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Abstract— We study the stability margin of a vehicular formation with
distributed control, in which the control at each vehicle orly depends
on the information from its neighbors in an information graph. We
consider a D-dimensional lattice as information graph, of vhich the 1-
D platoon is a special case. The stability margin is measurethy the
real part of the least stable eigenvalue of the closed-looptate matrix,
which quantifies the rate of decay of initial errors. In [1], it was shown
that with symmetric control, in which two neighbors put equal weight
on information received from each other, the stability margn of a 1-D
vehicular platoon decays to0 as O(1/N?), where N is the number of
vehicles. Moreover, a perturbation analysis was used to shothat with
vanishingly small amount of asymmetry in the control gainsthe stability
margin scaling can be improved toO(1/N). In this paper, we show that,
with judicious choice of non-vanishing asymmetry in contrd, the stability
margin of the closed loop can be bounded away from zero unifonly
in N. Asymmetry in control gains thus makes the control architeture
highly scalable. The results are also generalized t&-dimensional lattice
information graphs that were studied in [2], and the correspndingly
stronger conclusions than those derived in [2] are obtainedin addition,
we show that the size-independent stability margin can be &ieved with
relative position and relative velocity (RPRV) feedback as well as relative
position and absolute velocity (RPAV) feedback, while the analysis in [1],
[2] was only for the RPAV case.

Index Terms— Asymmetric control, automated platoon, distributed
control, multi-agent system, stability margin.

. INTRODUCTION

We study cooperative control of a large vehicular formatgth
distributed control. The vehicles are modeled as doublkegnators,
and the control action at each vehicle is computed based -on
formation from its neighbors, where the neighbor relatiopsis
characterized by a lattice information graph. The contlgéctive is
to make the vehicular formation track a constant-velogipetdesired
trajectory while maintaining pre-specified constant saan among
neighbors. The desired trajectory of the entire vehicubamation is
given in terms of trajectories of a set of fictitious referenehicles.

The problem of distributed control for multi-agent cooration is
relevant to many applications such as automated highwaterays
collective behavior of bird flocks and animal swarms, andni&@tion
flying of unmanned aerial and ground vehicles for survedén
reconnaissance and rescue, etc. [3]-[8]. A typical isswedan
distributed control is that as the number of agents incae

information fromj is the same as the weighputs on the information
from 1.

In previous works on 1-D vehicular platoons, two types ofdfee
back are respectively considered: relative position alteolelocity
(RPAV) feedback [1], [12] and relative position relative lagty
(RPRV) feedback [11], [13], [14]. With symmetric controlhet
stability margin of the vehicular platoon decays (aas O(1/N?)
in both types of feedback. This result for RPAV feedback wass
in [1], and for RPRV feedback was shown in [14]. The loss olb#its
margin with symmetric control has also been recognized nerot
researchers [12], [15]. Asymmetric control in the RPAV cagas
examined in [1], [2], where it was also shown that with vamigly
small asymmetry in the control gains, the stability margan ke
improved toO(1/N). Similar conclusions are also obtained for a
vehicle formation with aD-dimensional lattice as its information
graph [2] - that decay of stability margin can be improvedweisym-
metry. In case of RPRV feedback, a similar improvemer®fa/N)
with asymmetry was shown in [14], where only the relativeoedly
feedback gains were made asymmetric. The analyses in |1[1{g
were based on a partial differential equation (PDE) apjpnation
of the closed loop dynamics and a perturbation method; ttierla
limited the results to only vanishingly small asymmetry.

In this paper we provide a stronger result on the stabilitygima
with asymmetric control by avoiding the perturbation asayof
the aforementioned papers. We also avoid the PDE appraximat
and analyze the state space model directly. In particularsthow
that with judicious choice of asymmetry in the control, thabdity
margin of the vehicular formation can be uniformly boundechy
from 0 (independent ofN) and derive a closed-form formula for
the lower bound. This result makes it possible to design trol
gains so that the stability margin of the system satisfiegapecified
Value irrespective of how many vehicles are in the formatita also
generalize the result to formations wifh-dimensional information
graphs, and show that a similar, size-independent stahilrgin can
be obtained by using asymmetry in the control gains. Theseltse
are established for both RPAV and RPRV feedbacks.

