Asymmetric control achieves size-independent stabiligrgm in 1-D flocks
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Abstract—We consider the stability margin of a large 1-
D flock of double-integrator agents with distributed control,
in which the control at each agent depends on the relative
information from its nearest neighbors. In [1], it was shown
that with symmetric control, in which two neighbors put equal
weight on information received from each other, the stabiliy
margin of the flock decays to0 as O(1/N?), where N is the
number of agents. Moreover, a perturbation analysis was uske
to show that with vanishingly small amount of asymmetry in the
control gains, the stability margin can be improved toO(1/N).
In this paper, we show that, in fact, with asymmetric controlthe
stability margin of the closed-loop can be bounded away from
zero uniformly in N. Asymmetry in control gains thus makes
the control architecture highly scalable. In addition, an eror
analysis is provided to characterize the error introduced ly
using partial differential equation to approximate the dynamics
of a large 1-D flock that used in [1]. We show that the PDE
approximation is only valid for small amount of asymmetry.
Numerical verifications are also provided to corroborate ou
analysis.

|. INTRODUCTION

that exchange information, the weight placed bpn the
information received fromnj is the same as the weight placed
by j on that received from. In a previous paper [1], it
was shown that with symmetric control, the stability margin
of the 1-D flock, which is measured by the real part of
the least stable eigenvalue of the closed-loop, decays to
as O(1/N?), where N is the number of agents. The loss
of stability margin with symmetric control has also been
recognized by other researchers [9], [11].

In this paper, we study the stability margin of a large 1-D
flock of double-integrator agents whose information graph i
directed or asymmetric. Little work has been done on coordi-
nation of double integrator agents with directed informati
graphs, with [1], [10] being exceptions. It was shown in [1]
that with vanishingly small asymmetry in the control gains,
the stability margin can be improved ©(1/N). Similar
conclusions are also obtained for a vehicular formatiorn wit
a D-dimensional lattice as its information graph [6]. The
analyses in [1], [6] were based on a partial differential

The problem of distributed control of multiple agents isequation (PDE) approximation of the closed-loop dynamics

relevant to many app”cations such as automated h|ghwé¥hd a perturbation method; the latter limited the results
system, collective behavior of bird flocks and animal swarmgo only vanishingly small asymmetry. The reference [10]
and formation flying of unmanned aerial and ground vehiclegfudied the effect of asymmetry in control on the flock’s
for surveillance, reconnaissance and rescue, etc. [2], [3]ensitivity to disturbances, but not its stability margin.

[4], [5]. A classical problem in this area is the distributed In this paper, we show that with a fixed amount of
formation control of a 1-D flock of agents, in which eachasymmetry in the control gains, the stability margin of the
agent is modeled as a double integrator. The control actionck can be uniformly bounded away frotn(independent
each agent is based on the information from its two neare@t V). This stronger result - compared to those in [1], [6]
neighbors (one on either side). The control objective is to IS obtained by avoiding the perturbation analysis of the
make the flock track a desired trajectory while maintaining aforementioned papers. We provide two alternate proofs of
rigid formation geometry. The desired trajectory of theirent the result. One line of analysis proceeds with the PDE-
formation is given in terms of a fictitious reference agentpproximation of the coupled-ODE model that was used

and the desired formation geometry is specified in terms ## [1], [6]. Techniques from Strum-Liouville theory are ase
constant inter-agent spacings. to derive a closed-form expression for the lower bound,

A typ|Ca| issue faced in this prob'em is that the perWhiCh is then used to establish that the lower bound is

formance of the closed-loop degrades as the number #dependent ofV. The second line of analysis deals with

agents increases. Several recent papers have studied e coupled-ODE model directly. We also show that the

scaling of performance of formations of double-integratoprediction from the PDE analysis approaches the prediction

agents as a function of the number of agents. In particuldfom the coupled-ODE model as— 0, wheree quantifies

