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Abstract— We consider the stability margin of a large 1-
D flock of double-integrator agents with distributed control,
in which the control at each agent depends on the relative
information from its nearest neighbors. In [1], it was shown
that with symmetric control, in which two neighbors put equal
weight on information received from each other, the stability
margin of the flock decays to0 as O(1/N2), where N is the
number of agents. Moreover, a perturbation analysis was used
to show that with vanishingly small amount of asymmetry in the
control gains, the stability margin can be improved toO(1/N).
In this paper, we show that, in fact, with asymmetric control the
stability margin of the closed-loop can be bounded away from
zero uniformly in N . Asymmetry in control gains thus makes
the control architecture highly scalable. In addition, an error
analysis is provided to characterize the error introduced by
using partial differential equation to approximate the dynamics
of a large 1-D flock that used in [1]. We show that the PDE
approximation is only valid for small amount of asymmetry.
Numerical verifications are also provided to corroborate our
analysis.

I. I NTRODUCTION

The problem of distributed control of multiple agents is
relevant to many applications such as automated highway
system, collective behavior of bird flocks and animal swarms,
and formation flying of unmanned aerial and ground vehicles
for surveillance, reconnaissance and rescue, etc. [2], [3],
[4], [5]. A classical problem in this area is the distributed
formation control of a 1-D flock of agents, in which each
agent is modeled as a double integrator. The control action at
each agent is based on the information from its two nearest
neighbors (one on either side). The control objective is to
make the flock track a desired trajectory while maintaining a
rigid formation geometry. The desired trajectory of the entire
formation is given in terms of a fictitious reference agent,
and the desired formation geometry is specified in terms of
constant inter-agent spacings.

A typical issue faced in this problem is that the per-
formance of the closed-loop degrades as the number of
agents increases. Several recent papers have studied the
scaling of performance of formations of double-integrator
agents as a function of the number of agents. In particular,
[1], [6] have studied the scaling of the stability margin,
while [7], [8], [9], [10] have examined the sensitivity to
external disturbances. However, most of the work impose
the condition that the information graph is undirected (i.e.,
symmetric), which means that between two agentsi and j
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that exchange information, the weight placed byi on the
information received fromj is the same as the weight placed
by j on that received fromi. In a previous paper [1], it
was shown that with symmetric control, the stability margin
of the 1-D flock, which is measured by the real part of
the least stable eigenvalue of the closed-loop, decays to0
as O(1/N2), whereN is the number of agents. The loss
of stability margin with symmetric control has also been
recognized by other researchers [9], [11].

In this paper, we study the stability margin of a large 1-D
flock of double-integrator agents whose information graph is
directed or asymmetric. Little work has been done on coordi-
nation of double integrator agents with directed information
graphs, with [1], [10] being exceptions. It was shown in [1]
that with vanishingly small asymmetry in the control gains,
the stability margin can be improved toO(1/N). Similar
conclusions are also obtained for a vehicular formation with
a D-dimensional lattice as its information graph [6]. The
analyses in [1], [6] were based on a partial differential
equation (PDE) approximation of the closed-loop dynamics
and a perturbation method; the latter limited the results
to only vanishingly small asymmetry. The reference [10]
studied the effect of asymmetry in control on the flock’s
sensitivity to disturbances, but not its stability margin.

In this paper, we show that with a fixed amount of
asymmetry in the control gains, the stability margin of the
flock can be uniformly bounded away from0 (independent
of N ). This stronger result - compared to those in [1], [6]
– is obtained by avoiding the perturbation analysis of the
aforementioned papers. We provide two alternate proofs of
the result. One line of analysis proceeds with the PDE-
approximation of the coupled-ODE model that was used
in [1], [6]. Techniques from Strum-Liouville theory are used
to derive a closed-form expression for the lower bound,
which is then used to establish that the lower bound is
independent ofN . The second line of analysis deals with
the coupled-ODE model directly. We also show that the
prediction from the PDE analysis approaches the prediction
from the coupled-ODE model asǫ → 0, whereǫ quantifies
the amount of asymmetry. Thus, the conclusions obtained
from the PDE analysis are valid only for small amount of
asymmetry. The advantage of the PDE-based analysis is that
it provides powerful insights on the benefits of asymmetric
control on the performance of the system, while the coupled-
ODE model provides no insight into what kind of asymmetry
may be beneficial.

We also show that the smallest eigenvalue of thedirected
grounded Laplacianof the information graph plays a pivotal
role in determining the stability margin of the system. Al-
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Fig. 1. Desired geometry of a flock withN agent and1 “reference agent”,
which are moving in 1D Euclidean space. The filled agent in thefront of
the flock represents the reference agent, it is denoted by “0”.

though our study is focused on agents with double integrator
dynamics, eigenvalues of digraphs are also important in the
study of convergence rate of distributed consensus, which
is essentially coordination of vehicles with single-integrator
dynamics. Even in the consensus literature, study of the
graph Laplacian spectra for directed graphs has been rather
limited [12]. In this paper we provide a formula for the
smallest eigenvalues of the directed grounded Laplacian
matrix for a 1-D lattice as a function ofN . In addition, our
results show the connection between the smallest eigenvalues
of the directed grounded Laplacian matrix and a Strum-
Liouville operator.