The focus of this paper is on the stability margin, which igted
to exponential stability of the closed loop system. A redatencept
is that of “string stability” [16]. String stability is usllg interpreted
as the system’s sensitivity to external disturbances; &g§1[0], [17],
[18] and references therein. We do not study sensitivityxteraal
disturbances in this paper.

For ease of description, we first present the problem statearsl
main result for a vehicular formation withdimensional information

performance of the closed loop degrades. Several recerérpapyraph (ji.e. the vehicular platoon) in Section Il. Analysif the

have studied the scaling of performance of vehicle fornmatias
a function of the number of vehicles. The references [1],Haye
studied the scaling of the stability margin &f-dimensional lattice
formations. The stability margin is defined as the absolutkies
of the real part of the least stable eigenvalue of the closeqg.|
The stability margin characterizes the rate at which ihiéerors
decay. The references [9]-{13] have examined the sergitivi
1-dimensional platoons to external disturbances. Howearrong
papers that examined sensitivity to disturbance, to the besur
knowledge only [13] has considered asymmetric control, ribet
are limited to symmetric control. The control is called syairit if
between two neighboring vehiclésand j, the weighti puts on the

He Hao and Prabir Barooah are with Department of Mechanica a

Aerospace Engineering, University of Florida, GainesyilFL 32611, USA.
This work was supported by the National Science Foundatioough Grant
CNS-0931885 and ECCS-0925534, and by the Institute foraBoiktive
Biotechnologies through grant DAAD19-03-D-0004.

stability margin and numerical verification appear in Sactill. The
extension of the result to a vehicular formation withdimensional
lattice information graph is presented in Section IV. Thegraends
with a summary in Section V.

Il. PROBLEM STATEMENT AND RESULT FOR1-D PLATOON

A. Problem statement

In this section we consider the formation control 8f homoge-
neous vehicles which are moving in 1-D Euclidean space, aarsh
in Figure 1. The position of the-th vehicle is denoted by; € R
and the dynamics of each vehicle are modeled as a doubleatmeg

1)

where u; € R is the control input. This is a commonly used
model for vehicle dynamics in studying vehicular formasipwhich
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Fig. 1. Desired geometry of a vehicular platoon with vehicles andl

“fictitious” reference vehicle. The filled vehicle in the fioof the platoon
represents the reference vehicle, it is denoted by iridex

results from feedback linearization of actual non-lineahicle dy-
namics [19], [20].

The control objective is that vehicles maintain a desiredhftion
geometry while following a constant-velocity type desitegjectory.
The desired geometry of the formation is specified by dlesired
gapsAg_q, for i € {1,--- N}, where A(;_, ;) is the desired
value ofp;_1(t) — p:(t). The desired inter-vehicular gags;_, ;)'s

ko,bi = by (respectively,k! = k? = ko,b/ = b? = bo), for all
1€{1,2,---,N — 1}, whereko, by are positive constants. a
In this paper, we consider the followirasymmetriacontrol gains

RPAV feedbackk! = (14 €)ko, k! = (1—€)ko, bi =bo. (5)

kf =1 k ) kf =(1—-¢)k )

RPRV feedback: ', (1 +€)ko ] (1—e)ko ©
b] = (14 €)bo, b; = (1— €)bo,

where ¢ € [0,1) denotes the amount of asymmetry; = 0

corresponds to symmetric control. The design for the RPAYeca
is inspired by [1], [2]. The control gains given in (5) and &)
homogeneous in the sense that they do not vary wiffhe reason
we only consider homogeneous control gains is that hetasitye
has little effect on the scaling of stability margin [14].

The following proposition summaries the results in [1],][14

are positive constants and they have to be specified in a thutua Proposition 1: Consider anN-vehicle platoon with closed loop

consistent fashion, i.eAq ) = Ag, ) + A,k for every triple

dynamics (4).