[1], [6] have studied the scaling of the stability marginthe amount of asymmetry. Thus, the conclusions obtained

while [7], [8], [9], [10] have examined the sensitivity to from the PDE analysis are valid only for small amount of

external disturbances. However, most of the work impos@Symmetry. The advantage of the PDE-based analysis is that

the condition that the information graph is undirected. (i.eit provides powerful insights on the benefits of asymmetric

symmetric), which means that between two agenamd j  control on the performance of the system, while the coupled-
ODE model provides no insight into what kind of asymmetry
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ﬁ Ni]l é O- the relative position measurements with its nearest neighb
oo co 5o  x] in the flock (one on either side), its own velocity, and the
Aw-1,N) Ay desired velocitys* of the flock:
0] X Y
Fig. 1. Desired geometry of a flock with agent andl “reference agent”, u; = — ]ng (pi — pi—1 + A(iil_i)) — kf(pi —Pit1 — Aait1))
which are moving in 1D Euclidean space. The filled agent inftbat of . " ' ’
the flock represents the reference agent, it is denotedby “ —b (pi -v )a (2)

wherei € {1,---,N — 1}, k/, k! are the front and back
position gains anad; is the velocity gain of the-th agent.
though our study is focused on agents with double integratgir the agent with indexV, the control law is given by:
dynamics, eigenvalues of digraphs are also important in the
study of convergence rate of distributed consensus, whichyy = —k{v(pN —pn—1+Anwv_1,n) — bn(pN — V),
is essentially coordination of vehicles with single-iragr 3)
dynamics. Even in the consensus literature, study of the
graph Laplacian spectra for directed graphs has been ratt§éice it does not have a neighbor behind it. Each agent
limited [12]. In this paper we provide a formula for theknows the desired gaps(; 1), A, it1), While only agent
smallest eigenvalues of the directed grounded Laplacidnknows the desired trajectopy(t) of the fictitious reference
matrix for a 1-D lattice as a function o¥. In addition, our agent. To facilitate analysis, we define the tracking error:
results show the connection between the smallest eigegwalu .
of the directed grounded Laplacian matrix and a Strum- Pi =pi —Dp; = pi=pi—p;. (4
Liouville operator. )
The rest of this paper is organized as follows. Section 1h€ closed-loop dynamics can now be expressed as the
presents the problem statement and main results. The st@llowing coupled-ODE model
bility margin of the flock with coupled-ODE model and

its relationship with the smallest eigenvalue of its diett pi= _k{(pi —Pie1) — K (i '_pi“) — bibi,
grounded Laplacian are stated in Sectibh PDE-based PN = kN (BN — Pn—1) — baDN- %)
analysis of stability margin and its approximation error

appear in SectionV. The paper ends with a summary inwherei € {1,---, N — 1}, which can be represented in the
SectionV. following state-space form:

II. PROBLEM STATEMENT AND MAIN RESULTS
A. Problem statement

In this paper we consider the formation control af Wherez := (1, p1, ,f)N,f?z_\r] € R*V is the state vector.
identical agents which are moving in 1-D Euclidean space, as!n [1], @ PDE was derived as an approximation of
shown in Figurel. The position of the-th agent is denoted the coupled-ODE model5} for large N. The PDE gov-

i = Az, (6)

by p; € R and the dynamics of each agent are modeled &ned the evolution ofp(z,?) : [0,1] x Ry — R,

a double integrator: which is a spatially continuous counterpart of the funcgion
. _ pi(t), i € {1,---, N}, with the stipulation thafp;(t) =
Pi =wui, i€ {l,2,--- N}, @) p(,t)|s=(n—s)/n- The PDE model is given by

wherewu; € R is the control input, which is the acceleration X

or deceleration command. 0%p(x, t) b() op(a,t) k' (x) — K’ (z) Op(a,t)

The control objective is that the flock maintains a desired ~ 9t? ot N oz
formation geometry while following a constant-velocitygy kK (x) + kb (2) 0%p(a, t) %
desired trajectory. The desired geometry of the formatson i 2N? ox2

specified by thedesired gapsi;_, ;) fori € {1,---, N},

where A(;_, ;) is the desired value af; 1 (t) — p;(t). The

desired inter-agent gags;_; ;)'s are positive constants and op ~

they have to be specified in a mutually consistent fashion, %(O,t) =0, p(L,t) =0, (8)

i.e. Agry = Aqy) + A,k for every triple (i, j, k) where

i < j < k. The desired trajectory of the flock is provided inwhere k¥ (z), k" (), b(x) : [0, 1} — Ry are the continuous

terms of afictitious reference agent with index)”, whose —approximations of the gains; , k?,b; with the stipulation

trajectory is denoted by (t). The information on the desired k! = k' (2)lamv_iyn, K = K(@)|lomv_iyn, bi =

trajectory of the flock is only provided to agentThe desired  b(z)|,—(v—i)/~-

trajectory of thei-th agentpj (¢), is given byp; (t) = pj(t)— We refer the reader to [1] for the details of the derivation of