The rest of this paper is organized as follows. SectionII
presents the problem statement and main results. The sta-
bility margin of the flock with coupled-ODE model and
its relationship with the smallest eigenvalue of its directed
grounded Laplacian are stated in SectionIII . PDE-based
analysis of stability margin and its approximation error
appear in SectionIV. The paper ends with a summary in
SectionV.

II. PROBLEM STATEMENT AND MAIN RESULTS

A. Problem statement

In this paper we consider the formation control ofN
identical agents which are moving in 1-D Euclidean space, as
shown in Figure1. The position of thei-th agent is denoted
by pi ∈ R and the dynamics of each agent are modeled as
a double integrator:

p̈i = ui, i ∈ {1, 2, · · · , N}, (1)

whereui ∈ R is the control input, which is the acceleration
or deceleration command.

The control objective is that the flock maintains a desired
formation geometry while following a constant-velocity type
desired trajectory. The desired geometry of the formation is
specified by thedesired gaps∆(i−1,i) for i ∈ {1, · · · , N},
where∆(i−1,i) is the desired value ofpi−1(t) − pi(t). The
desired inter-agent gaps∆(i−1,i)’s are positive constants and
they have to be specified in a mutually consistent fashion,
i.e. ∆(i,k) = ∆(i,j) + ∆(j,k) for every triple(i, j, k) where
i ≤ j ≤ k. The desired trajectory of the flock is provided in
terms of afictitious reference agent with index “0”, whose
trajectory is denoted byp∗0(t). The information on the desired
trajectory of the flock is only provided to agent1. The desired
trajectory of thei-th agent,p∗i (t), is given byp∗i (t) = p∗0(t)−
∆(0,i) = p∗0(t) −

∑i
j=1 ∆(j−1,j).

We consider the followingdecentralizedcontrol law used
in [1], whereby the control action at thei-th agent depends on

the relative position measurements with its nearest neighbors
in the flock (one on either side), its own velocity, and the
desired velocityv∗ of the flock:

ui = − kf
i (pi − pi−1 + ∆(i−1,i)) − kb

i (pi − pi+1 − ∆(i,i+1))

− bi(ṗi − v∗), (2)

where i ∈ {1, · · · , N − 1}, kf
i , kb

i are the front and back
position gains andbi is the velocity gain of thei-th agent.
For the agent with indexN , the control law is given by:

uN = −kf
N (pN − pN−1 + ∆(N−1,N)) − bN(ṗN − v∗),

(3)

since it does not have a neighbor behind it. Each agenti
knows the desired gaps∆(i−1,i), ∆(i,i+1), while only agent
1 knows the desired trajectoryp∗0(t) of the fictitious reference
agent. To facilitate analysis, we define the tracking error:

p̃i := pi − p∗i ⇒ ˙̃pi = ṗi − ṗ∗i . (4)

The closed-loop dynamics can now be expressed as the
following coupled-ODE model

¨̃pi = −kf
i (p̃i − p̃i−1) − kb

i (p̃i − p̃i+1) − bi
˙̃pi,

¨̃pN = −kf
N(p̃N − p̃N−1) − bN

˙̃pN . (5)

wherei ∈ {1, · · · , N − 1}, which can be represented in the
following state-space form:

ẋ = Ax, (6)

wherex := [p̃1, ˙̃p1, · · · , p̃N , ˙̃pN ] ∈ R
2N is the state vector.

In [1], a PDE was derived as an approximation of
the coupled-ODE model (5) for large N . The PDE gov-
erned the evolution ofp̃(x, t) : [0, 1] × R+ → R,
which is a spatially continuous counterpart of the functions
p̃i(t), i ∈ {1, · · · , N}, with the stipulation that̃pi(t) =
p̃(x, t)|x=(N−i)/N . The PDE model is given by

∂2p̃(x, t)

∂t2
+ b(x)

∂p̃(x, t)

∂t
=

kf (x) − kb(x)

N

∂p̃(x, t)

∂x

+
kf (x) + kb(x)

2N2

∂2p̃(x, t)

∂x2
, (7)

with mixed Dirichlet-Neumann boundary condition

∂p̃

∂x
(0, t) = 0, p̃(1, t) = 0, (8)

wherekf (x), kb(x), b(x) : [0, 1] → R+ are the continuous
approximations of the gainskf

i , kb
i , bi with the stipulation

kf
i = kf (x)|x=(N−i)/N , kb

i = kb(x)|x=(N−i)/N , bi =
b(x)|x=(N−i)/N .

We refer the reader to [1] for the details of the derivation of
the PDE. The PDE model (7)-(8) is an approximation of the
coupled-ODE model (5) in the sense that a finite difference
discretization of the PDE yields (5).