(i,4, k) wherei < j < k. The desired trajectory of the platoon is 1) [Corollary 1 of [1], Theorem 1 of [14]] With symmetric cant

provided in terms of dictitiousreference vehicle with inde, whose
trajectory is given bypg(t) = v*t + co for some constants™, co,
wherev™ is the cruise velocity of the formation. The desired trajegt
of the i-th vehicle, p;(t), is given byp;(t) = p5(t) — A,y =
po(t) = 2251 Ag-1)-

We consider the followinglistributed control laws.

1) Relative position and absolute velocity (RPAV) feedbdlk

control action at thei-th vehicle depends on the relative positionstatements (2) and (3) hold in the limit— 0 and N — oo.

measurements with its two neighbors (one on either side)pwtn
velocity, and the desired velocity*:

Ui = — sz(pz —pi-1+ A(i—l,i)) - k?(pi — Pi+1 — A(i,i+1))

_bi(pi_v*)7 i€{17"'7N_1}7
un =—k{(py —prvo1 + Av_1.n) — by (pn — v7), 2
where k:[,kﬁ-’ are the front and back position gains abdis the

velocity gain.

2) Relative position and relative velocity (RPRV) feedbatie
control action at thei-th vehicle depends on the relative positio
and relative velocity measurements with its nearest neighin the
platoon:

k] (pi — pic1 + A1) — k(i — pit1 — Dgiisn))
— b (ps — pi1) = b (i — pir1), i€{l,- N—1}
un = — k§(py — py-1+ Ann-1,n)) — bl (PN — py-1),

s

where k:{ k! (respectively,b{ ,b?) are the front and back position
(respectively, velocity) gains of thieth vehicle.

In the RPRV feedback case, vehialenust be provided (a-priori)
the desired gaps with its two neighbors. In the RPAV feedpitck
must be provided with additional information: the format®desired

velocity v*. The closed-loop dynamics with RPAV (resp., RPRVWwhere$(.) denotes the real part.

feedback, in terms of the tracking errg¥s:= p; — p;, can now be
expressed as:

i = A(RPAV):C7 A(RF'Rv)x7

(4)

PN, PN] €

"t:

(resp)

where the state vector is defined as:= [ﬁl,fn,--~

(e = 0), both S®™) and S®*™ are O( ).

2) [Corollary 3 of [1]] With the asymmetric control gairkg’ =
ko(1+4¢€), k2 = ko(1 — €) andb; = by, the stability margin of
the platoon with RPAV feedback iS®™) = O(5). *

3) [Theorem 2 of [14]] With asymmetric control gaihé =k =
ko, bl = bo(1 + €),b% = bo(1 — €), the stability margin of the
platoon with RPRV feedback i§**) = O(%).

d
Proposition 1 shows that with symmetric control, the stihil
margin decays t0 asO(1/N?), irrespective of the type of feedback
we used. However, in the case of RPAV feedback, with vanighin

small amount of asymmetry in the position gains, the sthitiargin

of the system can be improved &(1/N). The sameD(1/N) trend

can be achieved for the case of RPRV feedback with vanishingl
small asymmetry in the velocity gains alone while the positjains
are held symmetric. The design (6) was not considered in Bitke
the results in [1], [2], [14] were obtained with a perturbatianalysis,
these results are applicable only when the amount of asymnset

r\/anishingly small.

