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On achieving size-independent stability margin of
vehicular lattice formations with distributed control

He Hao, Prabir Barooah

Abstract— We study the stability margin of a vehicular formation with
distributed control, in which the control at each vehicle only depends
on the information from its neighbors in an information grap h. We
consider a D-dimensional lattice as information graph, of which the 1-
D platoon is a special case. The stability margin is measuredby the
real part of the least stable eigenvalue of the closed-loop state matrix,
which quantifies the rate of decay of initial errors. In [1], it was shown
that with symmetric control, in which two neighbors put equal weight
on information received from each other, the stability margin of a 1-D
vehicular platoon decays to0 as O(1/N2), where N is the number of
vehicles. Moreover, a perturbation analysis was used to show that with
vanishingly small amount of asymmetry in the control gains,the stability
margin scaling can be improved toO(1/N). In this paper, we show that,
with judicious choice of non-vanishing asymmetry in control, the stability
margin of the closed loop can be bounded away from zero uniformly
in N . Asymmetry in control gains thus makes the control architecture
highly scalable. The results are also generalized toD-dimensional lattice
information graphs that were studied in [2], and the correspondingly
stronger conclusions than those derived in [2] are obtained. In addition,
we show that the size-independent stability margin can be achieved with
relative position and relative velocity (RPRV) feedback as well as relative
position and absolute velocity (RPAV) feedback, while the analysis in [1],
[2] was only for the RPAV case.

Index Terms— Asymmetric control, automated platoon, distributed
control, multi-agent system, stability margin.

I. I NTRODUCTION

We study cooperative control of a large vehicular formationwith
distributed control. The vehicles are modeled as double integrators,
and the control action at each vehicle is computed based on in-
formation from its neighbors, where the neighbor relationship is
characterized by a lattice information graph. The control objective is
to make the vehicular formation track a constant-velocity type desired
trajectory while maintaining pre-specified constant separation among
neighbors. The desired trajectory of the entire vehicular formation is
given in terms of trajectories of a set of fictitious reference vehicles.

The problem of distributed control for multi-agent coordination is
relevant to many applications such as automated highway system,
collective behavior of bird flocks and animal swarms, and formation
flying of unmanned aerial and ground vehicles for surveillance,
reconnaissance and rescue, etc. [3]–[8]. A typical issue faced in
distributed control is that as the number of agents increases, the
performance of the closed loop degrades. Several recent papers
have studied the scaling of performance of vehicle formations as
a function of the number of vehicles. The references [1], [2]have
studied the scaling of the stability margin ofD-dimensional lattice
formations. The stability margin is defined as the absolute value
of the real part of the least stable eigenvalue of the closed loop.
The stability margin characterizes the rate at which initial errors
decay. The references [9]–[13] have examined the sensitivity of
1-dimensional platoons to external disturbances. However, among
papers that examined sensitivity to disturbance, to the best of our
knowledge only [13] has considered asymmetric control, therest
are limited to symmetric control. The control is called symmetric if
between two neighboring vehiclesi and j, the weighti puts on the
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information fromj is the same as the weightj puts on the information
from i.

In previous works on 1-D vehicular platoons, two types of feed-
back are respectively considered: relative position absolute velocity
(RPAV) feedback [1], [12] and relative position relative velocity
(RPRV) feedback [11], [13], [14]. With symmetric control, the
stability margin of the vehicular platoon decays to0 as O(1/N2)
in both types of feedback. This result for RPAV feedback was shown
in [1], and for RPRV feedback was shown in [14]. The loss of stability
margin with symmetric control has also been recognized by other
researchers [12], [15]. Asymmetric control in the RPAV casewas
examined in [1], [2], where it was also shown that with vanishingly
small asymmetry in the control gains, the stability margin can be
improved toO(1/N). Similar conclusions are also obtained for a
vehicle formation with aD-dimensional lattice as its information
graph [2] - that decay of stability margin can be improved with asym-
metry. In case of RPRV feedback, a similar improvement toO(1/N)
with asymmetry was shown in [14], where only the relative velocity
feedback gains were made asymmetric. The analyses in [1], [2], [14]
were based on a partial differential equation (PDE) approximation
of the closed loop dynamics and a perturbation method; the latter
limited the results to only vanishingly small asymmetry.

