actual non-linear

vehicle dynamics [19], [20].

The control objective is that vehicles maintain a desired formation geometry while following

a constant-velocity type desired trajectory. The desired geometry of the formation is specified by

the desired gaps ∆(i−1,i) for i ∈ {1, · · · , N}, where ∆(i−1,i) is the desired value of pi−1(t)−pi(t).

The desired inter-vehicular gaps ∆(i−1,i)’s are positive constants and they have to be specified in

a mutually consistent fashion, i.e. ∆(i,k) = ∆(i,j)+∆(j,k) for every triple (i, j, k) where i ≤ j ≤ k.

The desired trajectory of the platoon is provided in terms of a fictitious reference vehicle with

index 0, whose trajectory is given by p∗0(t) = v∗t + c0 for some constants v∗, c0, where v∗ is

the cruise velocity of the formation. The desired trajectory of the i-th vehicle, p∗i (t), is given by

p∗i (t) = p∗0(t)−∆(0,i) = p∗0(t)−
∑i

j=1∆(j−1,j).

We consider the following distributed control laws.

1) Relative position and absolute velocity (RPAV) feedback: the control action at the i-th

vehicle depends on the relative position measurements with its two neighbors (one on either
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side), its own velocity, and the desired velocity v∗:

ui =− kf
i (pi − pi−1 +∆(i−1,i))− kb

i (pi − pi+1 −∆(i,i+1))

− bi(ṗi − v∗), i ∈ {1, · · · , N − 1},

uN =− kf
N(pN − pN−1 +∆(N−1,N))− bN (ṗN − v∗), (2)

where kf
i , k

b
i are the front and back position gains and bi is the velocity gain.

2) Relative position and relative velocity (RPRV) feedback: the control action at the i-th vehicle

depends on the relative position and relative velocity measurements with its nearest neighbors

in the platoon:

ui =− kf
i (pi − pi−1 +∆(i−1,i))− kb

i (pi − pi+1 −∆(i,i+1))

− bfi (ṗi − ṗi−1)− bbi(ṗi − ṗi+1), i ∈ {1, · · · , N − 1},

uN =− kf
N(pN − pN−1 +∆(N−1,N))− bfN (ṗN − ṗN−1), (3)

where kf
i , k

b
i (respectively, bfi , bbi ) are the front and back position (respectively, velocity) gains

of the i-th vehicle.

In the RPRV feedback case, vehicle i must be provided (a-priori) the desired gaps with its

two neighbors. In the RPAV feedback, it must be provided with additional information: the

formation’s desired velocity v∗. The closed-loop dynamics with RPAV (resp., RPRV) feedback,

in terms of the tracking errors p̃i := pi − p∗i , can now be expressed as:

ẋ = A(RPAV)x, (resp.) ẋ = A(RPRV)x, (4)

where the state vector is defined as x := [p̃1, ˙̃p1, · · · , p̃N , ˙̃pN ] ∈ R2N , and the state matrix A(.)

depends on the control gains but not on the desired gaps or desired velocity.

Definition 1: The stability margin S(RPAV) (respectively, S(RPRV)) of the closed-loop system (4) is

defined as the absolute value of the real part of the least stable eigenvalue of A(RPAV) (respectively,

A(RPRV)). The control law (2) (respectively, (3)) is symmetric if each vehicle uses the same front

and back control gains: kf
i = kb

i = k0, bi = b0 (respectively, kf
i = kb

i = k0, b
f
i = bbi = b0), for all

i ∈ {1, 2, · · · , N − 1}, where k0, b0 are positive constants. !

In this paper, we consider the following asymmetric control gains

RPAV feedback: kf
i = (1 + ε)k0, kb

i = (1− ε)k0, bi = b0. (5)

September 30, 2011 DRAFT



6

RPRV feedback:
kf
i = (1 + ε)k0, kb

i = (1− ε)k0,

bfi = (1 + ε)b0, bbi = (1− ε)b0,
(6)

where ε ∈ [0, 1) denotes the amount of asymmetry; ε = 0 corresponds to symmetric control.