The following theorem is the main result of this paper, whosmof
and numerical corroboration are given in Section Il

Theorem 1:With the control gains given in (5) and (6) respec-
tively, for any fixede € (0, 1), the closed loop is exponential stable
and the stability margin of the vehicular platoon is boundedy

(3)  from 0 uniformly in N. Specifically,
_ ez — =
S(RPAV) >§R(b0 \/bo 8k0(1 1 € )) (7)
- 2 b

GERPRY) { 5 ko
>min § bo(1 — \/ﬁ% L (8)

0
O

Remark 1:Comparing Theorem 1 with Proposition 1, we observe
the following: (1) Even with an arbitrarily small (but fixedh@ non-
vanishing) amount of asymmetry in the control gains, théikta
margin of the system can be bounded away from zamformly in
N. This asymmetric design therefore makes the resultingrablatwv

RZN, and the state matr|)4() depends on the control gains but no!'“ghly Scalable; it eliminates the degl’adation of Std)marg"’] with

on the desired gaps or desired velocity.
Definition 1: The stability margin S®™) (respectively, S®P*V)
of the closed-loop system (4) is defined as the absolute vafue
the real part of the least stable eigenvalueA5f™) (respectively,
ARPRYY The control law (2) (respectively, (3)) Bymmetricif each
vehicle uses the same front and back control gakfs:: K

increasingV. (2) In case of the RPAV feedback, although the control

IThe case considered in [1] was tHat — ko| < ¢, [k? — ko| < . Itis
straightforward, however, to re-derive the results if tbagtraints on the gains
are changed to the form used herlef —kol/ko < €, |k} — ko|/ko < e.
In this paper we consider the latter case since it makes thlysas cleaner
without changing the results of [1] significantly.



law is the same as that analyzed in [1], the stronger cormiusie
obtained - compared to that in [1] - is due to the fact that oalysis
does not rely on a perturbation-based technique that wad [Ue
which limited the analysis in [1] to vanishingly small (3) For the
RPRV feedback case, the stronger result compared to thadinif
obtained by putting equal asymmetry in both position anaaigf

gains, while [14] allowed asymmetry only in the velocity gain

addition, unlike [1], [14], we do not use a PDE (partial diffatial
equation) approximation to analyze the stability margiun, &nalyze
the state-space model directly. a

I1l. STABILITY MARGIN OF THE 1-D VEHICULAR PLATOON

With the control gains specified in (5) and (6) respectivilgan
be shown that the state matrices can be expressed in thevifudlo
forms,

AP = Iy © A1 4+ LY ® As,

AR — 1v @ As + LY @ Ay, (9)

eigenvalues follows froneos 6 being a decreasing function {9, 7).
It is straightforward to show from graphical solution of J1that
the ¢-th root 6, is in the open _ipterva[%\?—ig, %). We now
present a formula for the stability margin of the vehiculkatgon in
terms of the eigenvalues df(V).

Lemma 1:With the control gains given in (5) and (6) respectively,

and0 < e < 1, the stability margin of the vehicular platoon is

S(RPAV) _ %07 if A1 > b(2)/4k07
= e
L VA L S W, otherwise,
bodL, if Ay < 4ko /b2,
ok : )
S(RPRV) — bU“’m’ if A1 > 4[{30/[)07
min { b 2kg otherwise,

2 7 bga/02—4ko/ANn S’

where A\; and Ay are the smallest and largest eigenvalues. &/
respectively. a

Proof of Lemma 1Our proof follows a similar line of attack as

where Iy is the N x N identity matrix, ® denotes the Kronecker of [22]. From Schur's triangularization theorem, there séxian

product, and

0o 1 0
R A

0 1 0
=10 o A= |5

0
O )
0

—bo] ’

(10

whereko > 0,bo > 0 are the nominal position and velocity gains

respectively, and

2 —1+c¢

—1—c¢ 2 —1+c¢

LY .= _ . (11)

—1—¢ 2
—1—¢

—1+¢€
1+e

It follows from Theorem 3.1 of [21] that the eigenvaluesof) are
given by

A =b+ 2cpcosb, (12)
if 0 (0 # mm,m € Z, Z being the set of integers) is a solution to

o™ (acsin(N +1)0 + (76 — af) sin(N — 1)0

—cp(y 4 6) sin NO) — (cap™ + af)sind = 0, (13)
wherea = -1 —¢,b =2,¢c = —-14¢,a=0=7v=0,0 =
—1+4+¢6p=+/(-1-¢€/(-1+e¢). Eq. (12) and (13) can now be
simplified to