In this paper we provide a stronger result on the stability margin
with asymmetric control by avoiding the perturbation analysis of
the aforementioned papers. We also avoid the PDE approximation
and analyze the state space model directly. In particular, we show
that with judicious choice of asymmetry in the control, the stability
margin of the vehicular formation can be uniformly bounded away
from 0 (independent ofN ) and derive a closed-form formula for
the lower bound. This result makes it possible to design the control
gains so that the stability margin of the system satisfies a pre-specified
value irrespective of how many vehicles are in the formation. We also
generalize the result to formations withD-dimensional information
graphs, and show that a similar, size-independent stability margin can
be obtained by using asymmetry in the control gains. These results
are established for both RPAV and RPRV feedbacks.

The focus of this paper is on the stability margin, which is related
to exponential stability of the closed loop system. A related concept
is that of “string stability” [16]. String stability is usually interpreted
as the system’s sensitivity to external disturbances; see [6], [10], [17],
[18] and references therein. We do not study sensitivity to external
disturbances in this paper.

For ease of description, we first present the problem statement and
main result for a vehicular formation with1-dimensional information
graph (i.e. the vehicular platoon) in Section II. Analysis of the
stability margin and numerical verification appear in Section III. The
extension of the result to a vehicular formation withD-dimensional
lattice information graph is presented in Section IV. The paper ends
with a summary in Section V.

II. PROBLEM STATEMENT AND RESULT FOR1-D PLATOON

A. Problem statement

In this section we consider the formation control ofN homoge-
neous vehicles which are moving in 1-D Euclidean space, as shown
in Figure 1. The position of thei-th vehicle is denoted bypi ∈ R

and the dynamics of each vehicle are modeled as a double integrator:

p̈i = ui, i ∈ {1, 2, · · · , N}, (1)

where ui ∈ R is the control input. This is a commonly used
model for vehicle dynamics in studying vehicular formations, which
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Fig. 1. Desired geometry of a vehicular platoon withN vehicles and1
“fictitious” reference vehicle. The filled vehicle in the front of the platoon
represents the reference vehicle, it is denoted by index0.

results from feedback linearization of actual non-linear vehicle dy-
namics [19], [20].

The control objective is that vehicles maintain a desired formation
geometry while following a constant-velocity type desiredtrajectory.
The desired geometry of the formation is specified by thedesired
gaps ∆(i−1,i) for i ∈ {1, · · · , N}, where∆(i−1,i) is the desired
value ofpi−1(t)− pi(t). The desired inter-vehicular gaps∆(i−1,i) ’s
are positive constants and they have to be specified in a mutually
consistent fashion, i.e.∆(i,k) = ∆(i,j) + ∆(j,k) for every triple
(i, j, k) where i ≤ j ≤ k. The desired trajectory of the platoon is
provided in terms of afictitiousreference vehicle with index0, whose
trajectory is given byp∗

0(t) = v∗t + c0 for some constantsv∗, c0,
wherev∗ is the cruise velocity of the formation. The desired trajectory
of the i-th vehicle, p∗

i (t), is given by p∗
i (t) = p∗

0(t) − ∆(0,i) =
p∗
0(t) −

Pi
j=1 ∆(j−1,j).

We consider the followingdistributedcontrol laws.
1) Relative position and absolute velocity (RPAV) feedback: the

control action at thei-th vehicle depends on the relative position
measurements with its two neighbors (one on either side), its own
velocity, and the desired velocityv∗:

ui = − kf
i (pi − pi−1 + ∆(i−1,i)) − kb

i (pi − pi+1 − ∆(i,i+1))

− bi(ṗi − v∗), i ∈ {1, · · · , N − 1},
uN = − kf

N(pN − pN−1 + ∆(N−1,N)) − bN (ṗN − v∗), (2)

where kf
i , kb

i are the front and back position gains andbi is the
velocity gain.

2) Relative position and relative velocity (RPRV) feedback: the
control action at thei-th vehicle depends on the relative position
and relative velocity measurements with its nearest neighbors in the
platoon:

ui = − kf
i (pi − pi−1 + ∆(i−1,i)) − kb

i (pi − pi+1 − ∆(i,i+1))

− bf
i (ṗi − ṗi−1) − bb

i(ṗi − ṗi+1), i ∈ {1, · · · , N − 1},
uN = − kf

N(pN − pN−1 + ∆(N−1,N)) − bf
N (ṗN − ṗN−1), (3)

where kf
i , kb

i (respectively,bf
i , bb

i ) are the front and back position
(respectively, velocity) gains of thei-th vehicle.