Ao,y = po(t) — Z;Zl Ag-1,j)- the PDE. The PDE modeF)-(8) is an approximation of the
We consider the followinglecentralizeccontrol law used coupled-ODE model5) in the sense that a finite difference

in [1], whereby the control action at thieth agent depends on discretization of the PDE yields).

with mixed Dirichlet-Neumann boundary condition



B. Main results Foreacl? € {1,2,---}, the two roots of the characteristic
We first formally define symmetric control and stability @duations are denoted by . The one that is closer to the
margin before stating the main results imaginary axis is denoted by, and is called théess stable
. . :l: .
Definition 1: The control law P) is symmetricif each €igenvalue between the two. The sets;” constitute the

agent uses the same front and back position g&ﬁ& 23 eigenvalues (_)f the PDELB). The least stableeigenvalue
forall i € {1,2,---,N — 1}, and is callechomogeneoug among them is denoted bynn.
B — 1 kb — kb andb: = b, for every pair(i, j) Definition 2: The stability margin of the coupled-ODE

i = g v T Yy T — Y 5.]' . .

It was shown in [1] that the stability margin can be im-model ©), denoted bys,, is defined as the absolute value

proved by a large amount by introducing front-back asymméf the real part of the least stable eigenvaluebf The
try in the position feedback gains. Moreover, heteroggneiftability marginof the PDE model 13)-(8), denoted bys,,,

has little effect on the stability margin [13]. Thereforeew S defined as the absolute value of the real part of the least

consider the following asymmetric and homogeneous contrsfaPle eigenvalue of the PDE, i.&), := |Re(smin)|. [
gains: The following theorem summaries the results in [1].

Theorem 1 (Corollary 1 and Corollary 3 of [1]):

kKl =1+eks, k'=(1-eko, b;=bo, (9) Consider anN-agent flock with PDE model 7j and

boundary condition§).

1) With symmetric and homogeneous controi 0), the
stability margins, of flock is S, = O(5).

2) When0 < e < 1, the optimal control gains are given
by k¥ (x) = ko(1 + €), k*(z) = ko(1 — €) andb(z) =
by, the resulting stability margirt, of the flock is

wherekq > 0,by > 0 are the nominal position and velocity
gains respectively, and € [0,1) denotes the amount of
asymmetry. Note that they correspond to the symmetric
control gains where = 0. With the control gains given
in (9), it's straightforward to see that the state matdixcan
be expressed in the following form,

Sp=0(%).* O

A=IN® A+ Ly A, (10) Theoreml shows that with symmetric control, the stability

where Iy is the N x N identity matrix and® is the Margin decays ta as O(1/N?), irrespective of how the

Kronecker product. The matricess , 4, are defined as below Control gainsk, and by are chosen (as long as they are
constants independent a¥). The reason why we have

Ay = [O 1 } . Ay = [ 0 0} 7 (11) the O(1/N?) scaling trend is because that with symmetric
0 —bo —ko 0O control the coefficient of thea‘% term in the PDE ) is
and L, is thedirected grounded Laplaciaaf the flock (see O(x=) and the coefficient of th%% term is0. However, any
Sectionlll): asymmetry between the forward and the backward position
gains will lead to non-zeré/ () — k*(x) and a presence of

12 _1; € ) O(+) term as the coefficient of-. By a judicious choice of
. L€ N _. + € (12) asymmetry, there is thus a potential to improve the stabilit
9= . ) e margin fromO() to O(% ). Theoreml shows that this