Ae=2—-2y1—€2cosly, L€{1,2,--- N}, (14)

wheree € (0,1) and@, is the ¢-th root of the following equation

1+e

— €

sin(N + 1)6 = sin N6. (15)
From (14), we see that the eigenvaluesLéP are real and positive,
and moreover) < A1 = 2 — 2v1 —¢€2cosb; < X2 < -+ <
AN = 2 — 241 — €2 COSGN, Where&l € (m, %),91\7 S
(ST Sty are the solutions to (15). To see why,
that we only need consider the roots of (15) in the open iater

(0,27). Moreover, iffy € (0,27) is a solution of (15), thew — 0y
is also a solution. Therefore, we can restrict the domainnadyasis

first notice¥. 2

unitary matrixU such that
U'LYU = L.,

where L., is an upper-triangular matrix whose diagonal entries are
the eigenvalues\, of L™, We first consider the RPAV feedback
case. We do a similarity transformation on matd&™).

A(RPAV) — (U—l ®I2)A(RPAV)(U®I2)

=U ' @L)(IN® A+ LY @ A)(U @ I)
=In® A1+ L, ® As.

It is a block upper-triangular matrix, and the block on ea@gdnal
is Ay + A Az, where )\, € o(L™Y), ando(-) denotes the spectrum
(the set of eigenvalues). Since similarity transformatmeserves
eigenvalues, and the eigenvalues of a block upper-trianguhtrix
are the union of eigenvalues of each block on the diagonahave

O_(A(RPAV)) _ O_(A(RPAV)) _ U {o(A1 + X\eA2)}
A€o (L)

{o [—k?)x,g —11;0] - as)

It follows now that the eigenvalues afl®™) are the roots of
the characteristic equatios® + bos + kol¢ = 0. For eachl ¢
{1,2,---, N}, the two roots are

o —hot VIE—dko,
E= .
2

The root closer to the imaginary axis is denoted 4y, and is
called theless stableeigenvalue between the two. Theast stable
eigenvalue is the one closet to the imaginary axis among ,titeim
denoted bysmin. It follows from Definition 1 thatS = |R(Smin)|-.
Depending on the discriminant in (17), there are two casesatyze:
@I x> b3/4ko, due to); < --- < Ay, we have the discriminant
in (17) for eaclY is non-positive, which yield$ ") = |R(sumin)| =
% (2) Otherwise, the less stable eigenvalues gre= 1(—bo +
/b2 — 4ko)¢), which may be complex for somé > 1. The least
so thatSR™) —

Ag€o (L)

(17

Stable eigenvalue is obtained by settihng= A1,

VIR (min)| = L (bo — /BB — Ako).

(0,27), in which there ar&@N nontrivial isolated roots. The roots
located inR \ (0, 27) are2mm (m € Z) distance away from those in

The result on the stability margin of the platoon with RPR¥dback
follows by the same procedures as above, and is provided3h [2
|

to (0, 7), in which there areV isolated roots. The ordering of the We are now ready to present the proof of Theorem 1.



Proof of Theorem 1We see from Lemma 1 that the smallest an
largest eigenvalues of matrixY) play important roles in deter-
mining the stability margin. To get a lower bound of the digbi
margin, a lower bound for the smallest eigenvalue and an rupg
bound for the largest eigenvalue is needed. Recall that=

2 — 2v/1—¢c?cosb1, AN = 2 — 2¢/1 —€2cosfn, where §; €
(s 305 On € (S Siems)- We therefore have
01 — 0,0y — ™ as N — oo, and consequently,

i]r\lrf)\1:2—2 1—€2, (18)
SUp AN = 2+ 21 — €2. (19)
N

To prove the result with RPAV feedback, we consider the foihg
two cases: (1) Case Ii; > b3/4ko. According to Lemma 1, the
stability margin is given bys ®") = b, /2. (2) Case 21 < b3 /4ko.
From Lemma 1, the stability margin is given by
GlReA) _ bo — /b2 — 4koA1
—
Since\; > 2 — 2v/1 — €2, we obtain

2 /
(RPAY) bo — \/bo —8ko(1 — V1 —¢?)
- 2 .

