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Stability and robustness of large platoons of vehicles with
double-integrator models and nearest neighbor interactio

He Had, Prabir Barooah

SUMMARY

We study the stability and robustness of a large platoon bicles, where each vehicle is modeled
as a double integrator, for two decentralized control dechires: predecessor-following and symmetric
bidirectional. In the predecessor-following architeefithe control action on each agent only depends on the
information from its immediate front neighbor, while in tegmmetric bidirectional architecture, it depends
equally on the information from both its immediate frontgtgior and back neighbor. We prove asymptotic
stability of the formation for a class of nonlinear conteod with sector nonlinearity, with the linear
controller as a special case. We show the convergence rtite pfedecessor-following architecture is much
faster than that of the symmetric bidirectional architeztiHowever, the predecessor-following architecture
suffers high algebraic growth of initial errors. We alsoaidish scaling laws (withV) of certain Hoo
norms of the formation that measure its robustness to exdtdisturbances for the linear case. It is shown
that the robustness performance grows geometrically fior predecessor-following architecture, but only
polynomially in NV for symmetric-bidirectional architecture. Extensive rariwal simulations are conducted
to verify the predictions for the linear case and empiricalitimate the corresponding performance metrics
for a saturation-type nonlinear controller. Based on thadital and numerical results, it is seen that the
symmetric bidirectional architecture outperforms thedpeessor-following architecture in all measures of
performance. Within the predecessor-following archiiest the non-linear controller is seen to perform
better in general than the linear one. A number of designaimiels are provided based on these conclusions.
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1. INTRODUCTION

Cooperative control of multi-agent systems has spurred xdansive interest in the control
community because of its wide range of applications suchuésnzated highway systeni,[2],
coordination of aerial, ground, and autonomous vehiclestdoveillance and rescu8][ spacecraft
formation control for science missiond][ and collective behavior of bird flocks and animal
swarms p]. Among these applications, one of the most well studiedblemms is autonomous
intelligent cruise control of large vehicular platoonse §& 7, 8, 9] and the reference therein. The
primary goal of autonomous intelligent cruise control isrtorease traffic throughput and safety.
One of the most important problems in autonomous intelligemse control of platoons is string
instability or slinky-type effect10, 11, 12]. To solve this problem, different control policies and
control architectures are considered. 14][ a constant headway control law is developed to insure
string stability. However, the constant headway policy ts¢lf is not enough, the headway has
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to belarge enoughto avoid the problems associated with constant spacingy§li3]. Since
one of the main motivations for automated platooning is toiee higher highway capacity by
making cars move with a small inter-vehicle separationfehie a need to study the constant
spacing policy. In was shown inl], 14, 15 that with constant spacing policy, the leader’s
information need to be broadcasted to the following vekitbeassure string stability. Nevertheless,
the inevitable time delay and package drop in broadcadtimtgtader’s information will cause string
instability [16]. This leads to the study of decentralized control architex; i.e. each vehicle can
only use measurements of relative position and/or velatitly respect to its nearest neighbors.

Two decentralized control architectures that are commeramined are predecessor-following
and bidirectional architectures. In theedecessor-followingrchitecture, the control action on each
vehicle only depends on the relative information from itsnigdiate predecessor, i.e. the vehicle in
front of it. In the bidirectional architecture, the contdapends on the relative information from both
its immediate predecessor and follower. Within the bidimsal architecture, the most commonly
analyzed case is trymmetric bidirectionahrchitecture, in which the control at a vehicle depends
on the information from both of its neighboegjually.

A typical issue in distributed/decentralized control iatths the number of agents in the system
increases, the performance of the closed-loop degradgsgssively. It has been established that
the predecessor-following architecture suffers from hsghsitivity to external disturbances with
linear control L7, 18]. High sensitivity to external disturbance is typicallyfeged to as slinky-
type effect [L9, 20] or string instability P1]. Seileret al. showed that with linear control, the poor
robustness performance with the predecessor-followickjicture is independent of the design of
the controller, but a fundamental artifact of the architeefL4]. The robustness performance can
be improved by non-identical linear controllers but at tkpense of the control gains increasing
without bound as the number of the vehicles increas&]. It was shown in 14, 23, 15, 21] that
the symmetric bidirectional architecture also suffersifieoor sensitivity to external disturbances.

Although a rich literature exist on sensitivity to disturisas for predecessor-following and
symmetric bidirectional architectures with linear cohtto the best of our knowledge, a precise
comparison of these two architectures is lacking. Moreawvesst of the works on formation control
have been limited to linear control laws, while little is kmo about nonlinear control. Nonlinear
terms in the closed loop dynamics may arise from either mefudly designed nonlinear control
laws (if beneficial) or unavoidable non-linearities in tlggat dynamics, such as actuator saturation.
Both of these cases can be analyzed by considering line@rgpfaamics and nonlinear controllers.

In this paper we examine the stability and robustness (®éhsito external disturbances) of
large platoon of vehicles with linear as well as a class ofinear controllers, for both predecessor-
following and symmetric bidirectional architectures. Baehicle is modeled as a fully actuated
point mass (double-integrator). A few authors have usetidider kinematic models by ignoring
vehicle inertia. However, in general kinematic modelsdkrintegrator) fail to reproduce the slinky-
type effects that are exhibited by kinetic models (doublegrator).

We prove stability of the closed loop with an arbitrary numbg agents for a class of non-
linear controllers where the control gain functions sgti#rtain sector conditions. The difference
between the transient responses of the two architecturease of linear control is explained
by the expressions we derive for the least stable eigenltlee closed-loop state matrix and
its multiplicity. In particular, we show that the predeaas®llowing architecture has a larger
convergence rate compared to the symmetric bidirectiordiitecture:O(1) vs. O(1/N?). It
is worthwhile to mention the convergence rate of the fororativith symmetric bidirectional
architecture scales poorly as a functionéfeven with centralized LQR controRf]. The real
part of the least stable eigenvalue with LQR control scata8(@/N). However, the predecessor-
following architecture suffers from algebraic growth atial conditions due to the high multiplicity
of the least stable eigenvalue. For the non-linear cont@ktudy the transient performance through
numerical simulations. The simulations show that in thedpoessor-following architecture, the
transient response is significantly improved by using aradtin-type non-linearity in the control
gain instead of a linear control.
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Next, we examine the closed-loop’s performance in terms hef $ensitivity to external
disturbances. Specifically, we examine thist-to-last amplification factqrdefined as the .
gain from a disturbance injected at the first vehicle to theitm tracking error of the last
vehicle andall-to-all amplification factor which is defined as th&, gain from the disturbances
acting on all the vehicles to their position tracking errdrscase of linear controllers, we show
that whenN is large, the first-to-last amplification factor, which bews aH,, norm, grows
as O(a), a > 1, for predecessor-following architecture but only @éN) for the symmetric
bidirectional architecture. The all-to-all amplificatidactor scales a®)(aV) for predecessor-
following architecture while a®(N?) for the symmetric bidirectional architecture. The firstules
is known in the literaturel[4]. These results establish a precise comparison betweenlibstness
of symmetric bidirectional and predecessor-followinghétectures with linear control. Namely,
symmetric bidirectional architecture has a much smallesisigity to external disturbances.

Establishing scaling laws for robustness metrics with hio@ar controllers is challenging.
We therefore study the response in the non-linear caseghrextensive numerical simulations,
with both sinusoidal and random disturbances as inputs,eatichate performance metrics from
simulation data. We observe from these studies that, wittérpredecessor-following architecture,
a nonlinear controller with a saturation-type non-lingagerforms better than the corresponding
linear one. In the symmetric bidirectional architectutee wifference between the linear and
nonlinear controller’s performance is not significant.

The theoretical as well as numerical simulations lead ttageidesign guidelines. Comparing
all four combinations (linear, non-linear, predecessdlofang and symmetric bidirectional), we
observe that for the same number of agents, the symmetrietiidnal architecture performs
considerably better (both in terms of transient decay arisimess to disturbances) than the
predecessor following one, and this conclusion is validboth the linear and non-linear control
laws. Thus, the added complexity and cost of the symmetdadutional architecture due to
additional sensors is justified. If stringent cost consatiens allow only the predecessor following
architecture, then the non-linear controller should bedusesr the linear one. Even with a linear
control law actuator saturation will make the overall systeloser to the closed loop non-linear
system studied. Therefore, the fact that both the linear modinear controllers with sector
nonlinearities are seen to perform comparably in the symamkidirectional architecture can be
seen as a “robustness to modeling errors” of this architectBiome of the results for the linear
predecessor following case may be known or easily derivad xisting results. We nevertheless
include them for the sake of completeness.