The design for the RPAV case is inspired by [1], [2]. The control gains given in (5) and (6) are

homogeneous in the sense that they do not vary with i. The reason we only consider homogeneous

control gains is that heterogeneity has little effect on the scaling of stability margin [14].

The following proposition summaries the results in [1], [14].

Proposition 1: Consider an N-vehicle platoon with closed loop dynamics (4).

1) [Corollary 1 of [1], Theorem 1 of [14]] With symmetric control (ε = 0), both S(RPAV) and

S(RPRV) are O( 1
N2 ).

2) [Corollary 3 of [1]] With the asymmetric control gains kf
i = k0(1+ ε), kb

i = k0(1− ε) and

bi = b0, the stability margin of the platoon with RPAV feedback is S(RPAV) = O( ε
N ). 1

3) [Theorem 2 of [14]] With asymmetric control gains kf
i = kb

i = k0, b
f
i = b0(1 + ε), bbi =

b0(1− ε), the stability margin of the platoon with RPRV feedback is S(RPRV) = O( ε
N ).

Statements (2) and (3) hold in the limit ε → 0 and N → ∞. !

Proposition 1 shows that with symmetric control, the stability margin decays to 0 as O(1/N2),

irrespective of the type of feedback we used. However, in the case of RPAV feedback, with

vanishingly small amount of asymmetry in the position gains, the stability margin of the system

can be improved to O(1/N). The same O(1/N) trend can be achieved for the case of RPRV

feedback with vanishingly small asymmetry in the velocity gains alone while the position gains

are held symmetric. The design (6) was not considered in [14]. Since the results in [1], [2], [14]

were obtained with a perturbation analysis, these results are applicable only when the amount

of asymmetry is vanishingly small.

The following theorem is the main result of this paper, whose proof and numerical corrobo-

ration are given in Section III.

Theorem 1: With the control gains given in (5) and (6) respectively, for any fixed ε ∈ (0, 1),

the closed loop is exponential stable and the stability margin of the vehicular platoon is bounded

1The case considered in [1] was that |kf
i − k0| < ε , |kb

i − k0| < ε. It is straightforward, however, to re-derive the results if

the constraints on the gains are changed to the form used here: |kf
i − k0|/k0 < ε , |kb

i − k0|/k0 < ε. In this paper we consider

the latter case since it makes the analysis cleaner without changing the results of [1] significantly.
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away from 0 uniformly in N . Specifically,

S(RPAV) ≥
'
(

b0 −
√

b20 − 8k0(1−
√
1− ε2)

)

2
, (7)

S(RPRV) ≥min
{

b0(1−
√
1− ε2),

k0
b0

}

, (8)

where '(.) denotes the real part. !

Remark 1: Comparing Theorem 1 with Proposition 1, we observe the following: (1) Even with

an arbitrarily small (but fixed and non-vanishing) amount of asymmetry in the control gains, the

stability margin of the system can be bounded away from zero uniformly in N . This asymmetric

design therefore makes the resulting control law highly scalable; it eliminates the degradation of

stability margin with increasing N . (2) In case of the RPAV feedback, although the control law

is the same as that analyzed in [1], the stronger conclusion we obtained - compared to that in [1]

- is due to the fact that our analysis does not rely on a perturbation-based technique that was

used [1], which limited the analysis in [1] to vanishingly small ε. (3) For the RPRV feedback

case, the stronger result compared to that in [14], is obtained by putting equal asymmetry in

both position and velocity gains, while [14] allowed asymmetry only in the velocity gain. In

addition, unlike [1], [14], we do not use a PDE (partial differential equation) approximation to

analyze the stability margin, but analyze the state-space model directly. !

III. STABILITY MARGIN OF THE 1-D VEHICULAR PLATOON

With the control gains specified in (5) and (6) respectively, it can be shown that the state

matrices can be expressed in the following forms,

A(RPAV) = IN ⊗A1 + L(1) ⊗ A2,

A(RPRV) = IN ⊗A3 + L(1) ⊗ A4, (9)

where IN is the N ×N identity matrix, ⊗ denotes the Kronecker product, and

A1 :=





0 1

0 −b0



 , A2 :=





0 0

−k0 0



 ,

A3 :=





0 1

0 0



 , A4 :=





0 0

−k0 −b0



 , (10)

September 30, 2011 DRAFT
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where k0 > 0, b0 > 0 are the nominal position and velocity gains respectively, and

L(1) :=





















2 −1 + ε

−1− ε 2 −1 + ε
. . . . . . . . .