Notice that the above lower bound (20) is smaller titan2, the
value of S®™) in case 1. The real part sigh(.) in (7) comes from

S

(20)
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Fig. 2. Stability margin comparisons between symmetric trmbnand

asymmetric control.

specified in terms of an information graph. The problem fdation

combining the above two cases. We obtain the first result ef tfis similar to the 1-D case in the sense that each vehicle hasitutain

theorem.
The result for the RPRV feedback case again follows in a aimil
manner, and an explicit proof is provided in [23]. [

A. Numerical verification for 1-D vehicular platoon
In this section, we present numerical verification of the dow

bounds of the stability margins for both RPAV and RPRV feed?

backs with asymmetric control, which are predicted by Theorl.
In addition, the stability margins with symmetric contraleaalso
computed to compare with the asymmetric case. The stabibirgins
are obtained by numerically evaluating the eigenvalueshefdtate
matrix ARV RPRY of (4) with corresponding controllers. Figure 2

constant separation with its neighbors in an informatiapgr except
that the information graph now is R-dimensional lattice.

Definition 2: An information graphis a graphG = (V,E), where
the set ofnodes(vehicles)V = {1,2,... . N, N+1,...,N + N, }
consists of N real vehicles andV, “fictitious” reference vehicles.
Two nodesi andj are calledneighborsif (i, j) € E, and the set of
eighbors ofi are denoted by;. a
In this paper we restrict ourselves tb-dimensional lattices as
information graphs:

Definition 3 (D-dimensional lattice):A D-dimensional lattice,
specifically an; x n2 x - - - x np lattice, is a graph witmins ... np
nodes, in which the nodes are placed at the integer cooedpuhts

depicts the comparisons between the stability margins syithmetric of the D-dimensional Euclidean space and ee&d vehicle connects

and asymmetric control for the two types of feedback: RPAd arf® Vehicles which are exactly one unit away from it.

RPRV. For both symmetric and asymmetric controls, the namin
control gains used arl, = 1, by = 0.5, and for asymmetric control,
the amount of asymmetry is= 0.1. We can see from Figure 2 that
the stability margin of the vehicular platoon with asymrieetontrol

is indeed bounded away frotmuniformly in N, and the predictions
Eqg. (7) and Eq. (8) of Theorem 1 are quite accurate. Furthernfiior
the sameN, the stability margin with asymmetric control is much
larger than that with symmetric control, especially wh€ns large.

IV. STABILITY MARGIN WITH D-DIMENSIONAL LATTICE
INFORMATION GRAPH

In this section we analyze a more general scenario than e 1Fig. 3.

platoon of the previous sections. We consider a vehiculam#tion
in which the position of each vehicle has dimension highemth
one, such as a vehicular formation moving in 2-D or 3-D splde.
assume the dynamics of each of the coordinates of a vehgrelion
are decoupled and each coordinate can be independentisolbedht
Under thisfully actuatedassumption, the closed loop dynamics fo
each coordinate of the position can be independently studie [2],
[6] for examples. The information used by a vehicle to corapitg
control is based on relative measurements with a set of heigh

d

Z2

o

A pictorial representation of a 2-D information gnagrhe filled
node represent the reference vehicles and the solid lipgesent edges in
the information graph.

Figure 3 depicts an example of 2-D lattice JAdimensional lattice
is drawn inR? with a Cartesian reference frame whose axes are
denoted byzi,z2,...,zp. We also defineN; (d 1,...,D)
as the number of real vehicles in thg direction. Then we have
N1N2---Np = N andnins...np = N + N,. An information
graph is said to bsquareif N1 = N» -+ = Np. Note that the



information graph for the vehicular platoon considerechia previous SRR > min {bo(l — /1= €2), ko } 0
sections is a 1-D lattice witlv real vehicles (nodes) anly, (= 1) bo
reference vehicle. Remark 2:From Proposition 2, we see that with the particular