The conclusions about the architectures are derived oniytife specific control laws we
investigated. The local control laws at the vehicles areeeibf PD (proportional-derivative) type
(in the linear case), or such that their linearization atbtive origin are of PD-type (in the non-
linear case). Nevertheless, analysis carried out withdbigroller structure and double integrator
vehicle models is relevant even if there are additional dyinaelements in the loop (i.e, either in
the controller or in the vehicle dynamic model), at leasthia linear case. Reasons for this can be
seen from the results i2f], which considered vehicle models with two integratorsariess with an
additional transfer function (to model powertrain dynashiand arbitrary LTI compensators. First,
a dynamic controller cannot have a zero at the origin sinadlitesult in a pole-zero cancellation
causing the steady-state errors to grow without boundascreases43]. Second, a dynamic
controller cannot have an integrator either if the vehictelel has two integrators. For if it does, the
closed-loop platoon dynamics become unstable for a suifigiearge values ofV [23]. As a result,
any allowable dynamic element in the loop must essentialiyas a static gain at low frequencies.
The results of 23] indicate that the principal challenge in controlling atplan of vehicles arises
due to the presence of a double integrator with its unbougdédat low frequencies. Hence, the
issues discussed here with a PD controller structure isralsgant to the case where additional
dynamic elements appear in the loop.

In terms of the stability analysis with non-linear conterd, our work closely parallels that
of [25], which considers arbitrary information graphs (insteddhe 1-D graph of a platoon we
consider). However, the results @] are not applicable to the scenario considered here, siece w
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Figure 1. Desired geometry of a 1-D network/éfdouble-integrator agents. The reference agent with index
“0” need not to be real agent, it merely provides the refeeerajectory of the formation to agent

consider relative velocity feedback whil2g] considers absolute velocity feedback. Furthermore,
the assumption of symmetry made 6] precludes the predecessor-following architecture from
their formulation. In terms of sensitivity to external didtances with linear control, our work is
related to P6, 27, 28] and [29, 30]. In [26, 27], it is shown that if the information graph used
is undirected and has bounded degree, the maximum errodsirusoidal disturbances can not
be made independent of the size of the formation.2§|,[Veerman showed that the first-to-last
amplification grows linearly inV for the symmetric bidirectional case, but grows expondigtia
N for asymmetribidirectional architecture, where asymmetric means tfegrimation from its front
and back neighbor are weighted differently. Scaling lawsestain H, norms from disturbance to
outputs that quantify a number of performance measuresxamaired in P9, 30]. In particular,
it was shown that the “all-to-all’H, norm scales exponentially itv for predecessor-following
architecture (although with absolute velocity feedbad()],[ but asO(N?) for the symmetric
bidirectional architecture2f], which is the same as that of the all-to-&ll,, norm established in
this paper. They also show that the scaling laws forlhenorm hold for arbitrary but fixed number
of front and back neighbors and arbitrary stabilizing feszkbgains.

The rest of this paper is organized as follows. Sectipresents the problem statement. Seciion
and Sectiont present the stability and robustness analysis, respggtaleng with corresponding
numerical studies. The paper ends with a summary in Setion

2. PROBLEM STATEMENT

We consider the formation control &f homogeneous agents which are moving in 1-D Euclidean
space, as shown in FiguteThe position of the-th agent is denoted by and each agent is modeled
as a double integrator:

pz:uz+wl7 26{17255N}7 (1)

whereu; is the control input, anay; is the external disturbance. This is a commonly used model
for vehicle dynamics in studying vehicular platoons, arslites from feedback linearization of non-
linear vehicle dynamicsifi, 31].

The control objective is to make the network of agents maingarigid formation geometry
while following a desired trajectory. The desired geomaedfythe formation is specified by the
desired gapsA(;_,; fori e {1,---, N}, whereA(;_, ; is the desired value qf; () — p;(t).

The desired inter-vehicular gaps;_, ;)'s are positive constants and they have to be specified in a
mutually consistent fashiom ; ) = A ;) + A k) for every triple(s, j, k) wherei < j < k. The
desired trajectory of the formation is provided in terms dicttiousreference agent with index
whose trajectory is denoted Ipyj(¢). The information on the desired trajectory of the formati®n
only provided to agent. The desired trajectory of theth agentp;(¢), is given by

pi () = pi(t) — Ay = P5(t) — Y A1) )
=1

In this paper, we consider the following tvdecentralizeatontrol architectures:

1. Predecessor-following architectur€he control action at theth agent depends on the relative
position and velocity measurements from its immediate tfrogighbor. In particular, we

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2012)
Prepared usingncauth.cls DOI: 10.1002/rnc



consider the following decentralized control law:

i = — f(pi —pi-1 +AG-1,5)) — 9(Pi — Di-1), 3

where: € {1,2,--- , N} andf,g: R — R are scalar functions.

2. Symmetric bidirectional architecturdhe control action at thé-th agent depends on the
relative position and velocity measurements from its imiaiedfront and back neighbors,
and the information from its front and back neighbors aregiviesd equally. In particular, we
consider the following decentralized control law:

ui = — f(pi — pic1 +Da—1,5)) — 9(Bi — Di1)
= f(pi = pit1 — Aiv1)) — 9(Bi — Piv1),
un =— f(py —pNn—1 +Awv-1,n) — 9(PN — PN-1), 4)
wherei € {1,2,--- ,N —1}andf,g: R — R.
In both architectures, the information needed to computectintrol action at each agent can be
easily obtained by on-board sensors such as radars, sihceetative position and velocity are

used in the control.
In this paper, we make the following assumptions.

Assumption 1

In the above controllerssj and @), the possibly nonlinear functiorfsg : R — R are odd functions,
which are smooth enough to guarantee the existence of @olofi the coupled ODEs. Each
agenti knows the desired gapS;_; ;), A¢;,i+1), While only agentl knows the desired trajectory
po(t) of the fictitious reference agent. The reference trajeciorg constant velocity type, i.e.,
pi(t) = vot + ¢o for some constantsy, ¢p. The first agent must have access to its own absolute
position and velocity information. a

To facilitate analysis, we define the following positioncking error:
Di = pi — D, )

wherep; is given by @). The closed-loop dynamics for the predecessor-folloveirahitecture can
now be expressed as the following coupled-ODE model

pi =— f(Bi — Pim1) — 9(Bi — Pi—1) +ws, i€ {1,2,--- N} (6)
The closed-loop dynamics for the symmetric bidirectiomehiecture are
pi =— F(Bi — Pi-1) — 9(0i — Di-1) — F(Bi — Pis1) — 9(Di — Pi1) +wi, i <N,
pyv =— f(Bn — Pn—-1) — g(DN — PN-1) + WN. (1)

Note thatpy(t) = po(t) = 0, since the reference agent perfectly tracks its desirgectary. The
system can be expressed in the state space form:

z = f(wi)v (8)
where the state and disturbance vectors are defined :as[p1, p1,--- ,pn,pn|7 and w :=
[wi, -+ ,wy]T. The special cas¢(z) = koz and g(z) = byz (Wherez is the argument ané, >

0,bo > 0) in the above coupled-ODEs correspond to the casim@dr controlin each architecture.
In the case of linear control, the closed-loop can be reptedes:

i = Ar + Bw, 9

where A is the state matrix that depends éf by and B is the input matrix with appropriate
dimension.