B. Main results

We first formally define symmetric control and stability
margin before stating the main results.

Definition 1: The control law (2) is symmetric if each
agent uses the same front and back position gains:kf

i = kb
i ,

for all i ∈ {1, 2, · · · , N − 1}, and is calledhomogeneousif
kf

i = kf
j , kb

i = kb
j andbi = bj for every pair(i, j). �

It was shown in [1] that the stability margin can be im-
proved by a large amount by introducing front-back asymme-
try in the position feedback gains. Moreover, heterogeneity
has little effect on the stability margin [13]. Therefore, we
consider the following asymmetric and homogeneous control
gains:

kf
i = (1 + ǫ)k0, kb

i = (1 − ǫ)k0, bi = b0, (9)

wherek0 > 0, b0 > 0 are the nominal position and velocity
gains respectively, andǫ ∈ [0, 1) denotes the amount of
asymmetry. Note that they correspond to the symmetric
control gains whenǫ = 0. With the control gains given
in (9), it’s straightforward to see that the state matrixA can
be expressed in the following form,

A = IN ⊗ A1 + Lg ⊗ A2, (10)

where IN is the N × N identity matrix and⊗ is the
Kronecker product. The matricesA1, A2 are defined as below

A1 :=

[

0 1
0 −b0

]

, A2 :=

[

0 0
−k0 0

]

, (11)

andLg is thedirected grounded Laplacianof the flock (see
SectionIII ):

Lg =













2 −1 + ǫ
−1 − ǫ 2 −1 + ǫ

· · · · · ·
−1 − ǫ 2 −1 + ǫ

−1 − ǫ 1 + ǫ













. (12)

For the PDE model, the corresponding control gains are
kf (x) = k0(1 + ǫ), kb(x) = k0(1 − ǫ) and b(x) = b0, and
the PDE model is simplified to

∂2p̃(x, t)

∂t2
+ b0

∂p̃(x, t)

∂t
=

2ǫk0

N

∂p̃(x, t)

∂x
+

k0

N2

∂2p̃(x, t)

∂x2
,

(13)

To define stability margin of the resulting PDE model (13),
we take Laplace transform of both sides with respect to the
time variablet and use the method of separation of variables,
we have the following characteristic equation for the PDE
model (refer to SectionIV for more details)

s2 + b0s + k0λℓ = 0, ℓ ∈ {1, 2, · · · }, (14)

where the eigenpairs(λℓ, φℓ(x)) solve the following bound-
ary value problem

d2φℓ(x)

dx2
+ 2ǫN

dφℓ(x)

dx
+ λℓN

2φℓ(x) = 0,

dφℓ

dx
(0) = 0, φℓ(1) = 0. (15)

For eachℓ ∈ {1, 2, · · · }, the two roots of the characteristic
equations are denoted bys±ℓ . The one that is closer to the
imaginary axis is denoted bys+

ℓ , and is called theless stable
eigenvalue between the two. The set∪ℓs

±

ℓ constitute the
eigenvalues of the PDE (13). The least stableeigenvalue
among them is denoted bysmin.

Definition 2: The stability margin of the coupled-ODE
model (5), denoted bySo, is defined as the absolute value
of the real part of the least stable eigenvalue ofA. The
stability marginof the PDE model (13)-(8), denoted bySp,
is defined as the absolute value of the real part of the least
stable eigenvalue of the PDE, i.e.,Sp := |Re(smin)|. �

The following theorem summaries the results in [1].
Theorem 1 (Corollary 1 and Corollary 3 of [1]):

Consider an N -agent flock with PDE model (7) and
boundary condition (8).

1) With symmetric and homogeneous control (ǫ = 0), the
stability marginSp of flock is Sp = O( 1

N2 ).
2) When0 < ǫ ≪ 1, the optimal control gains are given

by kf (x) = k0(1 + ǫ), kb(x) = k0(1 − ǫ) andb(x) =
b0, the resulting stability marginSp of the flock is
Sp = O( ǫ

N ). 1
�

Theorem1 shows that with symmetric control, the stability
margin decays to0 as O(1/N2), irrespective of how the
control gainsk0 and b0 are chosen (as long as they are
constants independent ofN ). The reason why we have
the O(1/N2) scaling trend is because that with symmetric
control the coefficient of the∂2

∂x2 term in the PDE (7) is
O( 1

N2 ) and the coefficient of the∂∂x term is0. However, any
asymmetry between the forward and the backward position
gains will lead to non-zerokf (x)− kb(x) and a presence of
O( 1

N ) term as the coefficient of∂∂x . By a judicious choice of
asymmetry, there is thus a potential to improve the stability
margin fromO( 1

N2 ) to O( 1
N ). Theorem1 shows that this

can indeed be achieved in the limit ofǫ → 0. Note that the
coupled ODE-model provides no such insight into the effect
of asymmetric control gains on the stability margin.