For the ease of exposition, we only consider the case wheigangement of the reference vehicles as mentioned befoee,
the reference vehicles are arranged on one boundary of tieela stability margin of the vehicular formation with symmetiontrol
Without loss of generality, let it be perpendicular to the axis, only depend onVy, the number of real vehicles along the axis of
see Figure 3 for an example. This arrangement of refereritielee  the information graph. For squareinformation graph, no matter how
simplifies the presentation of the results. Arrangementsfgrence large its dimensiorD is, the loss of stability margin with increasing
vehicles on other boundaries of the lattice can also be dereil, number of vehicleN is inevitable, sinceV; = NP . To make the
which does not significantly change the results; see [24]]. [2 stability margin independent df with symmetric control, one needs

Due to its similarity with the 1-D case, we omit the details oo employ a non-square information graph, such fiats a constant
desired separations etc, which are available in [2]. Therobfaws regardless of the increasing &f. The price one pays is either long
with RPAV and RPRV feedback, in terms of the errgis are, range communication and/or increased number of refereglsieles;

respectively see [2], [24] for more details. In addition, for the RPAV feadk case,
D D with vanishingly small amount of asymmetry, the stabilityangin
— Z ki avy(Pi — Piat ) — Z ki ia—y (Bi — Pia—) is imprO\_/ed toO(1/N;), compared to theD(1/N}) trend in the
symmetric case.
— bipi, (21) In contrast, Corollary 1 shows that with judicious asymigetr
D D control, the stability margin can be made independent ofhtimaber
_ z s iaty(Bi — Diat ) — z ka0 (Bi — Bra-) of vehicles NV in the formation, without using the non-square infor-

mation graph aforementioned. Note that the result we @stalih

this paper (Corollary 1) is stronger than that in [2], eveouigh the
— > biay(Bi = Bias) = D bgiia—y (bi — Bia=), (22)  control law is the same. The reason is that the analysis ire[&jd on
a perturbation technique, which limited its applicabilibyvanishingly
small e. In this paper we do not use perturbation technigues, and
obtain result for any non-vanishinge (0, 1). In addition, we also
consider the RPRV feedback case, while [2] analyzed only\RPA
feedback. O

where 4t (respectively,i?") denotes the neighbor of on the
positive (respectively, negative); axis. The closed loop dynamics
are again represented as= A" """z, where the state: :=
[p1,P1,--- , PN, Pn] € R?Y is a vector of the relative positions
and relative velocitieg;. The stability margin is defined as before. proof of Corollary 1. With the control gains specified in (23)

It is shown in [2] that asymmetry in control gains can improveind (24) respectively, it is straightforward - through a teiious -
the stability margin with RPAV feedback, but the analysisinisited  to show that the state matrice&™™") and A®P™) can be expressed

for e — 0 and the case with RPRV feedback was not considered. it the following forms,
this paper, we consider the following homogeneous and astriom

: . - . (RPAV) _ (D)
control gains that introduce asymmetry only in the axis: A =In@ A+ L7 @ As,
(RPRV) __ i (D)
RPAV: ke ity = (1 4 €)ko, K-y = (1 — €)ko, - A =IN®As+ L ® Ag, (25)
. k(i za+y = ko, (d> 1), b; = bo. (23) where A, Az, As, A4 are given in (10) and.(”’ has the following
form:
ki oty = L+ €)ko, ke i-y = (1 —€)ko, LYW =In, @ L'V + T 9 Inynyony_,, 2<d< D, (26)
RPRV: b 1 bo, bgisi—y = (1—¢€)b 24 L . . . . .
Girt) = (L+bo, by = (1= b, @ \hereL™ is given in (11) andl"® is a matrix of dimensionV, x
K(iia+y = ko, bty = bo, (d>1). Ng, which is given by
We first summarize the results in [2], [24]. 1 —1
Proposition 2: Consider a vehicular formation whose information 1 2 -1
graph is aD-dimensional lattice. With the control gains given in (23) 7@ _ ) ) ) 27
and (24) respectively. o - . . ) @7)
-1 2 -1