In this paper, we study the stability of the origin= 0 of the undisturbed system = f(z,0)
given in @) with linear as well as a class of nonlinear controllers foo farchitectures. In addition,

we examine the sensitivity of position tracking errprs [py,--- , pn|? to the external disturbances
w=[wy, - ,wy|.
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3. STABILITY ANALYSIS

In this section, we present the stability analysis of theiaric = 0 of the undisturbed system
4 = f(x,0) given in @) with both linear and nonlinear controllers. For the linease, we also
derive formulae showing how the least stable eigenvaluaettate matrix4 in (9) changes with
increasing size of the formation. This eigenvalue quastifiee system’s convergence rate with
respect to initial errors. For the case of non-linear cdlerowe provide sufficient conditions
for asymptotic stability. Since convergence rates for hioear systems are difficult to obtain
analytically, we perform numerical simulations to stud tbonvergence rate with non-linear
controllers and compare with corresponding linear colgrsl All simulations for studying transient
performance correspond to the following scenario: thaudistnce acting on each agent is zero; we
perturb the initial position of the first agent from its desitvalue and observe the position tracking
error of the last ageniy(¢). For the convenience of comparison, we define the followiaga
measure of transient performance:
1 T, 1.,
E := lim —2/0 §k0pN(1f) + §pN(1f) dt. (10)

T—o0 on)

wherekq > 0 is the linear position gain given as before ands the initial error of the first agent:
p1(0) = 0. (11)

The quantityF is called thentegral of transient energyWe assume the limit inlQ) exits, i.e. the
last agent has finit€; energy. In numerical simulations, we use the followingreate ofFE,

I Y S 1
E = —2/ Skopn (t) + 5pn (1) dt, (12)
0

xg 2 2
whereT is sufficiently large such that all the errors die out. We gtilmlough numerical simulations
how E scales with the number of agentsand the initial error.

3.1. Stability analysis with linear control

In the statement of the next theorem, tbast stable eigenvalus a matrix refers to the eigenvalue
with the largest real part.

Theorem 1

Consider a 1-D network ol double-integrator agents with linear control law, ifgz) = kz,
g(z) =boz. If ko >0,by >0, the closed-loop dynamics are exponentially stable foh kbe
predecessor-following and symmetric bidirectional aettures. Under the same conditions, the
following statements hold.

1. With predecessor-following architecture, the leadblst@igenvalue of the closed-loop state
matrix A is pu; = “botv ko W, and this eigenvalue occurs with multiplicity.
2. With symmetric bidirectional architecture, whatis large, the least stable eigenvalue is given

by 1 = —g;’g + <, with multiplicity of 1, whereS is an imaginary number. |

The first statement of the theorem seems to be well known ircahemunity; though we were
unable to find a reference for it. The proof of Theorgis given in the appendix.

Although stability guarantees that transients due toahitonditions decay t6 ast — oo, the
speed at which the transients decay depends quite stronglyeoarchitecture and the controller
design. For a linear system, an appropriate measure ofdghisecgence rate is the absolute value of
the real part of the least stable eigenvalue of state mdirias long as the least stable eigenvalue
is not repeated. If the least stable eigenvalue is repetted,algebraic growth (peaking) occurs.
In that case, the convergence rate is proportiondia&<(»1)t wherek is the algebraic multiplicity
of the least stable eigenvalyg. It follows from Theoreml that the real part of the least stable
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eigenvalueRe(u;) in predecessor following architecture is independenvofvhile it decays td
with increasingNV for symmetric bidirectional architecture. This makes thedecessor-following
architecture appear to have faster convergence rate tleasythmetric bidirectional architecture,
especially for largeV. However, the large algebraic multiplicity of the leastdteeigenvalue in the
predecessor-following architecture will cause large latge growth of the initial conditions before
they decay t@. Corroboration through numerical simulations is provide8ection3.3.

3.2. Stability analysis with non-linear control

The next two theorems are on the stability of the network with-linear controllers, their proofs
are given in the appendix. In the statements of the theoreat$allow we say that a scalar function
f belongs to the sectds, K] if 22 < 2f(2) < K22,V z € R, and it belongs to the sect(W, ] if
zf(z) >0, Vz#0.

Theorem 2

Consider a 1-D network of double-integrator agents withdpoessor-following architecture
with controller @). If f,g: R — R satisfy the sector conditions € [e1, K1], g € [e2, K2], Where
0<e; < Kjp <00,0<es <Ky < oo, then the originz = 0 of the undisturbed dynamics =
f(z,0) (8) is globally asymptotically stable. O

Theorem 3

Consider a 1-D network of double-integrator agents withsatmic bidirectional architecture with
controller @). If f,¢: R — R satisfy the sector conditions < (0, o], g € (0, o], then the origin
2 = 0 of the undisturbed dynamids= f(z, 0) (8) is globally asymptotically stable. O

Remark 1

Note that stability with the linear controllers are speaiakes of Theorer@ and Theorens.
Comparing the above two theorems, we notice that the rageiné on the sector condition in
the predecessor-following architecture is stricter thaat bf symmetric bidirectional architecture.
However, these sector conditions are only sufficient. a

3.3. Numerical comparison between linear and nonlineartidiers for transient decay

Since every practical actuator has saturation limits, raéitn-type nonlinearity is of particular
interest. The saturation-type nonlinearity in contralliarge platoon is practically important and
draws many researchers’ attentid@d2[ 33]. Throughout this section, we consider the following
specific linear and saturation-type nonlinear controll&rge control gain functiong(z) andg(z)
used in controllers3) and @) are given by

Linear: f(z) = koz, g(z) = byz,
Non-linear:f(z) = By tanh(y12), ¢(z) = Batanh(y22), (13)

wherekg = 1,bp = 0.5, B; = 5,7 = 0.2, B, = 5,7, = 0.1. The parameters have been chosen in
such a way that the slopes ffz) of g(z) near the origin are equal @ andby, respectively. This

is done to make the linear and non-linear cases comparalsiente extent. Note that thegéz)
andg(z) do not satisfy the sector conditions assumed in Thed&eiobally, but only satisfy the
sector conditionkcally. However, the region in which they satisfy the sector caaditan be made
arbitrarily large by choosing sufficiently small ande,.

We compare the convergence rate and transient performagiveedn linear and nonlinear
controllers through numerical simulations. Fig@r¢a) depicts the transients of the 1-D network
with linear and nonlinear controllers for predecessalefeing architecture. The algebraic growth
for linear controller which is predicted by Theorelrs observed. We also see that the nonlinear
controller has much smaller peak error than the linear otiatr The transients in the symmetric
bidirectional architecture are shown in Figut€b). We see that (i) the performance of the non-
linear case is similar to that of the linear controller, aiidtie peak value of the error is much
smaller compared to that in the predecessor-followingitecture, no matter the controller is linear
or nonlinear.
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Figure 2. Comparison of transients of the position trackingr of the last agent for a network of = 10
agents between linear and nonlinear controller. The Irdtadition of the first agent used ig = 10.
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Figure 3. Comparison of convergence rate for a network ef 10 agents between predecessor-following
and symmetric bidirectional architectures. The initiahdition of the first agent used is) = 10.

Figure 3 shows a “zoomed-in” version of the transient response. \Veefraen the figure that
the convergence rates of the linear and non-linear coatmlh each architecture are similar. In
addition, the error in the predecessor-following architeeis smaller than in the case of symmetric
bidirectional architecture fdarget. This can be explained in the linear case from the real pahteof
least stable eigenvalue: it is much larger in the predecdsowing architecture compared to the
symmetric bidirectional architectur®(1) vs.O(1/N?) (recall Theoreni). The similarity between
the simulation results in the non-linear and linear casdgate that the convergence rate in the
predecessor-following architecture is higher than thah@ésymmetric bidirectional one, whether
control is linear or nonlinear.

Figure 4 and Figure5 show the estimate of energy measufefor 7 = 10* seconds (defined
in (12)) as a function ofN andx respectively. Recalt, is the initial position error of the first
agent, it's given in 11). We see that (i) the energy in the predecessor-followichitecture has a
much worse scaling trend witN or ¢ than that in symmetric bidirectional architecture, no eatt
the controller is linear or nonlinear, (ii) nonlinear caiter performs better than linear controller in
the predecessor-following architecture (Figdr@), Figure5 (a)), whereas it performs similarly or
worse in the symmetric bidirectional architecture (Figdi®), Figure5 (b)).
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Figure 5. Comparison of; between linear and nonlinear controllers for a networkvot= 10 agents as a

function of initial conditionszo. The measuré is estimated by numerically evaluating the integralif)(
for T = 10* s.