In the RPRV feedback case, vehiclei must be provided (a-priori)
the desired gaps with its two neighbors. In the RPAV feedback, it
must be provided with additional information: the formation’s desired
velocity v∗. The closed-loop dynamics with RPAV (resp., RPRV)
feedback, in terms of the tracking errorsp̃i := pi − p∗

i , can now be
expressed as:

ẋ = A(RPAV)x, (resp.) ẋ = A(RPRV)x, (4)

where the state vector is defined asx := [p̃1, ˙̃p1, · · · , p̃N , ˙̃pN ] ∈
R

2N , and the state matrixA(.) depends on the control gains but not
on the desired gaps or desired velocity.

Definition 1: The stability margin S(RPAV) (respectively,S(RPRV))
of the closed-loop system (4) is defined as the absolute valueof
the real part of the least stable eigenvalue ofA(RPAV) (respectively,
A(RPRV)). The control law (2) (respectively, (3)) issymmetricif each
vehicle uses the same front and back control gains:kf

i = kb
i =

k0, bi = b0 (respectively,kf
i = kb

i = k0, b
f
i = bb

i = b0), for all
i ∈ {1, 2, · · · , N − 1}, wherek0, b0 are positive constants. �

In this paper, we consider the followingasymmetriccontrol gains

RPAV feedback:kf
i = (1 + ǫ)k0, kb

i = (1 − ǫ)k0, bi = b0. (5)

RPRV feedback:
kf

i = (1 + ǫ)k0, kb
i = (1 − ǫ)k0,

bf
i = (1 + ǫ)b0, bb

i = (1 − ǫ)b0,
(6)

where ǫ ∈ [0, 1) denotes the amount of asymmetry;ǫ = 0
corresponds to symmetric control. The design for the RPAV case
is inspired by [1], [2]. The control gains given in (5) and (6)are
homogeneous in the sense that they do not vary withi. The reason
we only consider homogeneous control gains is that heterogeneity
has little effect on the scaling of stability margin [14].

The following proposition summaries the results in [1], [14].
Proposition 1: Consider anN -vehicle platoon with closed loop

dynamics (4).

1) [Corollary 1 of [1], Theorem 1 of [14]] With symmetric control
(ǫ = 0), both S(RPAV) andS(RPRV) areO( 1

N2 ).

2) [Corollary 3 of [1]] With the asymmetric control gainskf
i =

k0(1 + ǫ), kb
i = k0(1− ǫ) andbi = b0, the stability margin of

the platoon with RPAV feedback isS(RPAV) = O( ǫ
N

). 1

3) [Theorem 2 of [14]] With asymmetric control gainskf
i = kb

i =
k0, b

f
i = b0(1 + ǫ), bb

i = b0(1 − ǫ), the stability margin of the
platoon with RPRV feedback isS(RPRV) = O( ǫ

N
).

Statements (2) and (3) hold in the limitǫ → 0 andN → ∞. �

Proposition 1 shows that with symmetric control, the stability
margin decays to0 asO(1/N2), irrespective of the type of feedback
we used. However, in the case of RPAV feedback, with vanishingly
small amount of asymmetry in the position gains, the stability margin
of the system can be improved toO(1/N). The sameO(1/N) trend
can be achieved for the case of RPRV feedback with vanishingly
small asymmetry in the velocity gains alone while the position gains
are held symmetric. The design (6) was not considered in [14]. Since
the results in [1], [2], [14] were obtained with a perturbation analysis,
these results are applicable only when the amount of asymmetry is
vanishingly small.

The following theorem is the main result of this paper, whoseproof
and numerical corroboration are given in Section III.

Theorem 1:With the control gains given in (5) and (6) respec-
tively, for any fixedǫ ∈ (0, 1), the closed loop is exponential stable
and the stability margin of the vehicular platoon is boundedaway
from 0 uniformly in N . Specifically,

S(RPAV) ≥
ℜ

“

b0 −
q

b2
0 − 8k0(1 −

√
1 − ǫ2)

”

2
, (7)

S(RPRV) ≥min
n

b0(1 −
p

1 − ǫ2),
k0

b0

o

, (8)

whereℜ(.) denotes the real part. �

Remark 1:Comparing Theorem 1 with Proposition 1, we observe
the following: (1) Even with an arbitrarily small (but fixed and non-
vanishing) amount of asymmetry in the control gains, the stability
margin of the system can be bounded away from zerouniformly in
N . This asymmetric design therefore makes the resulting control law
highly scalable; it eliminates the degradation of stability margin with
increasingN . (2) In case of the RPAV feedback, although the control

1The case considered in [1] was that|kf
i − k0| < ǫ , |kb

i − k0| < ǫ. It is
straightforward, however, to re-derive the results if the constraints on the gains
are changed to the form used here:|kf

i − k0|/k0 < ǫ , |kb
i − k0|/k0 < ǫ.