1) [Theorem 1 of [2], Theorem 4 of [24]] With symmetric coritro
(e = 0), both S®™) and S®*) are O( - 7). -1
2) [Theorem 2 of [2]] With the control galns given by (23), theThe eigenvalues o) are given by (see [21]):
stability margin with RPAV feedback iss®™) — O(57). y
which hold in the limite — 0 and N7 — oco. | Aoy, =2 —2cos M, la=1,2,..., Ng. (28)
We next state the main result of this section, which is a tamnpl Na
of Theorem 1. It describes the stability margin for a vetacdibrma-
tion with D-dimensional lattice information graph with asymmetri
control.
Corollary 1: With the control gains given in (23) and (24) respec*

(!:rom the proof of Lemma 1, we see that the eigenvalued 8"
d A®RRY are given by the roots of the characteristic equations
2 + bos + koA; = 0 and s+ boAys + kod; = 0 respectively,

tively, and0 < ¢ < 1, the stability margin of the vehicular formatlon where\; is the eigenvalue of."”, and'= (fy,- -+, {p) |n?[v)v)h|ch
with RPAV or RPRV feedback is bounded away framuniformly ‘@ € {1,2,-++, Na}. We next claim that the eigenvalues bf”) are
in N. Specifically, given by
D
GRPAY) %(bo B \/bg —8ko(1 -1~ 62)) A=Ay (L(l)) + Z Aey (T(d))' (29)
= ) d=2



We prove by induction method. For the cage= 2, L®® = Iy, ®

LM + 7@ @ Iy, . Following (16) in the proof of Lemma 1, the

eigenvalues of.®) are given by

{o(LY + Xy In,)}

U

A, €0 (T2))

’\ll (L(l)) + )‘Kz (T(z))7

Aty by =

Now, we assume the general formula for the eigenvalues(6f %
is given by

For the casel = D, the matrix L®) has the form given in (26), (1%

D—1
Aoty = A (L) + D7 A, (T9). (30)

d=2

use (16) again, we have

{U(L(Dil) + )\ZD’[Nl"'ND—l)}

U

Aep, €0(T(D))

=Aeyop oy (LP7D) 4 g, (TP,

Aey,otp =

(5]

(6]

(7]

(8]

El

[11]

[12]

which proves the claim. Now, use (14) and (28), the smallest
eigenvalue ofL(") is equal toX;, the smallest eigenvalue d@f().

The result now follows from Lemma 1 and Theorem 1.

Numerical verification is omitted here due to lack of spates i
available in [23].

V. SUMMARY

We studied the stability margin of vehicular formations attite
graphs with distributed control. The control signal at gveehicle
depends on the measurements from its neighbors in the iaf@m
graph, which is aD-dimensional lattice. Inspired by the previous[17]

works [1], [2], we examined the role of asymmetry in the cohtr

[13]

[14]

[15]

[16]

gains on the closed loop stability margin. We showed thah wif18]
judicious asymmetry in the control gains, the stability giarof
the vehicular formation can be bounded away froraniformly in
N. This eliminates the loss of stability margin with increasivV
that is seen with symmetric control. In this paper, the asialypf
the stability margin avoids the PDE approximation and pbgtion
method used in [1], [2]. In particular, the latter limitecetanalyses in [20] S. Stankovic, M. Stanojevic, and D. Siliak, “Decenzatl overlapping
those papers to vanishingly small amount of asymmetry asaltesl
a O(1/N) scaling trend of stability margin. In addition, the control21)
laws examined in [1], [2] required vehicles to have accessh®
desired velocity of the formation. We generalized the ftsstd the
case when only relative velocity and relative position rueasents
are available. We showed in this paper that in both cases \(iith

or without absolute velocity feedback), stability margande made
independent of the size of the formation with asymmetridinThe

issue of sensitivity to external disturbances with asynmimeontrol

is a topic of future research.

(1]

(2]

(3]
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