Table I. Comparison of transient performances betweentbeatchitectures.

| | predecessor-following symmetric bidirectional
convergence rate¢ good bad
transient energy|| bad good

Table Il. Comparison of transient performances betweegaliand nonlinear controllers.

| | linear controller| nonlinear controller
predecessor-following || bad good
symmetric bidirectional| good bad
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3.4. Design guidelines based on transient response

Based on the numerical and analytical results, the compegief performance are summarized in
Tablel and Tabldl. It follows that the predecessor-following architectuesta faster convergence
rate (good) but much higheantegral of transient energyy (bad) compared to the symmetric
bidirectional architecture. These conclusions hold peesive of whether the controller is linear
or nonlinear, see Figurg-5. In fact the transients are so large with the predecesdioning
architecture that it is very likely to lead to collisions evier small initial errors. So if a design
choice is to be made among the two architectures, the syrnunédirectional should be chosen.
Within the bidirectional architecture, the linear conteolseems to perform slightly better than
the nonlinear one, so the linear controller should be chdédar some reason the predecessor-
following architecture has to be used, the non-linear @naw should be used since it clearly
outperforms the linear one in terms of transient energy.

4. ROBUSTNESS (SENSITIVITY TO EXTERNAL DISTURBANCES)

In this section, we study the sensitivity of the network taeemal disturbances. Specifically, we
examine appropriate gains from (i) a disturbance on thedgentw; € R to the position tracking
error of the last ageniy € R, and (i) disturbances acting on all agents= R to the position
tracking errors of all agentsc RY. Both sinusoidal and random disturbances are considecgd. F
the first scenario, we consider the mefiist-to-last amplification facto(Arrr ), defined as thé,
gain from inputw; to outputp:

Al}?’rjljegr ornonlinear __ su ||ﬁN||L2(7') , (14)
lwillzy(r)

where theL, norm in the expression above is defined in the extended spdka.g. ¢/ z, ;) =

\/Jy lle(t)||2dt for a large but finiter. In the linear case, denoting 6y (s) the SISO transfer
function fromw; to py, this is the same as tHé., norm of Grrp(s) [34], i.e.,

Ao = max |Grrr(jw)| = [Grre(jwp)|, wherew, = argmax |Grrr(jo),  (15)

where we have assumed for the moment that the maximum isvachi a finite frequency.
The justification will be provided later. In the non-lineaase we use the following quantity as a
conservative estimate of the amplification factor:

A%%?Il‘inear _ ||pN||LQ(T) , (16)
lwill 2y (r)
wherew; = a; sin(wpt), a; is a positive constant, and, is the peak frequency for the linear case
that is defined inX5).
For the second scenario (effect of disturbances acting eryeagent on their position tracking
errors), we define thall-to-all amplification factor A4r4 as theL., gain from the vector of
disturbances(t) = [w1(t),--- ,wx(¢)] to position tracking error vectgi(t) = [p1(t), -, pn(t)]:

AZ{I@XT ornonlnear _ sup ||ﬁ”£2(7') , (17)
1wl £5(r)

In the linear case this is th€., norm of the MIMO transfer functiods 414 (s) from w to p.

Aff{%e;l” = mgx Omax (GATA (]W)) = Omax (GATA (pr)) )

where we have assumed the maximum is achievgd= arg max,, omax(Gara(jw)) and omax
denotes the maximum singular value. In the non-linear @sduatingAngniimee is intractable, so
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we use following conservative estimate:

S monti 151l 2. (7)
Anonlznear — 2 , (18)
ATA HU}HEQ(T)
where w = [a; sin(wpt + 61), -+ ,an sin(wpt + 0x)] and a = [a1,--- ,an],0 = [01,--- ,0n] are

the parameters that achieve thenorm in the linear case. The choice of these parametersds giv
Theoremd and Corollaryl. Note from (4), (16) and (L7), (18) that the estimates for the non-linear
case are lower boundA-nonltne(M < Anonltnelu andAnonlLrLear < Anonlubear
We also examine the effect of random dlsturbances Spdtyfldnet w(t) in the closed-loop
dynamics 8) be a scalar (or vector) of white noise with zero mean andcautelation function
Elw(t)w(t + 7)T] = 0¢d(7)1,V t,V 7, Wwhereo is a constantj(r) is the Dirac delta function antl
is the identity matrix with appropriate dimension. Simitarsinusoidal disturbances, we define the
following two metrics (i)first-to-last ratioand (ii) all-to-all ratio:
E(ﬁ?\/ (f’)) linear or nonlnear ,__
- RATA T

lim , lim

Rlinear ornonlnear ,__
FTL T
t—o0 o) t—o0 o]

E@)"p(t)) (19)

)

whereE(.) denotes the expected value and we have assumed the abdgeetiist. Notice in the
linear case, the above ratios are exactlyfenorms of the appropriate transfer functions from the
white noise disturbances to the position tracking errote $teady-state covariance matrix of the
statep(t) of the systemq) that is driven by a white noise proces$t) is given by solutionP of the
following Lyapunov equationds, Chapter 4]:

AP + PAT = —Q,

whereQ = 0o BB”, and B is the appropriate input matrix given i®)( Since A is Hurwitz, it
guarantees the limit in1Q) exists B5. The steady-state expectatioR$p,(¢)) and E(5(t)T5(t))
given in (L9) can be obtained by extracting the second last diagonal eftP and summing the
odd diagonal entries aP respectively, which yields

N . .
. P(2N —1,2N — 1 _ N P(2i—1,2i—1
Rlznear _ \/ ( ) ) Rlznear - \/Z 1 ( ) (20)

FTL o0 ) ATA o0

It should be pointed out that these results are not as acal\ds the results in2p, 36, 30].
Our study of random disturbances with linear control is elpselated to the works by Bamieh,
Jovanovic and their coworker29, 30]. They derived scaling laws of all-to-all ratio for both
predecessor-following and symmetric bidirectional aetture, which are similar to the scaling
laws of H., horms established in this paper, see Remdde more details.

For the non-linear controllers as well as linear contrglleve use the following estimate of the
ratio defined in 19), which can be computed from simulation data:

L E(p% (T L E@M)Tp(T
Rl]g’r%eizr or nonlnear = (pN( ))7 REXTJI"QXT or nonlnear = (p( ) p( ))’ (21)
oo oo
whereT is sufficiently large such that the transients die out. MaD&lo simulations are used
to estimate the first-to-last and all-to-all ratios. Forrepde, to compute the first-to-last ratio for

the predecessor-following architecture with nonlineantoaller, the noise-driven systen®)(is
converted into a standard stochastic differential equd&DE) form

dpy = prdt,  dpy = —f(pr)dt — g(pr)dt + oodW (t),
dpi = pidt, dp; = — f(p; — pi—1)dt — g(pi — pi—1)dt, (22)

where W (t) is a standard Wiener process. Sample paths of the statemweuted by using
Euler-Maruyama Method to numerically integrate the SRB (37]. The metricR;ﬁ%LLl"m"‘ is now
estimated by performing appropriate averaging over a langeber of simulations, after letting each
simulation proceed sufficiently long to allow transientslie out.
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4.1. Sensitivity to disturbance with linear control

As stated earlier, analytical results on the sensitivitglisturbances are possible only for the linear
case. The first result is on the sensitivity of the predecdsdlowing architecture with linear
control.

Theorem 4

Consider a 1-D network oV double-integrator agents with predecessor-followinghidecture.
With linear controllerf(z) = koz andg(z) = boz in (3), the first-to-last amplificationt’:2¢2" and
all-to-all amplificationA'2<¢" satisfy

N
N-1 < Alinear < N-1 N-1 < Alinear < ﬁQ(a — 1)
Pra” " < Aprp” < fa” T, ot S Auryt <

wherea = [T (jwr)| > 1, B = |S(jwr)| and s = |S(jws)], in which T(s) = Zestke— §(s) =

m, andwr andwg are the peak frequencies Bfs) andS(s) respectively.
Furthermore, wheV >> 1,
near — mear a2N -1 \/ ké + ngbg B kg
Afneem & BraN Tt AT & By (271) wp ~ b G
s — 0

Moreover, a sufficient condition for a disturbancen = [wy, -, wy] = [a1 sin(wt +
01), -+ ,ansin(wt + 6x)] to yield the worst amplification factors is = [a1, - ,an] =
[a1,0,---,0], wherea; is an arbitrary constant and= w,,, 0 = [01,--- ,0n] = 0. ]

The proof of this theorem is omitted here, since it is simitethe proof of Lemma in [14]. The
interested reader can find a detailed proof3g]|]
The next theorem is the corresponding result for the symaaeidirectional architecture.