In this paper, we eliminate the restriction thatǫ being
vanishingly small and establish the results for arbitrary but
fixed ǫ. The following theorems are the main results of this
section, whose proof and numerical corroboration are given
in SectionIII and SectionIV respectively. The first theorem
is on the stability margin of the PDE model, and the second
is on that of the original coupled-ODE model.

Theorem 2:Consider a flock with PDE model (13) and
boundary condition (8). For any fixedǫ ∈ (0, 1), the stability
margin Sp is uniformly bounded from below, and is given
by:

Sp ≥ b0 −
√

b2
0 − 4k0ǫ2

2
= O(1). �

1The case considered in [1] was that the optimal control gainsare
searched in the domain of|kf(x) − k0| < ǫ, |kb(x) − k0| < ǫ. It
is straightforward, however, to re-derive the results if the constraints on
the gains are changed to the form used here:|kf (x) − k0|/k0 < ǫ ,
|kb(x) − k0|/k0 < ǫ. In this paper we consider the latter case since it
makes the analysis cleaner without changing the results of [1] significantly.
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Fig. 2. Information graph for the 1-D flock ofN agents and1 reference
agent. With the asymmetric control gains studied here,w(i, i + 1) = 1 +
ǫ, w(i + 1, i) = 1 − ǫ.

Theorem 3:With the control gains given in (9) and for
any fixedǫ ∈ (0, 1), the stability marginSo of the coupled-
ODE model (5) is uniformly bounded from below, and is
given by:

So ≥
b0 −

√

b2
0 − 8k0(1 −

√
1 − ǫ2)

2
= O(1). �

Remark 1:Comparing the results above to the conclu-
sions of [1] that are summarized in Theorem1, we observe
that even with an arbitrarily (but fixed and non-vanishing)
amount of asymmetry, the stability margin of the system
can be bounded away from zerouniformly in N . This
asymmetric design therefore makes the resulting control law
highly scalable; it eliminates the degradation of closed-loop
performance with increasingN . We note that although the
control law is the same as that analyzed in [1], the stronger
conclusion we obtained - compared to that in [1] - is due
to the fact that our analysis does not rely on a perturbation-
based technique that was used [1], which limited the analysis
in [1] to vanishingly smallǫ.

In addition, comparison of Theorems2 and3 also provide
us with a quantitative measure of the error introduced in
approximating the flock dynamics with a PDE. More details
on the approximation error is provided in SectionIV-A . �

III. STABILITY MARGIN OF THE COUPLED-ODE MODEL

OF FLOCK DYNAMICS

In this section, we provide a proof of Theorem3. The
analysis of the eigenvalues of the state matrixA relies on
the spectrum of thedirected grounded Laplacianof the
flock. Before we proceed further, we formally define the
information graph for the flock.

Definition 3: An information graphis a weighted digraph
G = (V,E), which associates a weightw(i, j) with every
edge(i, j) ∈ E in the graph. The set of edgesE ⊂ V ×
V determines the information flow and specify which pairs
of nodes (agents) are allowed to exchange information to
compute their local control actions. Two nodesi and j are
calledneighborsif (i, j) ∈ E. �

Figure2 depicts the information graph for the 1-D flock.
In our case, with the control gains given in (9), we assign the
weight 1 + ǫ to the information from its front neighbor and
1−ǫ to the information from its back neighbor. For example,
for node1, the weights we assigned to its associated edges
(0, 1), (2, 1) are1 + ǫ and1 − ǫ respectively.

To precisely define thedirected grounded LaplacianLg of
the flock, recall that theLaplacian matrix of a graphG =

(V,E) with n nodes is defined as

[LN×N ]ij =











∑N
k=1 w(i, k) i = j, (i, k) ∈ E,

−w(i, j) i 6= j, (i, j) ∈ E,

0 otherwise.

(16)

The directed grounded LaplacianLg matrix of G with
respect to a set of grounded nodesVg ⊂ V is the submatrix
of L obtained by removing fromL those rows and columns
corresponding to the grounded nodesVg in V, whereVg

here is the node corresponding to the reference agent. The
directed grounded Laplacian of the 1-D flockLg is given
in (12).

We now present a formula for the stability margin of
the flock in terms of the smallest eigenvalue of its directed
grounded Laplacian.

Lemma 1:With the control gains given in (9) and 0 <
ǫ < 1, the stability margin of the flockSo with coupled-
ODE model (5) is given by

So =

{

b0
2 , if λ1 ≥ 4k0/b2

0,
b0−

√
b20−4k0λ1

2 , otherwise.
(17)

whereλ1 is the smallest eigenvalue of the directed grounded
LaplacianLg. �

Proof 1 (Proof of Lemma1): Our proof follows a similar
line of attack as of [10, Theorem 4.2]. From Schur’s triangu-
larization theorem, every square matrix is unitarily similar to
an upper-triangular matrix. Therefore, there exists an unitary
matrix U such that

U−1LgU = Lu,

where Lu is an upper-triangular matrix, whose diagonal
entries are the eigenvalues ofLg. We now do a similarity
transformation on matrixA.