−1− ε 2 −1 + ε

−1− ε 1 + ε





















. (11)

It follows from Theorem 3.1 of [21] that the eigenvalues of L(1) are given by

λ = b+ 2cρ cos θ, (12)

if θ (θ += mπ,m ∈ Z, Z being the set of integers) is a solution to

ρN(ac sin(N + 1)θ + (γδ − αβ) sin(N − 1)θ

−cρ(γ + δ) sinNθ)− (cαρ2N + aβ) sin θ = 0, (13)

where a = −1 − ε, b = 2, c = −1 + ε, α = β = γ = 0, δ = −1 + ε, ρ =
√

(−1 − ε)/(−1 + ε).

Eq. (12) and (13) can now be simplified to

λ" = 2− 2
√
1− ε2 cos θ", * ∈ {1, 2, · · · , N}, (14)

where ε ∈ (0, 1) and θ" is the *-th root of the following equation
√

1 + ε

1− ε
sin(N + 1)θ = sinNθ. (15)

From (14), we see that the eigenvalues of L(1) are real and positive, and moreover, 0 < λ1 =

2− 2
√
1− ε2 cos θ1 < λ2 < · · · < λN = 2− 2

√
1− ε2 cos θN , where θ1 ∈ ( π

2(N+1) ,
3π

2(N+1) ), θN ∈

( (2N−1)π
2(N+1) ,

(2N+1)π
2(N+1) ) are the solutions to (15). To see why, first notice that we only need consider

the roots of (15) in the open interval (0, 2π), in which there are 2N nontrivial isolated roots. See

Figure 2 for an example. The roots located in R \ (0, 2π) are 2mπ (m ∈ Z) distance away from

those in (0, 2π). Moreover, if θ0 ∈ (0, 2π) is a solution of (15), then 2π − θ0 is also a solution.

Therefore, we can restrict the domain of analysis to (0, π), in which there are N isolated roots.

The ordering of the eigenvalues follows from cos θ being a decreasing function in (0, π). It is

straightforward to show from graphical solution of (15) that the *-th root θ" is in the open interval

September 30, 2011 DRAFT
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2ππ
θ

√

(1 + ε)/(1 − ε) sin((N + 1)θ)

sin(Nθ)

Fig. 2. Graphical solution θ of
√

(1 + ε)/(1− ε) sin((N + 1)θ) = sin(Nθ) with ε = 0.1 and N = 3.

( (2"−1)π
2(N+1) ,

(2"+1)π
2(N+1) ). We now present a formula for the stability margin of the vehicular platoon in

terms of the eigenvalues of L(1).

Lemma 1: With the control gains given in (5) and (6) respectively, and 0 < ε < 1, the stability

margin of the vehicular platoon is

S(RPAV) =











b0
2 , if λ1 ≥ b20/4k0,

b0−
√

b20−4k0λ1

2 , otherwise,

S(RPRV) =



























b0λ1
2 , if λN ≤ 4k0/b20,

2k0
b0+

√
b20−4k0/λN

, if λ1 ≥ 4k0/b20,

min
{

b0λ1
2 , 2k0

b0+
√

b20−4k0/λN

}

, otherwise,

where λ1 and λN are the smallest and largest eigenvalues of L(1) respectively. !

Proof of Lemma 1. Our proof follows a similar line of attack as of [22]. From Schur’s triangu-
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larization theorem, there exists an unitary matrix U such that

U−1L(1)U = Lu,

where Lu is an upper-triangular matrix whose diagonal entries are the eigenvalues λ" of L(1).

We first consider the RPAV feedback case. We do a similarity transformation on matrix A(RPAV).