Theorem 5

Consider a 1-D network oV double-integrator agents with symmetric bidirectionalhétecture.
With linear controllerf (x) = kqx andg(x) = box in (4), the first-to-last and all-to-all amplifications
satisfy

_ 0 W< Almem < (————=)N, whenN > 1,
(7731)0\/%) = CFTL = (12b0\/2k0)
1 ) 1
I 2N+13<Al'mea7‘< - 2]\7-}-137 vV N.
(box/%ﬁ)( ) s Aurd’ s (4bov 2]fo)( )

Furthermore, whev > 1, the all-to-all amplification and its peak frequency arenagiotically

3
Alinear ~ 8N ~ k()’/T

~ T (.U ~ . I:‘
ATA \/k‘_()b()’/T‘3 ’ p 2N

The asymptotic formulae for the first-to-last amplificatard its peak frequency with symmetric
bidirectional architecture are conjectured as followse &rgument for the conjecture is given in the
end of appendix.

Conjecture 1
Assume the conditions of Theoresmold. WhenN >> 1, the first-to-last amplification and the peak
frequency of the 1-D network are asymptotically

8N koﬂ'

Alinea'r ~ Wy = Wy A )
P 2N

FTL ~ ~ 55 97
\/kobo7r2

The following result is a corollary of TheoreR it provides sufficient conditions for an input to
achieve theC, gain in the all-to-all scenario.

O
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Table Ill. Comparison of robustness performances betweetwo architectures.

| | predecessor-following symmetric bidirectional

first-to-last amplification]| bad O (o), a > 1) good O(N))
all-to-all amplification bad O(aV),a > 1) good O(N?))

Table IV. Comparison of robustness performances betweeairiand nonlinear controllers.

| | linear controller| nonlinear controller

predecessor-following || bad good
symmetric bidirectional| good bad
Corollary 1
Assume the conditions of Theorebnhold, if the disturbance input satisfies= [w, - ,wy] =

vy sin(wyt), wherev; andw, are given in 84) and 38) respectively, are the eigenvector and the
peak frequency corresponding to the principal eigenvajuef L given in 32), then

vinear _ IPllca(n) -
AT ey

The above corollary indicates that a sufficient conditiondalisturbancey = [wy, -+ ,wy] =
[a1 sin(wt + 61), - -, an sin(wt + )] to yield the all-to-all amplification factor for the symmietr
bidirectional architecture i8 = [a, - ,an] = v1, w =w; andd = [#,--- ,0n] = 0. This result
will be used to compute the estimate of all-to-all amplifieatfactor A%< for nonlinear
controllers, which is defined irLd).

Remark 2
Based on the analytical results in Theordrand Theorend (and Conjecturel), we summarize
the robustness results in Table. We observe that symmetric bidirectional architecturerhash
better robustness than predecessor-following architediuparticular, the first-to-last amplification
scales geometrically itv asO(a™ ), o > 1 for predecessor-following architecture but only linearly
in N asO(N) for symmetric bidirectional architecture. The all-to-athplification scales a8(a™)
for predecessor-following architecture while @sN?3) for symmetric bidirectional architecture.
Similar to the results orH,, norms established in this paper, it's worthy to mention thah
predecessor-following architecture, the “all-to-alltichH/> norm of the 1-D network also scales
exponentially with the number of agemds, even with absolute velocity feedback(], whereas
we consider in this paper the relative velocity feedbackec&®r the symmetric bidirectional
architecture, Bamieh et al. showed #9] that the “all-to-all” ratio/H> norm scales only a®(N?).

O

4.2. Numerical comparison of sensitivity to disturbancesueen linear and nonlinear controllers

In this section, we present robustness metrics of the 1-Dvorktwith linear and nonlinear
controllers empirically estimated using numerical coragions. The analytical predictions of the
performance metrics for the linear controllers are alssgméed to verify these predictions. The
controllers used are the ones given b)(

Figure 6 shows the first-to-last amplification factor as a function/df Figure 6 (a) is for
predecessor following and Figuée(b) is for symmetric bidirectional. The following obseriats
are made. (i) The lower and upper bounds and asymptotic faenderived are quite accurate,
especially for the predecessor following case. For the sgirim bidirectional architecture,
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Figure 6. First-to-last amplification: sinusoidal distances. Comparison of first-to-last amplification factor
with linear and nonlinear controllers. The sinusoidalutisance on the first agent usedis$ sin(wyt). LB
and UB stands for “lower bound” and “upper bound”.
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(a) Predecessor-following (b) Symmetric bidirectional

Figure 7. All-to-all amplification: sinusoidal disturbasx Comparison of all-to-all amplification factor with
linear and nonlinear controllers. The sinusoidal distodes used i sin(wpt), Wherew; is the first
eigenvector of., given in (34). LB and UB stands for “lower bound” and “upper bound”.

Conjecturel is quite accurate. (ii) In the predecessor-following atetture, the growth of the
first-to-last amplification factor with respect ¥ is much slower with the nonlinear controller
than with the linear controller, as readily seen in Figéréa). In the symmetric bidirectional
architecture, there is little difference between the twotrallers for this sinusoidal disturbance, as
seen from Figuré (b). (iii) Comparing Figures (a) and (b) we see that the symmetric bidirectional
architecture has a much smaller first-to-last amplificafector than the predecessor-following
architecture, when the controller is linear. However, whmlinear controller is applied, the
symmetric bidirectional architecture has a slightly wassaling trend than that of the predecessor-
following case. The same conclusions can be drawn to the afazkto-all amplification factor,
whose numerical results are shown in Figidre

To examine the effect of random disturbances, we computedtimater that is defined inZ1)
for T = 3000 seconds, through Monte-Carlo simulations for both lineat aon-linear cases. For
the first-to-last ratio, Figur& showsR 1, vs. N for a fixedo, while Figure9 showsR 1, vs.
oo, the strength of the noise, for a fix@d. Numerical and analytical (Eq2()) results on the all-
to-all ratio are shown in Figur&0 and Figurell. The conclusion of robustness to random noise
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drain from Figured-11 are the same as that for robustness to sinusoidal distiebawe omit the
discussion due to space limit.
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(a) Predecessor-following (b) Symmetric bidirectional

Figure 8. First-to-last ratio: random disturbaneg & 1), for both linear and non-linear controllers.
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Figure 9. First-to-last ratio: random disturbances. Caispa of the ratiosR 77, Rppr, of a network of
10 agents as a function of the standard deviatigrof the white noises.

4.3. Design guidelines based on robustness

Based on the empirical as well as the analytical resultsrdbastness performance results are
summarized in Taldl and TablelV. A few broad conclusions can be arrived at that are useful for
making design choices: (i) by comparing part (a) with paytfdb Figuresd-11 we conclude that the
predecessor following architecture has poorer performanmpared to the symmetric bidirectional
one, and the difference gets more pronouncedVamcreases. Moreover, this conclusion holds
irrespective of whether the disturbance is sinusoidal ndoan, and whether the first-to-last ratio
or the all-to-all ratio is used as a metric of robustnes};lfisymmetric bidirectional architecture
is indeed used, both the linear and non-linear control laawe falmost identical robustness. The
only exception is when the strength of the disturbance gelan which case the non-linear control
law performs poorly compared to the linear one. Thus, a desigan use the linear control law
due to simplicity without losing performance. Since, atbuaaturation will be present in practice,

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2012)
Prepared usingncauth.cls DOI: 10.1002/rnc



16

the resulting closed loop system even with a linear contaad Will be closer to the non-linear
system studied here. The previous observation thereftiseute that the symmetric bidirectional
architecture is robust to modeling errors as well and tloeegireferable from a practical standpoint;
(iii) If the predecessor architecture is to be used due terathnstraints such as cost, the non-linear
control law has better robustness to disturbance thamisaticounterpart; see part (a) of Figére
11 Therefore, in this case the non-linear controller shoeldi®ed.