can indeed be achieved in the limit of— 0. Note that the
coupled ODE-model provides no such insight into the effect
For the PDE model, the corresponding control gains aref asymmetric control gains on the stability margin.
K (x) = ko(1 +¢€), k*(2) = ko(1 — €) andb(z) = by, and In this paper, we eliminate the restriction thatbeing
the PDE model is simplified to vanishingly small and establish the results for arbitrauny b
025 (x, 1) Op(w,t)  2eko Op(x,t) ko 0%, t) fixeq e. The following theorems are the main re_sults of this
92 5% - N o2 NZ gar .sectlon., whose proof gnd numerlca}l corrobor:?\tlon are given
(13) in Sectionlll and SectiorlV respectively. The first theorem
is on the stability margin of the PDE model, and the second
To define stability margin of the resulting PDE modEB), s on that of the original coupled-ODE model.
we take Laplace transform of both sides with respect to the Thegrem 2:Consider a flock with PDE modelL®) and
time variable/ and use the method of separation of variableg)oundary conditiong). For any fixed: € (0, 1), the stability
we have the following characteristic equation for the PDEnargin S, is uniformly bounded from below, and is given

—1—¢ 1+e€

+bo

model (refer to SectiohV for more details) by:

24+ bos+ ko =0, (€ {1,2,---}, (24) . by — /b2 — 4koe? o() -
where the eigenpairS\;, ¢,(x)) solve the following bound- " 2 .
ary value problem

o 1The case considered in [1] was that the optimal control gaires
d*¢u(x) 2% N A, N2 —0 searched in the domain dk/(z) — ko| < ¢, |kP(z) — ko| < e It

dx2 +2e d w_ + M Ny (:c) - is straightforward, however, to re-derive the results i ttonstraints on
dée the gains are changed to the form used hékd:(z) — ko|/ko < e,
—(0)=0, ¢¢(1)=0. (15) |kb(z) — kol/ko < e. In this paper we consider the latter case since it
dx makes the analysis cleaner without changing the resultg]&i@nificantly.

dgﬁg (SC)




N-1 2 1 0 (V,E) with n nodes is defined as

w(0,1)
w(N,N — 1) w(l,2) N
Zk:l w(lak) { :jv (ka) € Ev
eI =L vz [Lyxnlig = § —w(i,j) i#j,(i,5) €E, (1)
Fig. 2. Information graph for the 1-D flock oV agents and reference 0 otherwise.
agent. With the asymmetric control gains studied herg, i + 1) = 1 +
cw(i+l)=1-e The directed grounded Laplaciarl,, matrix of G with

respect to a set of grounded nodég C V is the submatrix
of L obtained by removing froni those rows and columns
_ ) ) . corresponding to the grounded nod¥g in V, whereV,
Theorem 3:With the control gains given in9j and for o is the node corresponding to the reference agent. The

any fixede € (0, 1), the stability marginS,, of the coupled- yjrected grounded Laplacian of the 1-D flodk is given
ODE model £) is uniformly bounded from below, and is ;, (12). '

given by: We now present a formula for the stability margin of
the flock in terms of the smallest eigenvalue of its directed
_ 2 _ 1 — 2
S, > bo \/bo Sko(1 — V1 =€) —0(1). 0O 9rounded Laplacian.
B 2 Lemma 1:With the control gains given in9j and 0 <

Remark 1:Comparing the results above to the conclue < 1, the stability margin of the flockS, with coupled-
sions of [1] that are summarized in Theorémwe observe ODE model b) is given by
that even with an arbitrarily (but fixed and non-vanishing)
amount of asymmetry, the stability margin of the system bo, it Ay > 4ko /b3,
can be bounded away from zemmiformly in N. This So = bo—+/bg —4ko 1 otherwise (17)
asymmetric design therefore makes the resulting contvol la 2 ' '
highly scalable; it eliminates the degradation of closeapl where), is the smallest eigenvalue of the directed grounded
performance with increasing. We note that although the LaplacianL,. O
control law is the same as that analyzed in [1], the stronger proof 1 (Proof of Lemmad): Our proof follows a similar
conclusion we obtained - compared to that in [1] - is dugine of attack as of [10, Theorem 4.2]. From Schur’s triangu-
to the fact that our analysis does not rely on a perturbationgrization theorem, every square matrix is unitarily saniio
based technique that was used [1], which limited the ar@lysan upper-triangular matrix. Therefore, there exists atemyi
in [1] to vanishingly smalle. matrix U such that

In addition, comparison of Theorerdsand3 also provide
us with a quantitative measure of the error introduced in U 'LyU = Ly,
approximating the flock dynamics with a PDE. More details

on the approximation error is provided in SectibhA. [ Where L, is an upper-triangular matrix, whose diagonal
entries are the eigenvalues 6f. We now do a similarity