Ā(RPAV) := (U−1 ⊗ I2)A
(RPAV)(U ⊗ I2)

= (U−1 ⊗ I2)(IN ⊗ A1 + L(1) ⊗ A2)(U ⊗ I2)

= IN ⊗ A1 + Lu ⊗ A2.

It is a block upper-triangular matrix, and the block on each diagonal is A1 + λ"A2, where λ" ∈

σ(L(1)), and σ(·) denotes the spectrum (the set of eigenvalues). Since similarity transformation

preserves eigenvalues, and the eigenvalues of a block upper-triangular matrix are the union of

eigenvalues of each block on the diagonal, we have

σ(A(RPAV)) = σ(Ā(RPAV)) =
⋃

λ!∈σ(L(1))

{σ(A1 + λ"A2)}

=
⋃

λ!∈σ(L(1))

{

σ





0 1

−k0λ" −b0





}

. (16)

It follows now that the eigenvalues of A(RPAV) are the roots of the characteristic equation s2 +

b0s+ k0λ" = 0. For each * ∈ {1, 2, · · · , N}, the two roots are

s±" =
−b0 ±

√

b20 − 4k0λ"

2
. (17)

The root closer to the imaginary axis is denoted by s+" , and is called the less stable eigenvalue

between the two. The least stable eigenvalue is the one closet to the imaginary axis among them,

it is denoted by smin. It follows from Definition 1 that S = |'(smin)|.

Depending on the discriminant in (17), there are two cases to analyze:

1) If λ1 ≥ b20/4k0, due to λ1 < · · · < λN , we have the discriminant in (17) for each * is

non-positive, which yields S(RPAV) = |'(smin)| = b0
2 .

2) Otherwise, the less stable eigenvalues can be written as s+" = 1
2(−b0 +

√

b20 − 4k0λ"),

which may be complex for some * > 1. The least stable eigenvalue is obtained by setting

λ" = λ1, so that S(RPAV) = |'(smin)| = 1
2(b0 −

√

b20 − 4k0λ1).

September 30, 2011 DRAFT
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For the case of RPRV feedback, following the same procedure as that of RPAV feedback, the

characteristic equations are given by

s2 + λ"b0s+ λ"k0 = 0. (18)

For each * ∈ {1, 2, · · · , N}, the two roots of the characteristic equations (18) are,

s±" = −λ"b0
2

±
√

(λ"b0)2 − 4λ"k0
2

. (19)

Depending on the discriminant in (19), there are three cases to analyze:

1) If λN ≤ 4k0/b20, then the discriminant in (19) for each * is non-positive. Recall that

the stability margin is defined as the absolute value of the real part of the least stable

eigenvalue, which yields

S(RPRV) = |'(smin)| =
λ1b0
2

.

2) If λ1 ≥ 4k0/b20, then the discriminant in (19) for each * is non-negative, the less stable

eigenvalue can be written as

s+" = −
λ"b0 −

√

(λ"b0)2 − 4λ"k0
2

= − 2k0

b0 +
√

b20 − 4k0/λ"

.

The least stable eigenvalue is achieved by setting λ" = λN , then have the stability margin

S(RPRV) = |'(smin)| =
2k0

b0 +
√

b20 − 4k0/λN

.

3) Otherwise, if the discriminant in (19) is negative for small * and positive for large *, then

the stability margin is given by taking the minimum of the two cases above. This completes

the proof.

We are now ready to present the proof of Theorem 1.

Proof of Theorem 1. We see from Lemma 1 that the smallest and largest eigenvalues of matrix

L(1) play important roles in determining the stability margin. To get a lower bound of the

stability margin, a lower bound for the smallest eigenvalue and an upper bound for the largest

eigenvalue is needed. Recall that λ1 = 2 − 2
√
1− ε2 cos θ1, λN = 2 − 2

√
1− ε2 cos θN , where

θ1 ∈ ( π
2(N+1) ,

3π
2(N+1) ), θN ∈ ( (2N−1)π

2(N+1) ,
(2N+1)π
2(N+1) ). We therefore have θ1 → 0, θN → π as N → ∞,

and consequently,

inf
N

λ1 = 2− 2
√
1− ε2, (20)
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sup
N

λN = 2 + 2
√
1− ε2. (21)

To prove the result with RPAV feedback, we consider the following two cases:

1) Case 1: λ1 ≥ b20/4k0. According to Lemma 1, the stability margin is given by S(RPAV) = b0/2.