In this paper we consider the latter case since it makes the analysis cleaner
without changing the results of [1] significantly.
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law is the same as that analyzed in [1], the stronger conclusion we
obtained - compared to that in [1] - is due to the fact that our analysis
does not rely on a perturbation-based technique that was used [1],
which limited the analysis in [1] to vanishingly smallǫ. (3) For the
RPRV feedback case, the stronger result compared to that in [14], is
obtained by putting equal asymmetry in both position and velocity
gains, while [14] allowed asymmetry only in the velocity gain. In
addition, unlike [1], [14], we do not use a PDE (partial differential
equation) approximation to analyze the stability margin, but analyze
the state-space model directly. �

III. STABILITY MARGIN OF THE 1-D VEHICULAR PLATOON

With the control gains specified in (5) and (6) respectively,it can
be shown that the state matrices can be expressed in the following
forms,

A(RPAV) = IN ⊗ A1 + L(1) ⊗ A2,

A(RPRV) = IN ⊗ A3 + L(1) ⊗ A4, (9)

whereIN is the N × N identity matrix,⊗ denotes the Kronecker
product, and

A1 :=

»

0 1
0 −b0

–

, A2 :=

»

0 0
−k0 0

–

,

A3 :=

»

0 1
0 0

–

, A4 :=

»

0 0
−k0 −b0

–

, (10)

wherek0 > 0, b0 > 0 are the nominal position and velocity gains
respectively, and

L(1) :=

2

6

6

6

6

6

4

2 −1 + ǫ
−1 − ǫ 2 −1 + ǫ

. . .
. . .

. . .
−1 − ǫ 2 −1 + ǫ

−1 − ǫ 1 + ǫ

3

7

7

7

7

7

5

. (11)

It follows from Theorem 3.1 of [21] that the eigenvalues ofL(1) are
given by

λ = b + 2cρ cos θ, (12)

if θ (θ 6= mπ, m ∈ Z, Z being the set of integers) is a solution to

ρN(ac sin(N + 1)θ + (γδ − αβ) sin(N − 1)θ

−cρ(γ + δ) sin Nθ) − (cαρ2N + aβ) sin θ = 0, (13)

where a = −1 − ǫ, b = 2, c = −1 + ǫ, α = β = γ = 0, δ =
−1 + ǫ, ρ =

p

(−1 − ǫ)/(−1 + ǫ). Eq. (12) and (13) can now be
simplified to

λℓ = 2 − 2
p

1 − ǫ2 cos θℓ, ℓ ∈ {1, 2, · · · , N}, (14)

whereǫ ∈ (0, 1) and θℓ is theℓ-th root of the following equation
r

1 + ǫ

1 − ǫ
sin(N + 1)θ = sin Nθ. (15)

From (14), we see that the eigenvalues ofL(1) are real and positive,
and moreover,0 < λ1 = 2 − 2

√
1 − ǫ2 cos θ1 < λ2 < · · · <

λN = 2 − 2
√

1 − ǫ2 cos θN , whereθ1 ∈ ( π
2(N+1)

, 3π
2(N+1)

), θN ∈
( (2N−1)π

2(N+1)
, (2N+1)π

2(N+1)
) are the solutions to (15). To see why, first notice

that we only need consider the roots of (15) in the open interval
(0, 2π), in which there are2N nontrivial isolated roots. The roots
located inR\ (0, 2π) are2mπ (m ∈ Z) distance away from those in
(0, 2π). Moreover, ifθ0 ∈ (0, 2π) is a solution of (15), then2π−θ0

is also a solution. Therefore, we can restrict the domain of analysis
to (0, π), in which there areN isolated roots. The ordering of the

eigenvalues follows fromcos θ being a decreasing function in(0, π).
It is straightforward to show from graphical solution of (15) that
the ℓ-th root θℓ is in the open interval( (2ℓ−1)π

2(N+1)
, (2ℓ+1)π

2(N+1)
). We now

present a formula for the stability margin of the vehicular platoon in
terms of the eigenvalues ofL(1).