Ā :=(U−1 ⊗ I2)A(U ⊗ I2)

=(U−1 ⊗ I2)(IN ⊗ A1 + Lg ⊗ A2)(U ⊗ I2)

=IN ⊗ A1 + Lu ⊗ A2.

The above is a block upper-triangular matrix, and the block
on each diagonal isA1 + λℓA2, whereλℓ ∈ σ(Lg), where
σ(·) denotes the spectrum (the set of eigenvalues). Since
similarity preserves eigenvalues, and the eigenvalues of a
block upper-triangular matrix are the union of eigenvalues
of each block on the diagonal, we have

σ(A) = σ(Ā) =
⋃

λℓ∈σ(Lg)

{σ(A1 + λℓA2)}

=
⋃

λℓ∈σ(Lg)

{

σ

[

0 1
−k0λℓ −b0

]

}

. (18)

It follows now that the eigenvalues ofA are the rootss of
the following characteristic equation

s2 + b0s + k0λℓ = 0. (19)



For eachℓ ∈ {1, 2, · · · , N}, the two roots of the character-
istic equation are denoted bys±ℓ ,

s±ℓ =
−b0 ±

√

b2
0 − 4k0λℓ

2
. (20)

The least stableeigenvalue is the one closet to the imaginary
axis among them, it is denoted bysmin. It follows from
Definition 2 that So = |Re(smin)|.

Depending on the discriminant in (20), there are two cases
to analyze:

(1) If λ1 ≥ 4k0/b2
0, then the discriminant in (20) for each

ℓ is non-positive, which yields

So = |Re(smin)| =
b0

2
.

(2) Otherwise, the less stable eigenvalue can be written as

s+
ℓ =

−b0 +
√

b2
0 − 4k0λℓ

2
.

The least stable eigenvalue is obtained by settingλℓ = λ1,
so that

So = |Re(smin)| =
b0 −

√

b2
0 − 4k0λ1

2
. �

We are now ready to present the proof of Theorem3.
Proof 2 (Proof of Theorem3): From Lemma1, we see

that the smallest eigenvalue of the directed grounded Lapla-
cian plays an important role in determining the stability
margin of the 1-D flock. To get an lower bound of the
stability margin, a lower bound for the smallest eigenvalue
is needed. For the general asymmetric case (0 < ǫ < 1), it
follows from Eq.(6)-(7) of [14] that the eigenvalues ofLg,
denoted byλℓ, are given by

λℓ = 2 − 2
√

1 − ǫ2 cos θℓ, ℓ ∈ {1, 2, · · · , N}, (21)

whereθℓ is the ℓ-th root of the following equation
√

1 + ǫ

1 − ǫ
sin(N + 1)θ = sin Nθ, (22)

where θ 6= mπ, m ∈ Z, the set of integers. From for-
mula (21), we see that the eigenvalues ofLg are real and
positive, and moreover,0 < λ1 < λ2 < · · · < λN . To
see why, first notice that we only need consider the roots
of (22) in the open interval(0, 2π), in which there are2N
nontrivial isolated roots, see Figure3 for an example. The
roots located inR \ (0, 2π) are just2mπ (m ∈ Z) distance
away from those in(0, 2π). Moreover, if θ0 ∈ (0, 2π) is a
solution of (22), then2π − θ0 is also a solution. Therefore,
we can restrict the domain of analysis to(0, π), in which
there areN isolated roots. The ordering of the eigenvalues
follows from cos θ being a decreasing function in(0, π).

It also follows thatθ1, the smallest positive root of (22),
leads to the smallest eigenvalue. It is straightforward to show
that theℓ-th rootθℓ is in the open interval( (2ℓ−1)π

2(N+1) , (2ℓ+1)π
2(N+1) ).

Now, the smallest eigenvalue of the directed grounded Lapla-
cian Lg is given by

λ1 = 2 − 2
√

1 − ǫ2 cos θ1, (23)
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(1 + ǫ)/(1 − ǫ) sin((N + 1)θ)

sin(Nθ)

Fig. 3. Graphical solutionθ of
p

(1 + ǫ)/(1 − ǫ) sin((N + 1)θ) =
sin(Nθ) with ǫ = 0.1 andN = 3.

whereθ1 ∈ ( π
2(N+1) ,

3π
2(N+1) ). Take the limitN → ∞, we

have the following infimum for the smallest eigenvalue:

inf
N

λ1 = 2 − 2
√

1 − ǫ2. (24)

To prove Theorem3, we consider the following two
cases: (1) Case 1:λ1 ≥ 4k0/b2

0. According to Lemma1,
the stability margin is given bySo = b0/2. (2) Case 2:
λ1 < 4k0/b2

0. From Lemma1, the stability margin is given
by

So =
b0 −

√

b2
0 − 4k0λ1

2
.