2) Case 2: λ1 < b20/4k0. From Lemma 1, the stability margin is given by

S(RPAV) =
b0 −

√

b20 − 4k0λ1

2
.

Since λ1 ≥ 2− 2
√
1− ε2, we obtain

S(RPAV) ≥
b0 −

√

b20 − 8k0(1−
√
1− ε2)

2
. (22)

Notice that the above lower bound (22) is smaller than b0/2, the value of S(RPAV) in case 1. The

real part sign '(.) in (7) comes from combining the above two cases. We obtain the first result

of the theorem.

To prove the result with RPRV feedback, we consider the following three cases:

1) Case 1: λN ≤ 4k0/b20. According to Lemma 1, the stability margin is S(RPRV) = b0λ1/2.

Moreover, from (20), we have infN λ1 = 2− 2
√
1− ε2, therefore the stability margin has

the lower bound

S(RPRV) ≥ b0(1−
√
1− ε2).

2) Case 2: λ1 ≥ 4k0/b20. From Lemma 1, the stability margin is given by

S(RPRV) =
2k0

b0 +
√

b20 − 4k0/λN

.

In addition, we have from (21) that supN λN = 2 + 2
√
1− ε2, so the stability margin for

this case is bounded below as

S(RPRV) ≥ 2k0

b0 +
√

b20 − 2k0/(1 +
√
1− ε2)

.

3) Case 3: Otherwise, the stability margin are bounded below by the minimum of the above

two cases.

Notice that in the second case, 2k0

b0+
√

b20−2k0/(1+
√
1−ε2)

≥ k0
b0

. Combining the above three cases, we

have that

S(RPRV) ≥ min
{

b0(1−
√
1− ε2),

k0
b0

}

,

which completes the proof.
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Fig. 3. Stability margin comparisons between symmetric control and asymmetric control.

A. Numerical verification for 1-D vehicular platoon

In this section, we present numerical verification of the lower bounds of the stability margins

for both RPAV and RPRV feedbacks with asymmetric control, which are predicted by Theorem 1.

In addition, the stability margins with symmetric control are also computed to compare with the

asymmetric case. The stability margins are obtained by numerically evaluating the eigenvalues

of the state matrix A(RPAV or RPRV) of (4) with corresponding controllers. Figure 3 depicts the

comparisons between the stability margins with symmetric and asymmetric control for the two

types of feedback: RPAV and RPRV. For both symmetric and asymmetric controls, the nominal

control gains used are k0 = 1, b0 = 0.5, and for asymmetric control, the amount of asymmetry

is ε = 0.1. We can see from Figure 3 that the stability margin of the vehicular platoon with

asymmetric control is indeed bounded away from 0 uniformly in N , and the predictions Eq. (7)

and Eq. (8) of Theorem 1 are quite accurate. Furthermore, for the same N , the stability margin

with asymmetric control is much larger than that with symmetric control, especially when N is

large.
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IV. STABILITY MARGIN WITH D-DIMENSIONAL LATTICE INFORMATION GRAPH

In this section we analyze a more general scenario than the 1-D platoon of the previous

sections. We consider a vehicular formation in which the position of each vehicle has dimension

higher than one, such as a vehicular formation moving in 2-D or 3-D space. We assume the

dynamics of each of the coordinates of a vehicle’s position are decoupled and each coordinate

can be independently controlled. Under this fully actuated assumption, the closed loop dynamics

for each coordinate of the position can be independently studied; see [2], [6] for examples. The

information used by a vehicle to compute its control is based on relative measurements with a set

of neighbors specified in terms of an information graph. The problem formulation is similar to

the 1-D case in the sense that each vehicle has to maintain constant separation with its neighbors

in an information graph, except that the information graph now is a D-dimensional lattice.