Lemma 1:With the control gains given in (5) and (6) respectively,
and0 < ǫ < 1, the stability margin of the vehicular platoon is

S(RPAV) =

(

b0
2

, if λ1 ≥ b2
0/4k0,

b0−
√

b20−4k0λ1

2
, otherwise,

S(RPRV) =

8

>

>

>

<

>

>

>

:

b0λ1
2

, if λN ≤ 4k0/b2
0,

2k0

b0+
√

b20−4k0/λN

, if λ1 ≥ 4k0/b2
0,

min
n

b0λ1
2

, 2k0

b0+
√

b20−4k0/λN

o

, otherwise,

whereλ1 and λN are the smallest and largest eigenvalues ofL(1)

respectively. �

Proof of Lemma 1.Our proof follows a similar line of attack as
of [22]. From Schur’s triangularization theorem, there exists an
unitary matrixU such that

U−1L(1)U = Lu,

whereLu is an upper-triangular matrix whose diagonal entries are
the eigenvaluesλℓ of L(1). We first consider the RPAV feedback
case. We do a similarity transformation on matrixA(RPAV).

Ā(RPAV) := (U−1 ⊗ I2)A
(RPAV)(U ⊗ I2)

= (U−1 ⊗ I2)(IN ⊗ A1 + L(1) ⊗ A2)(U ⊗ I2)

= IN ⊗ A1 + Lu ⊗ A2.

It is a block upper-triangular matrix, and the block on each diagonal
is A1 + λℓA2, whereλℓ ∈ σ(L(1)), andσ(·) denotes the spectrum
(the set of eigenvalues). Since similarity transformationpreserves
eigenvalues, and the eigenvalues of a block upper-triangular matrix
are the union of eigenvalues of each block on the diagonal, wehave

σ(A(RPAV)) = σ(Ā(RPAV)) =
[

λℓ∈σ(L(1))

{σ(A1 + λℓA2)}

=
[

λℓ∈σ(L(1))

n

σ

»

0 1
−k0λℓ −b0

–

o

. (16)

It follows now that the eigenvalues ofA(RPAV) are the roots of
the characteristic equations2 + b0s + k0λℓ = 0. For eachℓ ∈
{1, 2, · · · , N}, the two roots are

s±ℓ =
−b0 ±

p

b2
0 − 4k0λℓ

2
. (17)

The root closer to the imaginary axis is denoted bys+
ℓ , and is

called theless stableeigenvalue between the two. Theleast stable
eigenvalue is the one closet to the imaginary axis among them, it is
denoted bysmin. It follows from Definition 1 thatS = |ℜ(smin)|.
Depending on the discriminant in (17), there are two cases toanalyze:
(1) If λ1 ≥ b2

0/4k0, due toλ1 < · · · < λN , we have the discriminant
in (17) for eachℓ is non-positive, which yieldsS(RPAV) = |ℜ(smin)| =
b0
2

. (2) Otherwise, the less stable eigenvalues ares+
ℓ = 1

2
(−b0 +

p

b2
0 − 4k0λℓ), which may be complex for someℓ > 1. The least

stable eigenvalue is obtained by settingλℓ = λ1, so thatS(RPAV) =
|ℜ(smin)| = 1

2
(b0 −

p

b2
0 − 4k0λ1).

The result on the stability margin of the platoon with RPRV feedback
follows by the same procedures as above, and is provided in [23].

We are now ready to present the proof of Theorem 1.
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Proof of Theorem 1.We see from Lemma 1 that the smallest and
largest eigenvalues of matrixL(1) play important roles in deter-
mining the stability margin. To get a lower bound of the stability
margin, a lower bound for the smallest eigenvalue and an upper
bound for the largest eigenvalue is needed. Recall thatλ1 =
2 − 2

√
1 − ǫ2 cos θ1, λN = 2 − 2

√
1 − ǫ2 cos θN , where θ1 ∈

( π
2(N+1)

, 3π
2(N+1)

), θN ∈ ( (2N−1)π
2(N+1)

, (2N+1)π
2(N+1)

). We therefore have
θ1 → 0, θN → π asN → ∞, and consequently,

inf
N

λ1 = 2 − 2
p

1 − ǫ2, (18)

sup
N

λN = 2 + 2
p

1 − ǫ2. (19)

To prove the result with RPAV feedback, we consider the following
two cases: (1) Case 1:λ1 ≥ b2

0/4k0. According to Lemma 1, the
stability margin is given byS(RPAV) = b0/2. (2) Case 2:λ1 < b2

0/4k0.
From Lemma 1, the stability margin is given by

S(RPAV) =
b0 −

p

b2
0 − 4k0λ1

2
.