1. STABILITY MARGIN OF THE COUPLED-ODE MODEL transformation on matrix.

OF FLOCK DYNAMICS

e
In this section, we provide a proof of TheoreBn The A:=U"0h)AUS L)

analysis of the eigenvalues of the state mattixelies on =(UT @ L)(IN ® A1+ Ly ® A3)(U © I)

the spectrum of thelirected grounded Laplaciamf the =In® A1 + L, ® As.

flock. Before we proceed further, we formally define the _ ) _

information graph for the flock. The above is a block upper-triangular matrix, and the block

Definition 3: An information graphis a weighted digraph ©n €ach diagonal isl; + A;A;, where A, G_U(Lg)v where
G = (V,E), which associates a weight(i, j) with every o(-) denotes the spectrum (the set of eigenvalues). Since
edge(i,j) € E in the graph. The set of edgd C V x similarity preserves eigenvalues, and the eigenvalues of a
V determines the information flow and specify which pairgolock upper-triangular _matrix are the union of eigenvalues
of nodes (agents) are allowed to exchange information @f €ach block on the diagonal, we have
compute their local control actions. Two nodeand j are -
P J c(A) =o(d) = | {o(Ar+\As)}

calledneighborsif (i,j) € E. O

Figure 2 depicts the information graph for the 1-D flock. Ae€a(Ly)
In our case, with th_e control_galns given i9) (we assign the _ U o { 0 1 } } (18)
weight 1 + € to the information from its front neighbor and AeEotDy) —koAe  —bo

1—e to the information from its back neighbor. For example,
for node1, the weights we assigned to its associated edgdisfollows now that the eigenvalues of are the rootss of
(0,1),(2,1) arel + € and1 — e respectively. the following characteristic equation
To precisely define thdirected grounded Laplaciah,, of )
the flock, recall that thé.aplacian matrix of a graphG = s” +bos + koAe = 0. (19)



For each? € {1,2,--- , N}, the two roots of the character-

istic equation are denoted by, 2
— /(A F /(L= ¢)sin((N + 1)6)
5?: = —bo + bg — 4]{0)\6 (20) 1.5¢ ---sin(N0)
L 5 .

Theleast stableeigenvalue is the one closet to the imaginary
axis among them, it is denoted by,;,. It follows from
Definition 2 that S, = | Re(smin)|-

Depending on the discriminant i2@), there are two cases
to analyze:

(1) If Ay > 4ko/b2, then the discriminant in2Q) for each
¢ is non-positive, which yields
bo
5
(2) Otherwise, the less stable eigenvalue can be written a:

—bo + +/ b% — 4k
5 .

The least stable eigenvalue is obtained by seting= A1,  Fig. 3. Graphical solutiord of /(1 + ¢)/(1 — €)sin((N + 1)8) =

So = |Re($min)| =

+
Sy =

so that sin(N6) with e = 0.1 and N = 3.
50— Rt — = VI RAs .
o e 2 ' whered: € (53, sy )- Take the limitN — oo, we

We are now ready to present the proof of Theoi@m have the following infimum for the smallest eigenvalue:
Proof 2 (Proof of Theoren3): From Lemmal, we see . 5
that the smallest eigenvalue of the directed grounded Lapla %f AL=2-2V1-¢€ (24)

cian plays an important role in determining the stability 1o prove Theorem3, we consider the following two

margin of the 1-D flock. To get an lower bound of the . qag: (1) Case 1, > 4ko/b2. According to Lemmal
stability margin, a lower bound for the smallest eigenvalug,, stability margin is given %}S — by/2. (2) Case 2

is needed. For the general asymmetric _ca]sg € <1) it A1 < 4ky/b3. From Lemmal, the stability margin is given
follows from Eq.(6)-(7) of [14] that the eigenvalues di,,

b
denoted by)\,, are given by Y .
bo — /b5 — 4ko A
MN=2-2V/1—cosly, (ef{l,2,--- N}, (21) So = ———p——

whered, is the (-th root of the following equation Since\; > 2 — 2v/1 — €2, the stability margin for this case

T e is bounded below

1 sin(INV 4 1)0 = sin N6, (22)