10"} ® + Nonlinear (simulation) g
# Nonlinear (simulation) * Linear (simulation) %
. * Linear (simulation) ® < | © Linear (Eqg. 0)) %
~& O Linear (Eq. 0)) ® =k, >
x 10
. . %
o : : ¥
10° e
g o L g &*
= B
® 4 &
QE% %% ” 1 %
% @?}iw 10 %
| & % ¥
10" ¢ ‘ ‘ ‘ ‘ ‘ ‘
3 10 30 3 10 30
N N

(a) Predecessor-following (b) Symmetric bidirectional

Figure 10. All-to-all ratio: random disturbances. Comgani of the ratio®R 474, R4 as a function of
the number of agent®®y with white noise disturbances. The valuesgfused isl.
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Figure 11. All-to-all ratio: random disturbances. Compani of the ratios 474, Ra74 of a platoon ofl0
agents as a function of the standard deviatigrof the white noises.

5. SUMMARY

We studied the stability and robustness of large 1-D netsvark double-integrator agents for
two different decentralized architectures: predecesdtmiing and symmetric bidirectional. Both
linear and nonlinear controllers with certain sector nioedrities were examined. For the linear
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case, we obtained exact formulae for convergence rateg aldlsed loop, while for the non-linear
case, closed loop stability was proved. It was shown thatptiedecessor-following architecture
with linear control has much faster convergence rate tharsyimmetric bidirectional architecture,
but it suffers from high algebraic growth of initial errofBo compare performance with the non-
linear controller for which convergence rate could not beapated, a “integral of transient energy”
measure was proposed. Simulations showed that the syronhédirectional architecture has a
better transient performance than the predecessor foltpwne, whether the controller is linear
and non-linear.

The robustness (sensitivity to external disturbanceshefdosed loop is studied through two
metrics - called the first-to-last amplification factor ariete-all amplification factor (called ratios
instead of amplification factors when the disturbance isloam instead of sinusoidal). In case of
linear control, we derived scaling laws of the amplificatfactors of the 1-D network with respect
to the number of agents for both architectures. For the neatli control case, the amplification
factors were examined by extensive numerical simulati@hg. overall conclusion derived from
a mix of analysis and simulations was that the symmetria®atdional architecture’s performance
scales withNV much better than that of the predecessor-following archite. Simulations show
that in case of the predecessor-following architecturégssof saturation-type nonlinear controllers
perform better compared to the linear control, both in teofrtsansient performance and sensitivity
to external disturbances.

It should be noticed that the conclusions - and design gmeel- drawn from robustness
considerations are consistent with the design guidelimas/d purely from transient response
considerations; cf. Sectigh3and SectiorB.4. Another important conclusion of these studies is the
following: architecture has a more profound impact on penfance than linearity or non-linearity
of the plant dynamics/control. The symmetric bidirectioaechitecture is seen to perform better
than the predecessor-following architecture in almostaskes, with linear or non-linear control, for
various metrics of performance, and with sinusoidal or candlisturbance. The only exception
is convergence rate. Everything else being equal, the pesder-following architecture has a
faster convergence rate than the symmetric bidirectidgt@vever, this comes with the associated
cost of higher peak transients and higher transient eneggthat with the predecessor-following
architecture, collisions between agents can be avoidedfahke initial spacial errors are extremely
small.

Some of the simplifying assumptions made in the paper foedse of exposition can be removed
without much technical difficulty. Here we have limited ceikges to ehomogeneousetwork: each
agent in the network has the same open-loop dynamics andhessame control law. Convergence
rate results in the linear case remain the same asymptypt{tal large V) even in the case of a
heterogeneousetwork, in which the masses and control gains vary from @entto another. It
was shown in 39] that in the linear symmetric bidirectional case, heteragy in agent masses
and control gains do not affect the asymptotic scaling (Wihof the convergence rate, they only
change the coefficient. The non-linear stability analysishis paper can also be extended in a
straightforward manner to the heterogeneous network. ifilkai stability results of this paper can
be extended to formations with more general informatiorplysa: compared to the 1-D formation
studied here - by using the methodology 88[40].

The scaling laws for the convergence rate and robustnesgaflr the linear case can also be
extended to more general class of agent models and dynamipestsators. In particular, when
the agent modeH (s) (transfer function from input to position) is not simplys? but 1/s? P(s)
whereP(s) is a transfer function witld < P(0) < oo, the analysis can be carried out in a manner
similar to that in [L4] for the predecessor following case arf[ for the symmetric bidirectional
case. As shown inZ[3], the key attribute of the model that determines robustisea$ing is the
number of integrators in the loop, additional dynamics a&ffgct the high frequency portion while
the robustness scaling witN is determined only by the low frequency portion of the freguie
response of the loop transfer function. The reason for thmitance of the low frequency band is
the unbounded gain and180" phase oft /s at dc. As a result the worst-case amplification occurs
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at a progressively lower frequency asincreases. Recall Theorebnthe peak frequencies for the
symmetric bidirectional case 8(1/N).

It should be emphasized that the results for the symmetdbitacture obtained here do not
extend to theasymmetriccase, in which an agent uses information from its predecd&smt-
neighbor) differently than the information from its follew (back neighbor). One can introduce
a mistuning parametet € [—1, 1] to quantity this asymmetry = 0 corresponds to the case of
symmetric bidirectional case whilke= 1 corresponds to the predecessor following architecture,
with 0 < € < 1 corresponding to a case when the front neighbor’s inforonait weighted more
heavily than that of the back neighbor, antl < ¢ < 0 corresponding to the opposite. The difference
between the two architectures established here alreagidpsevidence that asymmetry has a non-
negligible effect. Recent works have shown that even smadiumt of asymmetry can have a huge
impact, on both convergence rat€l] 39] and robustness in terms of, respectiveéily, norm [28]
and H, norm [30]. It was shown in B9, 28, 30] that asymmetry can either significantly improve
or deteriorate the system’s convergence rate and robsstiegends on the choice of asymmetry.
These works have studied the linear case. Analysis of #tabilth general asymmetric non-linear
control is an open problem. In fact, analysis of the sengjtie disturbance with general asymmetric
control (linear or non-linear) is also an open problem.
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APPENDIX

Proof of Theoreni. For the predecessor-following architecture with lineantealler, it follows
from straightforward algebra that the state mattigan be written as

Ay
Ay Ay

0 1 0 0
Az Ay
The state matrix is a lower block triangular matrix, whose eigenvalues aterd@ined by the block

— /b2 — .
matrix A, on the diagonal. The eigenvaluesf arew. Since there aréV such block
matrices on the diagonal df, its eigenvalues have multiplicity. Since the least stable eigenvalue

is the one closest to the imaginary axis, it is givenhy= “boty o4k V;g% and this eigenvalue occurs
with multiplicity N.

The result for the symmetric bidirectional architecturdldies from Theorem4 in [42] in a
straightforward manner and is therefore omitted. [

The proof of Theoren2 will use the following proposition.
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Proposition 1

Consider the second order autonomous sysiems yo, 92 = —f(y1 — u1) — g(y2 — u2), Where
y1,Y2,u1,us € R and the odd functiong, ¢ : R — R lie in the sectorsf € [e1, K], g € [e2, K2,
where 0 < &1 < K1 < 00,0 < g2 < K3 < co. The origin of the unforced system (witl(t) =
[u1(t),uz(t)]T = 0) is globally exponentially stable (GES) and the system mitrto-state stable
(ISS) withu as the input. O

Proof of Propositiori. First, we consider the unforced system with state [y1, y]7,

U1 = Y2, 92 = —f(y1) — 9(y2). (25)

Consider the following Lyapunov function candidate:

1 Y1
V) =5y Py+v [ fz)dz, (26)
0
11 1 (1+K2)? . . .. -
where P = 1 5 and vy > max {1, .- + ~__2~}, which ensures thaP’ is positive definite.