Sinceλ1 ≥ 2 − 2
√

1 − ǫ2, we obtain

S(RPAV) ≥
b0 −

q

b2
0 − 8k0(1 −

√
1 − ǫ2)

2
. (20)

Notice that the above lower bound (20) is smaller thanb0/2, the
value ofS(RPAV) in case 1. The real part signℜ(.) in (7) comes from
combining the above two cases. We obtain the first result of the
theorem.
The result for the RPRV feedback case again follows in a similar
manner, and an explicit proof is provided in [23].

A. Numerical verification for 1-D vehicular platoon

In this section, we present numerical verification of the lower
bounds of the stability margins for both RPAV and RPRV feed-
backs with asymmetric control, which are predicted by Theorem 1.
In addition, the stability margins with symmetric control are also
computed to compare with the asymmetric case. The stabilitymargins
are obtained by numerically evaluating the eigenvalues of the state
matrix A(RPAV or RPRV) of (4) with corresponding controllers. Figure 2
depicts the comparisons between the stability margins withsymmetric
and asymmetric control for the two types of feedback: RPAV and
RPRV. For both symmetric and asymmetric controls, the nominal
control gains used arek0 = 1, b0 = 0.5, and for asymmetric control,
the amount of asymmetry isǫ = 0.1. We can see from Figure 2 that
the stability margin of the vehicular platoon with asymmetric control
is indeed bounded away from0 uniformly in N , and the predictions
Eq. (7) and Eq. (8) of Theorem 1 are quite accurate. Furthermore, for
the sameN , the stability margin with asymmetric control is much
larger than that with symmetric control, especially whenN is large.

IV. STABILITY MARGIN WITH D-DIMENSIONAL LATTICE

INFORMATION GRAPH

In this section we analyze a more general scenario than the 1-D
platoon of the previous sections. We consider a vehicular formation
in which the position of each vehicle has dimension higher than
one, such as a vehicular formation moving in 2-D or 3-D space.We
assume the dynamics of each of the coordinates of a vehicle’sposition
are decoupled and each coordinate can be independently controlled.
Under thisfully actuatedassumption, the closed loop dynamics for
each coordinate of the position can be independently studied; see [2],
[6] for examples. The information used by a vehicle to compute its
control is based on relative measurements with a set of neighbors
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Fig. 2. Stability margin comparisons between symmetric control and
asymmetric control.

specified in terms of an information graph. The problem formulation
is similar to the 1-D case in the sense that each vehicle has tomaintain
constant separation with its neighbors in an information graph, except
that the information graph now is aD-dimensional lattice.

Definition 2: An information graphis a graphG = (V,E), where
the set ofnodes(vehicles)V = {1, 2, . . . , N, N + 1, . . . , N + Nr}
consists ofN real vehicles andNr “fictitious” reference vehicles.
Two nodesi andj are calledneighborsif (i, j) ∈ E, and the set of
neighbors ofi are denoted byNi. �

In this paper we restrict ourselves toD-dimensional lattices as
information graphs:

Definition 3 (D-dimensional lattice):A D-dimensional lattice,
specifically an1×n2×· · ·×nD lattice, is a graph withn1n2 . . . nD

nodes, in which the nodes are placed at the integer coordinate points
of theD-dimensional Euclidean space and eachreal vehicle connects
to vehicles which are exactly one unit away from it. �

x1

x2

o

6 5

4 3

2 1

7

8

9

Fig. 3. A pictorial representation of a 2-D information graph. The filled
node represent the reference vehicles and the solid lines represent edges in
the information graph.

Figure 3 depicts an example of 2-D lattice. AD-dimensional lattice
is drawn in R

D with a Cartesian reference frame whose axes are
denoted byx1, x2, . . . , xD. We also defineNd (d = 1, . . . , D)
as the number of real vehicles in thexd direction. Then we have
N1N2 · · ·ND = N and n1n2 . . . nD = N + Nr. An information
graph is said to besquareif N1 = N2 = · · · = ND . Note that the
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information graph for the vehicular platoon considered in the previous
sections is a 1-D lattice withN real vehicles (nodes) andNr (= 1)
reference vehicle.