— €

by — \/bg — 8ko(1— VI —€2)
where § # mm,m € Z, the set of integers. From for- So 2 2 :

mula @1), we see that the eigenvalues bf are real and \gtice that the above lower boun@s) is smaller tharbg /2

positive, and moreoven) < A1 < Ay < -+ < An. TO (yaye of S, in case 1), we complete the proof. [
see why, first notice that we only need consider the roots

of (22) in the open interval0, 27), in which there are N A. Numerical comparisons
nontrivial isolated roots, see FiguBfor an example. The  |n this section, we present the numerical comparison re-
roots located inR \ (0,27) are just2mn (m € Z) distance sults between the stability margins of the flock with symmet-
away from those in0, 2w). Moreover, iff, € (0,27) is a ric control (Theorentl) and with asymmetric control (The-
solution of @2), then2r — 6, is also a solution. Therefore, orem 3). The stability margins are obtained by numerically
we can restrict the domain of analysis (0, 7), in which  evaluating the eigenvalues of the state matdix Figure 4
there areN isolated roots. The ordering of the eigenvalueslepicts the comparison results between the stability margi
follows from cos § being a decreasing function i), 7). for the two cases: symmetric and asymmetric controls. The
It also follows thatt);, the smallest positive root oR®), nominal control gains used arey, = 1, by = 0.5, and
leads to the smallest eigenvalue. It is straightforwardhtmas  for asymmetric control, the amount of asymmetry used is
that the(-th rooté, is in the open interveﬂ%, %). ¢ = 0.1.> We note that for asymmetric control, the control
Now, the smallest eigenvalue of the directed grounded Lapla , _ _ o _ _
cian ., is given by e g rumera aresin el computonmaber

(23) comparing the eigenvalues of the matrix with those of a remdamilarity
transformation of the matrix, which in MATLA® produces distinct results.

(25)

A =2—2v1—€e2cosb,



To prove Theoren2, we need the following lemma.

‘ Lemma 2:The eigenvalueg:, (¢ € {1,2,---}) of the
107 OQ)O S, = O(1) : Strum-Liouville operator with boundary conditionZ8) for
* o) 0 < e <1 are real and satisfy
R CLCOGEBE0 , a2
102 ke | He =€+ N (30)
*
76 e where a, is the root of —a,/(eN) = tan(as), and in
» * : (20—1)7
So=O(1/N?) "% particular,a, € (===, (). O
1079 %% ] Proof 3 (Proof of Lemma&): We first multiply both sides
*y of (27) by e2N* N2, we obtain the standard Sturm-Liouville
*y eigenvalue problem
> Symmetric control ¢ = 0) *% i dé ( )
104 O Asymmetric control ¢ = 0.1) * | _( 2eNz @Pe(X ) (€) A72 2eNz _
- - - Lower bound in Theoren3 %*% dx ¢ dx + Fe N7e (W (x) 0. (31)
‘ ‘ ‘ ‘ ‘ ‘ According to Sturm-Liouville Theory, all the eigenvalues
10 20 4 80 150300 are real and have the following ordering < s < ---,

see [15]. To solve the boundary value proble&tid){(28), we

_ " , , _ _assume solution of the formj,(z) = ¢"*, then we obtain
Fig. 4. Stability margin comparisons between the flock wigimmetric

control and asymmetric control. the fOHOWing equation
72 4+ 2eN7 + e N? = 0,
=7r=—eN £t N\e®— py. (32)

gains satisfy the second case of Lemrhaso that the
Theorem 3 predicts that the stability margin is bounde
below by (by — /b3 — 8ko(1 — VI —¢2)/2 ~ 0.0209. We

can see from Figurd that the stability margin of the flock

dPepending on the discriminant in the above equation, there
are three cases to analyze:

1) ue < €2, then the eigenfunctionp,(z) has the

with asymmetric control is indeed bounded away frém following form ¢,(z) = cjel- NNV )T 4
uniformly in N, and the prediction of the theorem is quite coeZ NNV e wherecy, ¢, are some constants.
accurate. Furthermore the stability margin with asymretri Applying the boundary conditior2@), it's straightfor-
control is much larger than that with symmetric control. ward to see that, for non-trivial eigenfunctiopg(z)
to exit, the following equation must be satisfiedV —
IV. STABILITY MARGIN OF THE PDEAPPROXIMATION OF NM)/(6N+ N\/m) _ erﬂ\,m' For