Sinceλ1 ≥ 2 − 2
√

1 − ǫ2, the stability margin for this case
is bounded below

So ≥
b0 −

√

b2
0 − 8k0(1 −

√
1 − ǫ2)

2
. (25)

Notice that the above lower bound (25) is smaller thanb0/2
(value ofSo in case 1), we complete the proof. �

A. Numerical comparisons

In this section, we present the numerical comparison re-
sults between the stability margins of the flock with symmet-
ric control (Theorem1) and with asymmetric control (The-
orem 3). The stability margins are obtained by numerically
evaluating the eigenvalues of the state matrixA. Figure 4
depicts the comparison results between the stability margins
for the two cases: symmetric and asymmetric controls. The
nominal control gains used arek0 = 1, b0 = 0.5, and
for asymmetric control, the amount of asymmetry used is
ǫ = 0.1.2 We note that for asymmetric control, the control

2Whenǫ is large, numerical errors in eigenvalue computations arise when
the dimension of the matrixA is large. This is observed by numerically
comparing the eigenvalues of the matrix with those of a random similarity
transformation of the matrix, which in MATLABc© produces distinct results.
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Fig. 4. Stability margin comparisons between the flock with symmetric
control and asymmetric control.

gains satisfy the second case of Lemma1, so that the
Theorem 3 predicts that the stability margin is bounded

below by (b0 −
√

b2
0 − 8k0(1 −

√
1 − ǫ2)/2 ≈ 0.0209. We

can see from Figure4 that the stability margin of the flock
with asymmetric control is indeed bounded away from0
uniformly in N , and the prediction of the theorem is quite
accurate. Furthermore the stability margin with asymmetric
control is much larger than that with symmetric control.

IV. STABILITY MARGIN OF THE PDE APPROXIMATION OF

FLOCK DYNAMICS

In this section, we present the stability margin of the flock
with PDE model (13) and boundary condition (8). Since the
PDE model (13) and boundary condition (8) are linear and
homogeneous, we are able to apply the method of separation
of variables. We assume a solution of the form̃p(x, t) =
∑∞

ℓ=1 φℓ(x)hℓ(t). Substituting it into PDE (13), we obtain
the following time-domain ODE

d2hℓ(t)

dt2
+ b0

dhℓ(t)

dt
+ k0µℓhℓ(t) = 0, (26)

whereµℓ solves the following boundary value problem

Lφℓ(x) = 0, L :=
d2

dx2
+ 2ǫN

d

dx
+ µℓN

2, (27)

with the following boundary condition, which comes
from (8):

dφℓ

dx
(0) = 0, φℓ(1) = 0. (28)

Taking Laplace transform of both sides of (26) with
respect to the time variablet, we have the following charac-
teristic equation for the PDE model

s2 + b0s + k0µℓ = 0. (29)

To prove Theorem2, we need the following lemma.
Lemma 2:The eigenvaluesµℓ (ℓ ∈ {1, 2, · · · }) of the

Strum-Liouville operatorL with boundary condition (28) for
0 < ǫ < 1 are real and satisfy

µℓ = ǫ2 +
a2

ℓ

N2
, (30)

where aℓ is the root of −aℓ/(ǫN) = tan(aℓ), and in
particular,aℓ ∈ ( (2ℓ−1)π

2 , ℓπ). �

Proof 3 (Proof of Lemma2): We first multiply both sides
of (27) by e2ǫNxN2, we obtain the standard Sturm-Liouville
eigenvalue problem

d

dx

(

e2ǫNx dφℓ(x)

dx

)

+ µ
(ǫ)
ℓ N2e2ǫNxφℓ(x) = 0. (31)

According to Sturm-Liouville Theory, all the eigenvalues
are real and have the following orderingµ1 < µ2 < · · · ,
see [15]. To solve the boundary value problem (27)-(28), we
assume solution of the form,φℓ(x) = erx, then we obtain
the following equation

r2 + 2ǫNr + µℓN
2 = 0,

⇒ r = −ǫN ± N
√

ǫ2 − µℓ. (32)

Depending on the discriminant in the above equation, there
are three cases to analyze:

1) µℓ < ǫ2, then the eigenfunctionφℓ(x) has the

following form φℓ(x) = c1e
(−ǫN+N

√
ǫ2−µℓ)x +

c2e
(−ǫN−N

√
ǫ2−µℓ)x, wherec1, c2 are some constants.

Applying the boundary condition (28), it’s straightfor-
ward to see that, for non-trivial eigenfunctionsφℓ(x)
to exit, the following equation must be satisfied(ǫN −
N

√

ǫ2 − µℓ)/(ǫN + N
√

ǫ2 − µℓ) = e2N
√

ǫ2−µℓ . For
positiveǫ, this leads to a contradiction, so there is no
eigenvalue for this case.

2) µℓ = ǫ2, then the eigenfunctionφℓ(x) has the follow-
ing form

φℓ(x) = c1e
−ǫNx + c2xe−ǫNx.