Definition 2: An information graph is a graph G = (V,E), where the set of nodes (vehicles)

V = {1, 2, . . . , N,N +1, . . . , N +Nr} consists of N real vehicles and Nr “fictitious” reference

vehicles. Two nodes i and j are called neighbors if (i, j) ∈ E, and the set of neighbors of i are

denoted by Ni. !

In this paper we restrict ourselves to D-dimensional lattices as information graphs:

Definition 3 (D-dimensional lattice): A D-dimensional lattice, specifically a n1×n2×· · ·×nD

lattice, is a graph with n1n2 . . . nD nodes, in which the nodes are placed at the integer coordinate

points of the D-dimensional Euclidean space and each real vehicle connects to vehicles which

are exactly one unit away from it. !

x1

x2

o

6 5

4 3

2 1

7

8

9

Fig. 4. A pictorial representation of a 2-D information graph. The filled node represent the reference vehicles and the solid

lines represent edges in the information graph.
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Figure 4 depicts an example of 2-D lattice. A D-dimensional lattice is drawn in RD with a

Cartesian reference frame whose axes are denoted by x1, x2, . . . , xD. We also define Nd (d =

1, . . . , D) as the number of real vehicles in the xd direction. Then we have N1N2 · · ·ND = N

and n1n2 . . . nD = N +Nr. An information graph is said to be square if N1 = N2 = · · · = ND.

Note that the information graph for the vehicular platoon considered in the previous sections is

a 1-D lattice with N real vehicles (nodes) and Nr (= 1) reference vehicle.

For the ease of exposition, we only consider the case where the reference vehicles are arranged

on one boundary of the lattice. Without loss of generality, let it be perpendicular to the x1 axis,

see Figure 4 for an example. This arrangement of reference vehicles simplifies the presentation

of the results. Arrangements of reference vehicles on other boundaries of the lattice can also be

considered, which does not significantly change the results; see [23], [24].

Due to its similarity with the 1-D case, we omit the details on desired separations etc, which

are available in [2]. The control laws with RPAV and RPRV feedback, in terms of the errors p̃i

are, respectively

ui =−
D
∑

d=1

k(i,id+)(p̃i − p̃id+)−
D
∑

d=1

k(i,id−)(p̃i − p̃id−)− bi ˙̃pi, (23)

ui =−
D
∑

d=1

k(i,id+)(p̃i − p̃id+)−
D
∑

d=1

k(i,id−)(p̃i − p̃id−)

−
D
∑

d=1

b(i,id+)( ˙̃pi − ˙̃pid+)−
D
∑

d=1

b(i,id−)( ˙̃pi − ˙̃pid−), (24)

where id+ (respectively, id−) denotes the neighbor of i on the positive (respectively, negative)

xd axis. The closed loop dynamics are again represented as ẋ = A(RPAV or RPRV)x, where the state

x := [p̃1, ˙̃p1, · · · , p̃N , ˙̃pN ] ∈ R2N is a vector of the relative positions p̃i and relative velocities ˙̃pi.

The stability margin is defined as before.

It is shown in [2] that asymmetry in control gains can improve the stability margin with

RPAV feedback, but the analysis is limited for ε → 0 and the case with RPRV feedback was

not considered. In this paper, we consider the following homogeneous and asymmetric control

gains that introduce asymmetry only in the x1 axis:

RPAV:
k(i,i1+) = (1 + ε)k0, k(i,i1−) = (1− ε)k0,

k(i,id+) = k0, (d > 1), bi = b0.
(25)
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RPRV:

k(i,i1+) = (1 + ε)k0, k(i,i1−) = (1− ε)k0,

b(i,i1+) = (1 + ε)b0, b(i,i1−) = (1− ε)b0,

k(i,id+) = k0, b(i,id+) = b0, (d > 1).

(26)

We first summarize the results in [2], [23].

Proposition 2: Consider a vehicular formation whose information graph is a D-dimensional

lattice. With the control gains given in (25) and (26) respectively.

1) [Theorem 1 of [2], Theorem 4 of [23]] With symmetric control (ε = 0), both S(RPAV) and

S(RPRV) are O( 1
N2

1
).