FLOCK DYNAMICS L ! o .
. ) N . positive e, this leads to a contradiction, so there is no
In this section, we present the stability margin of the flock eigenvalue for this case.

with PDE model {3) and boundary conditior8]. Since the 2y " ¢ then the eigenfunction, (z) has the follow-
PDE model 13) and boundary condition8] are linear and ing form

homogeneous, we are able to apply the method of separation

of variables. We assume a solution of the fofifx,t) = do(z) = cre” N 4 cowe™NT,

> iy e(z)he(t). Substituting it into PDE X3), we obtain

the following time-domain ODE Again, applying the boundary conditio&§), for non-

trivial eigenfunctionsg,(z) to exit, we have the fol-

d*he(t) |, dh(t) lowing eN' = —1, which implies there | i |
b + kopehe(t) = 0, 26 g eN = —1, which implies there is no eigenvalue
dt? O ar osehe(t) (26) for this case either.
where i, solves the following boundary value problem 3) ue > €2, then the eigenfunction,(x) has the fol-
2 d lowing form ¢ (x) = e~ N®(cq cos(N /e — €2x) +
Loo(z) =0, L:=—= +2eN— + uyN? (27) cosin(N /e — €2x)). Applying the boundary condi-
dx? dx ; g Tt i .

) ) . ) tion (28), for non-trivial eigenfunctiong;,(z) to exit,
with th.e following boundary condition, which comes the eigenvaluegy, must satisfy 80) and a, solves
from (8): the transcendental equationa,/(eN) = tan(ay).

doe B A graphical representation of the functionan x
%(0) =0, ¢ (1) =0. (28) and —z/eN with respect tox shows thata, €

Taking Laplace transform of both sides o26f with (@7“)- u
respect to the time variabte we have the following charac-  We now present the proof for Theorein
teristic equation for the PDE model Proof 4 (Proof of Theoren2): From Lemma2, we see

) thata; € (r/2,7), and B0 implies u; — ¢ from above
5%+ bos + kopue = 0. (29) as N — oo, ie. infyp = €. From the characteristic



equation 29), the eigenvalues of the PDE model are given

by
. 10° | Q0 00000000000000000000 |
Sj[ _ —bo £ /b5 — 4kow. (33) O 0O COOOHOO GOSN
2
Depending on the discriminant 8%, th_ere_ar_e two cases * Directed grounded Laplaciar & 0.1)
to analyze: (1) Ifu; > 4ko/b%, then the discriminant in3@) = O sturm-Liouville operator{ = 0.1)
for each? is non-positive, which yields, = |Re(smin)| = ] [J Directed grounded Laplaciar & 0.9)
bo/2. (2) Otherwise, the less stable eigenvalue can be written <107 < Sturm-Liouville operator{ = 0.9)
as .
+ _ _b0+\/b(2)—4k0‘ug %
5, = . ®
2 %®®
The least stable eigenvalue is obtained by setting= 11, ®®@®%
so that 107} TSR0PELRRRD |
bo — b2 — 4/€0/L1 bo — b2 — 4/€0€2 . . . . . .
Sp = |Re(Smin)| = 02 > ; : 10 20 40 80 150 300
Again, note that the above lower bound is smaller thaf2
(value of S, in case 1), we complete the proof. B Fjg 5. Numerical comparisons between the smallest eiggavaf the

directed grounded Laplacian,;, and that of the Sturm-Liouville operator,

A. Error analysis of the PDE approximation 1. The difference between; and . is negligible for smalle (even for
small N), but noticeable for large.

We next provide an error analysis on the PDE approxi-
mation, which answers the question on how well the PDE
model approximates the flock dynamics. The characteristic