Again, applying the boundary condition (28), for non-
trivial eigenfunctionsφℓ(x) to exit, we have the fol-
lowing ǫN = −1, which implies there is no eigenvalue
for this case either.

3) µℓ > ǫ2, then the eigenfunctionφℓ(x) has the fol-
lowing form φℓ(x) = e−ǫNx(c1 cos(N

√

µℓ − ǫ2x) +
c2 sin(N

√

µℓ − ǫ2x)). Applying the boundary condi-
tion (28), for non-trivial eigenfunctionsφℓ(x) to exit,
the eigenvaluesµℓ must satisfy (30) and aℓ solves
the transcendental equation−aℓ/(ǫN) = tan(aℓ).
A graphical representation of the functionstan x
and −x/ǫN with respect tox shows thataℓ ∈
( (2ℓ−1)π

2 , ℓπ). �

We now present the proof for Theorem2.
Proof 4 (Proof of Theorem2): From Lemma2, we see

that a1 ∈ (π/2, π), and (30) implies µ1 → ǫ2 from above
as N → ∞, i.e. infN µ1 = ǫ2. From the characteristic



equation (29), the eigenvalues of the PDE model are given
by

s±ℓ =
−b0 ±

√

b2
0 − 4k0µℓ

2
. (33)

Depending on the discriminant in (33), there are two cases
to analyze: (1) Ifµ1 ≥ 4k0/b2

0, then the discriminant in (33)
for eachℓ is non-positive, which yieldsSp = |Re(smin)| =
b0/2. (2) Otherwise, the less stable eigenvalue can be written
as

s+
ℓ =

−b0 +
√

b2
0 − 4k0µℓ

2
.

The least stable eigenvalue is obtained by settingµℓ = µ1,
so that

Sp = |Re(smin)| =
b0 −

√

b2
0 − 4k0µ1

2
≥ b0 −

√

b2
0 − 4k0ǫ2

2
.

Again, note that the above lower bound is smaller thanb0/2
(value ofSp in case 1), we complete the proof. �

A. Error analysis of the PDE approximation

We next provide an error analysis on the PDE approxi-
mation, which answers the question on how well the PDE
model approximates the flock dynamics. The characteristic
equation of the coupled-ODE model of the flock that leads
to the least stable eigenvalue iss2 + b0s + k0λ1 = 0, while
the corresponding characteristic equation of the PDE model
is s2 + b0s + k0µ1 = 0. Comparing the two, it is obvious
that the error in the stability margin prediction by the PDE
approximation is determined by the difference betweenλ1,
the smallest eigenvalue of the directed grounded Laplacian
Lg, andµ1, the smallest eigenvalue of the Sturm-Liouville
operatorL. Since the PDE model is developed as an ap-
proximation of the flock in the limitN → ∞, we consider
the respective eigenvalues in this limit. Specifically, define
λ̄1 := limN→∞ λ1 and µ̄1 = limN→∞ µ1. The following
lemma quantifies the difference betweenµ̄1 and λ̄1, whose
proof follows in a straightforward manner from (24) and (30).

Lemma 3:The difference between the smallest eigenval-
ues of the directed grounded LaplacianLg and the Sturm-
Liouville operatorL is asymptotically

λ̄1 − µ̄1 = 2 − 2
√

1 − ǫ2 − ǫ2 =
1

4
ǫ4 + O(ǫ6), (34)

where the formula holds for arbitraryǫ ∈ [0, 1). �

Figure5 shows numerical comparisons between the small-
est eigenvalue of the directed grounded LaplacianLg with
that of the Sturm-Liouville operatorL for different amounts
of asymmetry. The eigenvalues of the directed grounded
Laplacian are obtained by using the prediction (21)-(22). 3

For the Sturm-Liouville operatorL, we use formulae (30),
which involves numerically solving the associated tran-
scendental equation−aℓ/(ǫN) = tan(aℓ) to compute its

3Direct eigenvalue computation in MATLABc© works only for smallǫ.
When the value ofǫ is larger than0.2, MATLAB c© produces erroneous
results, since the eigenvalues ofLg and those of a random similarity
transformation computed by MATLABc© are seen to be different.
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Fig. 5. Numerical comparisons between the smallest eigenvalue of the
directed grounded Laplacian,λ1, and that of the Sturm-Liouville operator,
µ1. The difference betweenλ1 and µ1 is negligible for smallǫ (even for
small N ), but noticeable for largeǫ.

eigenvalues. The amounts of asymmetry used areǫ = 0.1
and ǫ = 0.9 respectively. We plot the smallest eigenvalues
of the directed grounded Laplacian and the Sturm-Liouville
operator as a function ofN , the number of agents in the
flock. From Figure5, we can see that for small amount of
asymmetryǫ = 0.1, the smallest eigenvalue of the Sturm-
Liouville operator matches that of the directed grounded
Laplacian very well, especially whenN is large. However,
for large amount of asymmetryǫ = 0.9, the difference
between the smallest eigenvalues is not negligible anymore.