From the Rayleigh Ritz Theoren34], we have the following inequality,;, (P)||y||? < y* Py <
Amax (P)|[y]|?, whereApin (P) > 0, Amax(P) > 0 are the minimum and maximum eigenvaluegof
respectively. This shows th&i(y) is radially unbounded, and in addition satisfies the follayvi

Amax (P K
AmacP)y 2 7HL e

Amax(P) 4 7K1 o
2 2 2 ’

Viy) < (27)

where the second inequality follows from the fact that thecfion f(z) belongs to the sector
[e1, K1]. The derivative oft” along the trajectory of2b) is given by

V =y "Py+fy)y2 = —y1f(y1) — 7929(y2) + 93 + y1y2 — y19(y2)
< —e1yi — (ye2 — Dy3 + (14 Ka)|y1l|yal,

1 1
—=(e1yi + (ve2 — D)y3) — zleryi — 2(1 + Ka)|y1l[ye| + (ve2 — 1)y3))]

<

=9 2

< —Lieyy? “1)2) < — 2 mi -1 2 28
< 2(81y1+(%€2 )y3) < Qmm{fl,(%z ) HIyI= (28)

where the second last inequality follows frop> max {1, - + %}, upon a completion of
squares. Sinc¥ is radially unbounded and satisfie], it follows from (28) that the originy = 0

of (25) is globally exponentially stable. Since the functigf)g are assumed to be smooth enough,
the ISS property follows from the fact that a globally expotiely stable system with input is

ISS [34, Lemma 4.6]. [

Proof of Theoren2. We first consider the subsystem consisted of only the firsttadis closed-
loop dynamics can be written as below by using the fact py = 0,

pr=—f(B1—po) — 9B —po) = pr=—fF1)—gp1) = 2P =fD),
wherez(™) = [5;,51]7. From Propositionl, we have that the origia:(!) = 0 of the subsystem

=M = £, (z(V) is GES. Next, we consider the subsystem consisted of thévfiosagents. Its closed-
loop dynamics can be written as

221 = *f(l?l) *:G(ﬁl)a o e T RN
p2 = *f(pz *p1) - g(pg *p1);
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wherez(1*2) = [y, b1, p2, 2] ” . The above dynamics can be divided into two parts:

21 = fl(x(l)%

2@ = £(2® 20, (29)

) = (20Y) = {

wherez() = [y, po]”. The unforced system®) = f,(2(?), 0) is given by
P =£(@?,0) = po=—f(p2) — 9(p)-

According to Propositiori, the originz(®) = 0 of the unforced system® = f,(2(?),0) is GES
and it's 1SS withz(") as the input. We now invoke3fl, Lemma 4.7], the origin of the cascade
systemz(1+2) = £, |, (x(1+2)) given in Q9) is globally asymptotically stable (GAS). We now prove
the origin of the whole system is GAS by induction. Supposedtigin z(!++N-1 = ( of the
subsystem consisted of the fidt— 1 agentsz(!++N=1 = £,y (20T +N=1D) is GAS,
we consider the whole system, whose dynamics is given by

i=f(z) = 0TV =g, N (@0,
The above dynamics can be divided into two parts:
p(++N=1)

= f1+...+N,1(Z(1+M+N71))
2V — fN(gg(N)’39(1+~~~+N—1))7

g N — (@) o { " (30)

The unforced system™Y) = fy (z(™), 0) is given by

e =y (@™,0) = Py =—F(n) —9(Pn).

According to Proposition, the originz() = 0 of the unforced system() = fy (2¥),0) is GES
and it's ISS withz('++N¥ =1 as the input. Invokingd4, Lemma 4.7] again, we see that the origin
x = x4 +N) = 0 of the whole system whose dynamics is givendf)(is globally asymptotically
stable. This completes the proof by induction. [

Proof of Theoren3. For the 1-D network of double-integrator agents with symiodidirectional
architecture, we consider the following Lyapunov funct@andidate, which is inspired by the one
used in p5]:

N Di—Pi—1 1N o
V(e) = dz+ 2 S5,
() Z/ e+ 53

wherex = [j1, b1, p2, D2, - - - , PN, D). The derivative of” along the trajectory of7) with w; = 0
is

N N N

V= Zf(ﬁz‘ — i) (P — pi1) + Zﬁzﬁz = *Z(ﬁz —pi-1)g(Pi — pi1) <0,

=1 =1 i=1

If V =0, then we havey; = 0 for all i, since g(z) satisfieszg(z) > 0,Vz # 0 and pp = 0 by
definition. Asymptotic stability now follows from LaSalkInvariance Principle. In addition, we
haveV (z) — oo as|jz|| — oo. Therefore, the Lyapunov functidri is radially unbounded, and we
get global asymptotic stability. m
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Proof of Theoren®d. Take Laplace transform of the coupled-ODE modél &nd assume zero
initial conditions, the transfer function from the distarttew = [w, ..., wy]" to position error

p=[p1,...,pn]" is given by
G(s) = (s*T + (bos + ko)L)™*, (31)

wherel is the N x N identity matrix andL is given by

L= . (32)

Following Theorem 3.1 03], the eigenvalues df and its corresponding orthonormal eigenvectors
are given by

(20— D)m 5, (20— 1)m

Ao =2 —2cos( N T 1 ) = 4sin (m), (33)
B 2 . (20— (20 —1)N=
v = \/ﬁ [Sm(m)a T 7SIH(TH> (34)

(1) For the case of first-to-last amplificatipthe transfer functiortz - from disturbancev; on
the first agent to the position error of the last agentis Grrr, = ¢5G(s)p1, whereg; is thei-th
canonical basis vector & whosei-th entry is1 and the rest are alls. Therefore,

Grrr(s) =p5 M (%I + (bos + ko)A) " *MT ¢,

1
=M M7 ¢y
1
s24+Anbos+AnNko
N
. (20—1)Nw . (20— 1)«
( N +1 Sm(2N+>1 GAS))’ (35)

whereM = [v1,v2, -+ ,on], A = diag(A\1, A2, -+, Ax) such that, = MAMT and

1

G = .
e(s) 82 + Aebos + ko

(36)

It can be shown using straightforward calculus that for eaghnvalue\,, the maximum amplitude
and its peak frequency @f,(s) are

2 if A\ < 2k /12,
Ay i= max |Gy(jw)| = { N/ bov/tko—Aeb = /b0 (37)
« = otherwise.
anvl
\/4kgk0—2)\?bg . 2
we = argmax [Ge(w)| = 4~z I A< 2ko/bo, (38)
0, otherwise.
From 33, >\1 < Ay <--- < Ay, Which can be used to show by straightforward algebra that
A > Ay > > Ap. For future use, we have frof < sin6 < 6,V ¢ € [0, Z] that
4(20 —1)2 (20— 1)272
= <Ny < 39
2N +1)2 =~ 2N +1)2 (39)
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We first express: 1 (s) in (35) as

Grri(s) =T(s) + Z(s), (40)
where
4 . Nm | ™
T(s) = 2N+1sm2N+1sm2N+1G1(s), (41)
N
4 _@0-1)Nrx (20— 1)n
Z(5)2N+1§(sm N T 1 sin N1 Gé(S))- (42)
Now,

sup |Grro(jw)| < sup|T(jw)| +sup |Z(jw)] = T (Gwr)| +sup |Z(jw)],
sup|Grrr(jw)| = |T(Gw) + Z(jwn)] = [T Gwi)] = |2 (5w,
wherew; is given in 38). Combining the above two inequalities, we obtain
TGwn)] = [Z2(wn)] < sup |G(w)] < |T(wn) + sup [ Z(jw) (43)

We now derive a upper bound fenp,, |Z(jw)|. Using triangle inequality, it follows from4Q)
satisfies

N
p|2j0)] < gy 3 (sin 2 DT 5 CLT 161 )

N + 14 ON+1 VTN 1,
N N
4 (20— D)r 4 (20— 1)m
< 7A)< A 44
_2N+1Z<Sm ON+1 —2N+1Z ON +1 °° (44)
=2 =2

where the last inequality follows from the fact that ¢ < 6 for ¢ € [0, 7/2] and 252" € [0,7/2]
for 2< ¢ < N. From Eq. 87), we notice that depending on whethgr < 2k /b3 or not, the
expressions ofl,’s are different. First we have
N<eE = — L g A sk = 1 - <o % (45
b= 2 ko — Mb2 ~ 2ko’ S 2k’
Let N, be in the index so that < N. = A, < 2k /b2 andl > N, = X\ > 2k0/b§. The inequality
in (44) can be written as