2) [Theorem 2 of [2]] With the control gains given by (25), the stability margin with RPAV

feedback is S(RPAV) = O( ε
N1
), which hold in the limit ε → 0 and N1 → ∞. !

We next state the main result of this section, which is a corollary of Theorem 1. It describes

the stability margin for a vehicular formation with D-dimensional lattice information graph with

asymmetric control.

Corollary 1: With the control gains given in (25) and (26) respectively, and 0 < ε < 1, the

stability margin of the vehicular formation with RPAV or RPRV feedback is bounded away from

0, uniformly in N . Specifically,

S(RPAV) ≥
'
(

b0 −
√

b20 − 8k0(1−
√
1− ε2)

)

2
, (27)

S(RPRV) ≥min
{

b0(1−
√
1− ε2),

k0
b0

}

. (28)

!

Remark 2: From Proposition 2, we see that with the particular arrangement of the reference

vehicles as mentioned before, the stability margin of the vehicular formation with symmetric

control only depend on N1, the number of real vehicles along the x1 axis of the information

graph. For a square information graph, no matter how large its dimension D is, the loss of

stability margin with increasing number of vehicle N is inevitable, since N1 = N1/D . To make

the stability margin independent of N with symmetric control, one needs to employ a non-square

information graph, such that N1 is a constant regardless of the increasing of N . The price one

pays is either long range communication and/or increased number of reference vehicles; see [2],

[23] for more details. In addition, for the RPAV feedback case, with vanishingly small amount
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of asymmetry, the stability margin is improved to O(1/N1), compared to the O(1/N2
1 ) trend in

the symmetric case.

In contrast, Corollary 1 shows that with judicious asymmetric control, the stability margin can

be made independent of the number of vehicles N in the formation, without using the non-square

information graph aforementioned. Note that the result we establish in this paper (Corollary 1) is

stronger than that in [2], even though the control law is the same. The reason is that the analysis

in [2] relied on a perturbation technique, which limited its applicability to vanishingly small ε.

In this paper we do not use perturbation techniques, and obtain result for any non-vanishing

ε ∈ (0, 1). In addition, we also consider the RPRV feedback case, while [2] analyzed only RPAV

feedback. !

Proof of Corollary 1. With the control gains specified in (25) and (26) respectively, it is straight-

forward - through a bit tedious - to show that the state matrices A(RPAV) and A(RPRV) can be expressed

in the following forms,

A(RPAV) = IN ⊗ A1 + L(D) ⊗ A2,

A(RPRV) = IN ⊗ A3 + L(D) ⊗ A4, (29)

where A1, A2, A3, A4 are given in (10) and L(D) has the following form:

L(d) = INd
⊗ L(d−1) + T (d) ⊗ IN1N2···Nd−1

, 2 ≤ d ≤ D, (30)

where L(1) is given in (11) and T (d) is a matrix of dimension Nd ×Nd, which is given by

T (d) =





















1 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 1





















. (31)

The eigenvalues of T (d) are given by (see [21]):

λ"d = 2− 2 cos
(*d − 1)π

Nd
, *d = 1, 2, . . . , Nd. (32)
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For example, for a 2-dimensional information graph shown in Figure 4,

L(2) =



























3 −1 + ε −1 0 0 0

−1− ε 2 + ε 0 −1 0 0

−1 0 4 −1 + ε −1 0

0 −1 −1− ε 3 + ε 0 −1

0 0 −1 0 3 −1 + ε

0 0 0 −1 −1 − ε 2 + ε



























.

It’s straightforward to show that L(2) = I3 ⊗ L(1) + T (2) ⊗ I2, where T (2) is a matrix with

dimension 3× 3.