The next result describes the stability margin approxima-
tion error introduced by the PDE model due to the control
asymmetry.

Theorem 4:The difference between the predictions of the
stability margin of the flock by the coupled-ODE model (5)
and the PDE model (13)-(8) is, asymptotically,

So − Sp =














0, if b20
4k0

≤ ǫ2,
b0
2 (1 − 2k0ǫ2

b20
) + O(ǫ4) if ǫ2 <

b20
4k0

≤ 2 − 2
√

1 − ǫ2

k0

4b0
ǫ4 + O(ǫ6) if 2 − 2

√
1 − ǫ2 <

b20
4k0

where asymptotically means the formula holds forN → ∞.
�

Proof 5 (Proof of Theorem4): For future use, define
α :=

b20
4k0

. It follows from the discussion preceding
Lemma 3 that the relevant roots of the characteristic
equations for the coupled-ODE and PDE models are
1
2b0

(

−1 + (1 − λ̄1/α)1/2
)

and 1
2b0

(

−1 + (1 − µ̄1/α)1/2
)

,
respectively. It follows from Lemma3 that2(1−

√
1 − ǫ2) =

λ̄1 > µ̄1 = ǫ2. Hence, we have three cases to consider: (i)
α ≤ µ̄1, (ii) µ̄1 < α ≤ λ̄1, and (iii) λ̄1 < α. For convenience



of asymptotic analysis, we first definēSo := limN→∞ So and
S̄p := limN→∞ Sp.

1) α ≤ ǫ2 = µ̄1(< λ̄1): In this case, the real parts of the
least stable eigenvalues for both the coupled-ODE and
PDE models are−b0/2. HenceS̄o − S̄p = 0.

2) ǫ2 < α ≤ λ̄1: In this case the discriminant in the
coupled-ODE model’s least stable eigenvalue is zero
or negative, so that̄So = b0/2, while the discriminant
in the PDE model’s least stable eigenvalue is positive,
which makes it real. In this case it is straightforward
to show that

S̄o − S̄p =
1

2
b0(1 − µ̄1/α)1/2 =

1

2
b0(1 − ǫ2

2α
) + O(ǫ4)

=
b0

2
(1 − 2k0ǫ

2

b2
0

) + O(ǫ4).

3) λ̄1 < α: In this case both̄Sp andS̄o are real, and their
values are given by the infima in Theorems2 and 3.
The difference between them is

S̄o − S̄p =
b0

2

(

(1 − ǫ2

α
)1/2 − (1 − 2 − 2

√
1 − ǫ2

α
)1/2

)

=
b0

2

( ǫ4

8α
+ O(ǫ6)

)

=
k0

4b0
ǫ4 + O(ǫ6),

where the second equality follows upon using Taylor
series expansions.

The results in the theorem follows upon noting thatS̄o, S̄p

are asymptotic values ofSo andSp. �

Remark 2: It may seem from above that the “approxi-
mation error” (the error in the stability margin prediction
by the PDE approximation) is minimized for case (i), when
ǫ2 ≥ b20

4k0
. However, this is due to the fact that the stability

margin only depends on the real part of the eigenvalues.
In case (i), it is possible that the least stable eigenvalue
predicted by the PDE approximation is quite different from
that of the ODE model, due to the difference in the imaginary
part. In fact, the error in the prediction of the least stable
eigenvalue by the PDE model is smallest in case (iii), when
both the ODE and PDE eigenvalues are real. In case (iii),
we see that if the amount of asymmetry0 < ǫ ≪ 1, then
the approximation error isO(ǫ4) for large N . Thus, the
error introduced by the PDE approximation is negligible for
small amounts of asymmetry. However, when the amount
of asymmetry is large, the PDE approximation has a non-
negligible error. �

V. SUMMARY

We studied the stability margin of a large 1-D flock
of double-integrator agents. The control is decentralized:
the control signal at every agent depends on the relative
measurements from its nearest neighbors. Inspired by the
previous works [1], [6], we examined the role of asymmetry
in the control gains on the stability margin of the flock.
We showed that with any fixed amount of asymmetry in the
control gains, the stability margin of the 1-D flock can be
bounded away from0, uniformly in N . This eliminates the
problem of loss of stability margin with increasingN that is

seen with symmetric control. In this paper, the analysis of the
stability margin avoids the perturbation method used in [1],
[6], which limited the analyses in those papers to vanishingly
small amount of asymmetry. We also provide an error bound
on the stability margin predicted by the PDE approximation.

It is noteworthy that heterogeneity in control gains and
agent dynamics has little effect on the stability margin [13]
and sensitivity to disturbances [16], while asymmetry has a
significant impact, as we showed here. In this paper we do
not examine the issue of disturbance propagation, though
numerical evidence suggests asymmetry also reduces the
sensitivity to external disturbances; see [1], [17]. This topic
is a subject of ongoing research.
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