N

(i (20— 1w 9 +Z (20— 1)m 1 )
2N+1 2N +1 33hy/2ko — NBR ON +1 Mko

sup | Z(jw)| <
w =N,

(20— 1w 2 b2
20— w5 ). 46
2N+1 2 ;( 2kobo )\3/2 +( )7T2k8) (46)

From (9), we havew < f(févé*} . The inequality 46) becomes

N N
. m(2N + 1 (2)77
Z (2¢-1)
sup| (o)l < = \/ﬁbo g 2#1 kﬁﬂ\fﬂ?é
(2N +1) & Wi
(2¢-1)
4+/2kabo Z::Q E —1)2 k2 2N +1)2 42::2
T(2N +1) w2 203
_— — 1)+ 2 (N?-1 47
T 44/ 2kgbg ( 6 ) k(z)(ZN +1)2 ( ) (47)
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where the last inequality follows frof_ 2, = = %2 and Zévzl (2¢ — 1) = N2, This proves an
upper bound fosup,, | Z(jw)].
We now obtain an upper bound fidF (jw, )|

4 Nm T 4 T
. _ . . -
TGl = oy sy oy i M S o rrav 11
- 4 T 2 n 4 T 1
- 2N+12N+1)\?/2b0 /4k07)\1b(2) 2N + 12N + 1 Mk
o Am (@N+1)? LA b _ 2N +1) 2027 48)
= (2N +1)2 4bgy2ky (2N +1)22k2 = bo2ko | k22N +1)2
Substituting inequalitiesi(?) and @8) into (43), we get a upper bound fenp,, |G prr (jw)]
m + 187
G iw)| < 49
Sgp| Frr(jw)] < (12b0\/2_k0) (49)
wherec; is a constant independent bf.
To prove the lower bound fgif"(jw;)|, we first use the fact thatd < sin6,v 6 € [0, 3],
. 4 . Nm T
[T (jwi1)| = ON 1 sin ON 11 sin IN T 1A1
4 2 Nm 2 =« 16N
> - - — A
“ON+172N+172N +1 1—(2N+1)3A1 (50)
For any fixedko, by, whenN is large, we have; < 2kq/b3, which implies
- 2 1 1 (2N +1)° (51)
A3 2o\ /Ao — A1b2 - /Qbo\/E bovke 7 7
where the last inequality is obtained froB8]. The inequality $0) now becomes
16N
T(j > . 52
7o) 2 (52)
In addition, we have
N N
4 (20 — (20 — )7 1
G < .
12 (wn)] < 2N+1Z( 2N+1 SIGi(en) ) = Z( 2N+1 Aeko (1—A1/A2)2)

From (39), we obtain that)- < fjé‘;*gm L <z ” . Thus the above inequality can be simplified to

(20—1) (2N +1)? S
|z JW1|<2622(2N+124(2€—1) 2622(2[—1) ;::Z

wherecy, = T is a constant independent if. MoreoverZN ! =1+ Zé\’;l 1<

kor/(1—72/36)2

1+ le_l L ds, we have)))" ;" 1 <1+ In(N —1). Thus, we have
|Z(juwr)] < caln(N — 1) + ca. (53)
Substituting inequalities@) and 62) into (43), we get a lower bound fotup,, |G prr (jw)]

16N

————— —cIn(N —1) — co. 54
71_3()0% an( ) €2 ( )

sup |Grrr(jw)| >
w
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In addition, whenV is large, the constants, c; and theO(In(N — 1)) term are dominated by the
O(N) term, therefore we ignore them iA9) and 64) respectively, we obtain

16 P w3 + 187
N < Almea'r < ( ) )
(w3b0\/%) = TFTL = \12bg\/2ko
(2) For the case of all-to-all amplificationthe transfer function from the disturbanee=
[wn, -+ ,wy,] on all the agents to their position tracking errgrs [py,--- ,pn] are given by

Gara(s) = G(s) = (s°T + (bos + ko)L) ™' = M(s*I + (bos + ko)A) ' MT
Gl(s)
=M M7T, (55)
GN(S)

whereG/(s) is given in 36) and M is the orthonormal matrix given as before. THe, norm of
Gara(s) (i.e. ALnear) is now given by

|Garalla., =sup||Gara(jw)|lz = sup \//\max(GZTA (jw)Gara(jw))

1
=sup max

w L \/(—w? + Ako)? + bRw2A2

= maxmeaxHGg(jw)H = méiXAe = A,
w

whereA; is given in 7). Again for largeN, we obtain from $1),

A > 1 (2N +1)? (56)
~bovky T
In addition, using\, < 2ko/bF and 7 < C2N4L7 e have
(4
2 2 2N +1)3

= 13/2 < 3/2 < Gyl
)\1 bo\/ 4]€0 - )\1[)3 )\1 bo\/ QkQ 4b0 2k()
Combining 66) and £7), we obtain

2N +1)% < Alinear <

< (m)@NjL 13, VN.

()t

To get the asymptotic formula, whex is large, we use the approximation =~ 4’;52. Therefore,

A1 < 2ko/bZ is true for large enoughV irrespective of the values of, and b,. Substituting
M~ {is into (37) and @8), we obtain thatd; ~ 5" w, = wy ~ V7. SinceAline” = Aj,
this concludes the proof. m

Proof of Corollaryl. We first rewrite the coupled-ODE modé)(with linear controller as
P+ boLp + koLp = vy sin(wit), (58)

wherelL is given in 32) andv; is the eigenvector of, corresponding to the smallest eigenvalye
given in 34). By the method of eigenfunction expansieil], we can writep(t) = Zévzl vehe(t),
whereu,’s are the eigenvectors @f given in (34). Substituting it into Eq.%8), we obtain

N
> (veha(t) + boLvghe(t) + koLvghe(t)) = vy sin(wit).
(=1
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Due to superposition property of linear system, the abowaggn can be split intaV ordinary
differential equations by usinuv, = Apvy,

hl(t) + bo)\ghl(t) + ko)\ghl(t) = sin(wlt),
hg(t) + bo)\ghg(t) + kodehe(t) =0, (€ {2, s ,N}.

Following straightforward algebra, the steady-stateaasp of eaclh,(t) is given by
hi(t) = Ay sin(wlt—i-?l}l), hg(t) =0, [le {2,--- ,N},

whereA; is given in B7). Thus the steady state response & given byp = vy A; sin(wit + 11),
which yields - ”p”‘2 = A;. Recall from Theorend that Ai%¢¢" = A;, we complete the proof. m

A “proof” of the conjecture is as follows. First notice that

ARFET = sup |Gprr (jw)| < sup |T(jw)| + sup |Z(jw)| = [T (jwr)| + sup | Z(jw)|

WhenN is large, the smallest eigenvalye ~ % 4N2 andsin 557~

a7 ~ 1. The expressiofi(jw:)| are
then approximately given by

4 T 4 T (2N+1)° 8N

A .
V¥ ONTIL2N 11 bovhor® - hobor?

T
TGl ™ oy TN 11

(59)

Under the assumptioN is large, theD (V) term in the upper bound efip, | Z(jw)| which is given

in (47) dominates the)(1) term. Moreover, this)(N) term is still smaller thanT'(jw:)| given

in (59). Notice that this upper bound is obtained by letting eacmt@ | Z(jw)| containingG,(jw)

(¢ e{1,2,---,N}) to achieve their maximum. In fact, the maximum|6fzrr (jw)| can be only
achieved at a single frequency. We thus conjecture thafrttisency should be equaldq, the peak
frequency corresponding to the principal model This idea is similar to that a wave equation’s
resonance is achieved at the peak frequency corresporgpiaritiple mode44] and itsH ., norm

is determined by the peak response of the principle mode, M@/, norm of Grrr(s) is given
by |Grrr(jw)|| = |G(jw1)|. Thus from @0), we have

TGwn) = 12w < sup |G(w)] < [T (Gw)] + |2 (jwn)]

WhenN > 1, the lower and upper bound will be dominated by the téfifyw, )|, since|Z(jw1)|
iSO(In(N — 1)) but|T(jwy)| is O(N). Thus theH ., norm of Gpry(s) is determined byT'(jw)|.

. e . - - . o SN
From (9), we have the firs-to-last amplificatiot}20" ~ |T'(jw;)| = Thobon?
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