For the ease of exposition, we only consider the case where
the reference vehicles are arranged on one boundary of the lattice.
Without loss of generality, let it be perpendicular to thex1 axis,
see Figure 3 for an example. This arrangement of reference vehicles
simplifies the presentation of the results. Arrangements ofreference
vehicles on other boundaries of the lattice can also be considered,
which does not significantly change the results; see [24], [25].

Due to its similarity with the 1-D case, we omit the details on
desired separations etc, which are available in [2]. The control laws
with RPAV and RPRV feedback, in terms of the errorsp̃i are,
respectively

ui = −
D

X

d=1

k(i,id+)(p̃i − p̃id+) −
D

X

d=1

k(i,id−)(p̃i − p̃id−)

− bi
˙̃pi, (21)

ui = −
D

X

d=1

k(i,id+)(p̃i − p̃id+) −
D

X

d=1

k(i,id−)(p̃i − p̃id−)

−
D

X

d=1

b(i,id+)( ˙̃pi − ˙̃pid+) −
D

X

d=1

b(i,id−)( ˙̃pi − ˙̃pid−), (22)

where id+ (respectively, id−) denotes the neighbor ofi on the
positive (respectively, negative)xd axis. The closed loop dynamics
are again represented asẋ = A(RPAV or RPRV)x, where the statex :=
[p̃1, ˙̃p1, · · · , p̃N , ˙̃pN ] ∈ R

2N is a vector of the relative positions̃pi

and relative velocitieṡ̃pi. The stability margin is defined as before.
It is shown in [2] that asymmetry in control gains can improve

the stability margin with RPAV feedback, but the analysis islimited
for ǫ → 0 and the case with RPRV feedback was not considered. In
this paper, we consider the following homogeneous and asymmetric
control gains that introduce asymmetry only in thex1 axis:

RPAV:
k(i,i1+) = (1 + ǫ)k0, k(i,i1−) = (1 − ǫ)k0,

k(i,id+) = k0, (d > 1), bi = b0.
(23)

RPRV:

k(i,i1+) = (1 + ǫ)k0, k(i,i1−) = (1 − ǫ)k0,

b(i,i1+) = (1 + ǫ)b0, b(i,i1−) = (1 − ǫ)b0,

k(i,id+) = k0, b(i,id+) = b0, (d > 1).

(24)

We first summarize the results in [2], [24].
Proposition 2: Consider a vehicular formation whose information

graph is aD-dimensional lattice. With the control gains given in (23)
and (24) respectively.

1) [Theorem 1 of [2], Theorem 4 of [24]] With symmetric control
(ǫ = 0), both S(RPAV) andS(RPRV) areO( 1

N2
1
).

2) [Theorem 2 of [2]] With the control gains given by (23), the
stability margin with RPAV feedback isS(RPAV) = O( ǫ

N1
),

which hold in the limitǫ → 0 andN1 → ∞. �

We next state the main result of this section, which is a corollary
of Theorem 1. It describes the stability margin for a vehicular forma-
tion with D-dimensional lattice information graph with asymmetric
control.

Corollary 1: With the control gains given in (23) and (24) respec-
tively, and0 < ǫ < 1, the stability margin of the vehicular formation
with RPAV or RPRV feedback is bounded away from0, uniformly
in N . Specifically,

S(RPAV) ≥
ℜ

“

b0 −
q

b2
0 − 8k0(1 −

√
1 − ǫ2)

”

2
,

S(RPRV) ≥min
n

b0(1 −
p

1 − ǫ2),
k0

b0

o

. �

Remark 2:From Proposition 2, we see that with the particular
arrangement of the reference vehicles as mentioned before,the
stability margin of the vehicular formation with symmetriccontrol
only depend onN1, the number of real vehicles along thex1 axis of
the information graph. For asquareinformation graph, no matter how
large its dimensionD is, the loss of stability margin with increasing
number of vehicleN is inevitable, sinceN1 = N1/D . To make the
stability margin independent ofN with symmetric control, one needs
to employ a non-square information graph, such thatN1 is a constant
regardless of the increasing ofN . The price one pays is either long
range communication and/or increased number of reference vehicles;
see [2], [24] for more details. In addition, for the RPAV feedback case,
with vanishingly small amount of asymmetry, the stability margin
is improved toO(1/N1), compared to theO(1/N2

1 ) trend in the
symmetric case.