From the proof of Lemma 1, we see that the eigenvalues of A(RPAV) and A(RPRV) are given by the

roots of the characteristic equations s2 + b0s+ k0λ'" = 0 and s2 + b0λ'"s+ k0λ'" = 0 respectively,

where λ'" is the eigenvalue of L(D), and ,* = (*1, · · · , *D) in which *d ∈ {1, 2, · · · , Nd}. We next

claim that the eigenvalues of L(D) are given by

λ'" = λ"1(L
(1)) +

D
∑

d=2

λ"d(T
(d)). (33)

We prove by induction method. For the case d = 2, L(2) = IN2⊗L(1)+T (2)⊗IN1 . Following (16)

in the proof of Lemma 1, the eigenvalues of L(2) are given by

λ"1,"2 =
⋃

λ!2
∈σ(T (2))

{σ(L(1) + λ"2IN1)}

= λ"1(L
(1)) + λ"2(T

(2)),

Now, we assume the general formula for the eigenvalues of L(D−1) is given by

λ"1,...,"D−1 = λ"1(L
(1)) +

D−1
∑

d=2

λ"d(T
(d)). (34)

For the case d = D, the matrix L(D) has the form given in (30), use (16) again, we have

λ"1,...,"D =
⋃

λ!D
∈σ(T (D))

{σ(L(D−1) + λ"DIN1···ND−1)}

= λ"1···"D−1(L
(D−1)) + λ"D(T

(D)),

which proves the claim. Now, use (14) and (32), the smallest eigenvalue of L(D) is equal to λ1,

the smallest eigenvalue of L(1). The result now follows from Lemma 1 and Theorem 1.
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Fig. 5. Stability margin comparisons between symmetric control and asymmetric control for a vehicular formation with 2-D

square information graph.

A. Numerical verification for vehicular formation with D-dimensional information graph

In this section, we present numerical verification of the theoretical predicted lower bounds

of stability margin for vehicular formations with D-dimensional lattice information graphs. For

simplicity, we take 2-D lattices as examples. We assume the information graph is square, i.e.

N1 = N2 =
√
N . In addition, the stability margins with symmetric control are also computed to

compare with the asymmetric case. For both symmetric and asymmetric controls, the nominal

control gains used are k0 = 1, b0 = 0.5, and for asymmetric control, the amount of asymmetry

used is ε = 0.1. We observe from Figure 5 that, with asymmetric control, the stability margin of

the vehicular formation with RPAV or RPRV feedback is indeed uniformly bounded below by the

prediction Eq. (27) and Eq. (28) respectively. Furthermore the stability margin with asymmetric

control is much larger than that with symmetric control for the same N .
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V. SUMMARY

We studied the stability margin of vehicular formations on lattice graphs with distributed

control. The control signal at every vehicle depends on the measurements from its neighbors

in the information graph, which is a D-dimensional lattice. Inspired by the previous works [1],

[2], we examined the role of asymmetry in the control gains on the closed loop stability margin.

We showed that with judicious asymmetry in the control gains, the stability margin of the

vehicular formation can be bounded away from 0 uniformly in N . This eliminates the loss

of stability margin with increasing N that is seen with symmetric control. In this paper, the

analysis of the stability margin avoids the PDE approximation and perturbation method used

in [1], [2]. In particular, the latter limited the analyses in those papers to vanishingly small

amount of asymmetry and resulted a O(1/N) scaling trend of stability margin. In addition, the

control laws examined in [1], [2] required vehicles to have access to the desired velocity of

the formation. We generalized the results to the case when only relative velocity and relative

position measurements are available. We showed in this paper that in both cases (i.e., with or

without absolute velocity feedback), stability margin can be made independent of the size of

the formation with asymmetric control. The issue of sensitivity to external disturbances with

asymmetric control is a topic of future research.
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[12] M. R. Jovanović and B. Bamieh, “On the ill-posedness of certain vehicular platoon control problems,” IEEE Trans. Automat.

Control, vol. 50, no. 9, pp. 1307–1321, September 2005.

[13] F. Tangerman and J. Veerman, “Asymmetric Decentralized Flocks,” accepted to IEEE Transactions on Automatic Control,

2011. [Online]. Available: http://www.mth.pdx.edu/∼veerman/publ04.html

[14] H. Hao and P. Barooah, “Control of large 1D networks of double integrator agents: role of heterogeneity and asymmetry

on stability margin,” in IEEE Conference on Decision and Control, December 2010.
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