equation of the coupled-ODE model of the flock that |ead§igenvalues. The amounts of asymmetry usedease 0.1
to the least stable elgenvalueﬂ_%+ bos + koA = 0, while  ange = 0.9 respectively. We plot the smallest eigenvalues
the QCorrespondlng characteristic equation of the PDE modg} the directed grounded Laplacian and the Sturm-Liouville
IS 5% + bos + koun = 0. Comparing the two, it is obvious gperator as a function o, the number of agents in the
that the error in the stability margin prediction by the PDEjock. From Figure5, we can see that for small amount of
approximation is determined by the difference betwaen asymmetrye = 0.1, the smallest eigenvalue of the Sturm-
the smallest eigenvalue of the directed grounded Laplacigfoyyille operator matches that of the directed grounded
Ly, and iy, the smallest elgenvalug of the Sturm-LlouvnIeLamacian very well, especially wheN is large. However,
operator£. Since the PDE model is developed as an afypr jarge amount of asymmetry = 0.9, the difference
proximation of the flock in the limitV. — oo, we consider petween the smallest eigenvalues is not negligible anymore
the respective eigenvalues in this limit. Specifically, Wefi  The next result describes the stability margin approxima-
A1 = limy oo Ay @nd fiy = limy oo g1 The following  tion error introduced by the PDE model due to the control
lemma quantifies the difference betwegnand \;, whose  gsymmetry.
proof follows in a straightforward manner fror24) and @0). Theorem 4:The difference between the predictions of the
Lemma S:The difference between .the smallest eigenvalstapility margin of the flock by the coupled-ODE mod8) (
ues of the directed grounded Laplaciag and the Sturm- 4nq the PDE modell@)-(8) is, asymptotically,

Liouville operator. is asymptotically
So — Sp =

I 1
M —ji1=2-2 1—62—6221644—0(66), (34) 0, if %SEQ,
) 2
where the formula holds for arbitrareye [0, 1). O bo(1- %) +0(et)  if < fTOO <2-2V1-¢2
Fig_ureS shows numer_ical comparisons between the_ small- 4’“7054 +O(e%) if 2 2y/1—¢ < %
est eigenvalue of the directed grounded Lapladignwith o _ 0
that of the Sturm-Liouville operatof for different amounts Where asymptotically means the formula holds #6r— oc.

of asymmetry. The eigenvalues of the directed groundéd
Proof 52(Proof of Theorerd): For future use, define

Laplacian are obtained by using the predicti@i){(22). °
For the Sturm-Liouville operatof, we use formulae30), « fT"O. It follows from the discussion preceding

which involves numerically solving the associated trankemma 3 that the relevant roots of the characteristic

scendental equatiora,/(eN) = tan(as) to compute its

3Direct eigenvalue computation in MATLA® works only for smalle.
When the value of is larger than0.2, MATLAB © produces erroneous
results, since the eigenvalues @&f, and those of a random similarity
transformation computed by MATLA® are seen to be different.

equations for the coupled-ODE and PDE models are
oo (—14 (1 = Ai/@)'/?) and $bo (—1 4 (1 — i1 /a)'/?),
respectively. It follows from Lemmathat2(1—v/1 — €2) =

A1 > i1 = €2. Hence, we have three cases to consider: (i)
a < fi1, (i) i1 < o < A1, and (i) \; < a. For convenience



qf asymptotic analysis, we first defigg := limy_. S, and
Sp = limN_>oo Sp.

1)

2)

seen with symmetric control. In this paper, the analysihef t
stability margin avoids the perturbation method used in [1]
a < € = [i1(< \): In this case, the real parts of the[6], which limited the analyses in those papers to vanidlging

least stable eigenvalues for both the coupled-ODE arfdnall amount of asymmetry. We also provide an error bound
PDE models are-b/2. HenceS, — S, = 0. on the stability margin predicted by the PDE approximation.

€2 < a < A\ In this case the discriminant in the It is noteworthy that heterogeneity in control gains and
coupled-ODE model's least stable eigenvalue is zerdgent dynamics has little effect on the stability margin][13
or negative, so tha$, = by/2, while the discriminant and sensitivity to disturbances [16], while asymmetry has a
in the PDE model’s least stable eigenvalue is positivesignificant impact, as we showed here. In this paper we do
which makes it real. In this case it is straightforwardiot examine the issue of disturbance propagation, though

to show that
62

2

_ _ 1 1

S, — Sp = 51)0(1 — ﬁl/a)1/2 = 51)0(1 —
o @( . 2k0€2
2 b2

A1 < a: In this case bott, andS, are real, and their

values are given by the infima in Theoremand 3.
The difference between them is

)+ O(eh).

3)

numerical evidence suggests asymmetry also reduces the
sensitivity to external disturbances; see [1], [17]. Thupit

(1]

(2]

)+ O(e") is a subject of ongoing research.
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