In contrast, Corollary 1 shows that with judicious asymmetric
control, the stability margin can be made independent of thenumber
of vehiclesN in the formation, without using the non-square infor-
mation graph aforementioned. Note that the result we establish in
this paper (Corollary 1) is stronger than that in [2], even though the
control law is the same. The reason is that the analysis in [2]relied on
a perturbation technique, which limited its applicabilityto vanishingly
small ǫ. In this paper we do not use perturbation techniques, and
obtain result for any non-vanishingǫ ∈ (0, 1). In addition, we also
consider the RPRV feedback case, while [2] analyzed only RPAV
feedback. �

Proof of Corollary 1. With the control gains specified in (23)
and (24) respectively, it is straightforward - through a bittedious -
to show that the state matricesA(RPAV) andA(RPRV) can be expressed
in the following forms,

A(RPAV) = IN ⊗ A1 + L(D) ⊗ A2,

A(RPRV) = IN ⊗ A3 + L(D) ⊗ A4, (25)

whereA1, A2, A3, A4 are given in (10) andL(D) has the following
form:

L(d) = INd
⊗ L(d−1) + T (d) ⊗ IN1N2···Nd−1 , 2 ≤ d ≤ D, (26)

whereL(1) is given in (11) andT (d) is a matrix of dimensionNd ×
Nd, which is given by

T (d) =

2

6

6

6

6

6

4

1 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 1

3

7

7

7

7

7

5

. (27)

The eigenvalues ofT (d) are given by (see [21]):

λℓd
= 2 − 2 cos

(ℓd − 1)π

Nd
, ℓd = 1, 2, . . . , Nd. (28)

From the proof of Lemma 1, we see that the eigenvalues ofA(RPAV)

and A(RPRV) are given by the roots of the characteristic equations
s2 + b0s + k0λ~ℓ = 0 and s2 + b0λ~ℓs + k0λ~ℓ = 0 respectively,
whereλ~ℓ is the eigenvalue ofL(D), and~ℓ = (ℓ1, · · · , ℓD) in which
ℓd ∈ {1, 2, · · · , Nd}. We next claim that the eigenvalues ofL(D) are
given by

λ~ℓ = λℓ1(L
(1)) +

D
X

d=2

λℓd
(T (d)). (29)
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We prove by induction method. For the cased = 2, L(2) = IN2 ⊗
L(1) + T (2) ⊗ IN1 . Following (16) in the proof of Lemma 1, the
eigenvalues ofL(2) are given by

λℓ1,ℓ2 =
[

λℓ2
∈σ(T (2))

{σ(L(1) + λℓ2IN1)}

= λℓ1(L(1)) + λℓ2(T
(2)),

Now, we assume the general formula for the eigenvalues ofL(D−1)

is given by

λℓ1,...,ℓD−1 = λℓ1(L
(1)) +

D−1
X

d=2

λℓd
(T (d)). (30)

For the cased = D, the matrixL(D) has the form given in (26),
use (16) again, we have

λℓ1,...,ℓD
=

[

λℓD
∈σ(T (D))

{σ(L(D−1) + λℓD
IN1···ND−1)}

= λℓ1···ℓD−1(L(D−1)) + λℓD
(T (D)),

which proves the claim. Now, use (14) and (28), the smallest
eigenvalue ofL(D) is equal toλ1, the smallest eigenvalue ofL(1).
The result now follows from Lemma 1 and Theorem 1.

Numerical verification is omitted here due to lack of space; it is
available in [23].

V. SUMMARY

We studied the stability margin of vehicular formations on lattice
graphs with distributed control. The control signal at every vehicle
depends on the measurements from its neighbors in the information
graph, which is aD-dimensional lattice. Inspired by the previous
works [1], [2], we examined the role of asymmetry in the control
gains on the closed loop stability margin. We showed that with
judicious asymmetry in the control gains, the stability margin of
the vehicular formation can be bounded away from0 uniformly in
N . This eliminates the loss of stability margin with increasing N
that is seen with symmetric control. In this paper, the analysis of
the stability margin avoids the PDE approximation and perturbation
method used in [1], [2]. In particular, the latter limited the analyses in
those papers to vanishingly small amount of asymmetry and resulted
a O(1/N) scaling trend of stability margin. In addition, the control
laws examined in [1], [2] required vehicles to have access tothe
desired velocity of the formation. We generalized the results to the
case when only relative velocity and relative position measurements
are available. We showed in this paper that in both cases (i.e., with
or without absolute velocity feedback), stability margin can be made
independent of the size of the formation with asymmetric control. The
issue of sensitivity to external disturbances with asymmetric control
is a topic of future research.
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