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Stability and robustness of large platoons of vehicles with
double-integrator models and nearest neighbor interaction

He Hao∗, Prabir Barooah

SUMMARY

We study the stability and robustness of a large platoon of vehicles, where each vehicle is modeled
as a double integrator, for two decentralized control architectures: predecessor-following and symmetric
bidirectional. In the predecessor-following architecture, the control action on each agent only depends on the
information from its immediate front neighbor, while in thesymmetric bidirectional architecture, it depends
equally on the information from both its immediate front neighbor and back neighbor. We prove asymptotic
stability of the formation for a class of nonlinear controllers with sector nonlinearity, with the linear
controller as a special case. We show the convergence rate ofthe predecessor-following architecture is much
faster than that of the symmetric bidirectional architecture. However, the predecessor-following architecture
suffers high algebraic growth of initial errors. We also establish scaling laws (withN) of certainH∞
norms of the formation that measure its robustness to external disturbances for the linear case. It is shown
that the robustness performance grows geometrically inN for predecessor-following architecture, but only
polynomially inN for symmetric-bidirectional architecture. Extensive numerical simulations are conducted
to verify the predictions for the linear case and empirically estimate the corresponding performance metrics
for a saturation-type nonlinear controller. Based on the analytical and numerical results, it is seen that the
symmetric bidirectional architecture outperforms the predecessor-following architecture in all measures of
performance. Within the predecessor-following architecture, the non-linear controller is seen to perform
better in general than the linear one. A number of design guidelines are provided based on these conclusions.
Copyright c© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cooperative control of multi-agent systems has spurred an extensive interest in the control
community because of its wide range of applications such as automated highway system [1, 2],
coordination of aerial, ground, and autonomous vehicles for surveillance and rescue [3], spacecraft
formation control for science missions [4], and collective behavior of bird flocks and animal
swarms [5]. Among these applications, one of the most well studied problems is autonomous
intelligent cruise control of large vehicular platoons, see [6, 7, 8, 9] and the reference therein. The
primary goal of autonomous intelligent cruise control is toincrease traffic throughput and safety.

One of the most important problems in autonomous intelligent cruise control of platoons is string
instability or slinky-type effect [10, 11, 12]. To solve this problem, different control policies and
control architectures are considered. In [11], a constant headway control law is developed to insure
string stability. However, the constant headway policy by itself is not enough, the headway has
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to be large enoughto avoid the problems associated with constant spacing policy [13]. Since
one of the main motivations for automated platooning is to achieve higher highway capacity by
making cars move with a small inter-vehicle separation, there is a need to study the constant
spacing policy. In was shown in [11, 14, 15] that with constant spacing policy, the leader’s
information need to be broadcasted to the following vehicles to assure string stability. Nevertheless,
the inevitable time delay and package drop in broadcasting the leader’s information will cause string
instability [16]. This leads to the study of decentralized control architecture, i.e. each vehicle can
only use measurements of relative position and/or velocitywith respect to its nearest neighbors.

Two decentralized control architectures that are commonlyexamined are predecessor-following
and bidirectional architectures. In thepredecessor-followingarchitecture, the control action on each
vehicle only depends on the relative information from its immediate predecessor, i.e. the vehicle in
front of it. In the bidirectional architecture, the controldepends on the relative information from both
its immediate predecessor and follower. Within the bidirectional architecture, the most commonly
analyzed case is thesymmetric bidirectionalarchitecture, in which the control at a vehicle depends
on the information from both of its neighborsequally.

A typical issue in distributed/decentralized control is that as the number of agents in the system
increases, the performance of the closed-loop degrades progressively. It has been established that
the predecessor-following architecture suffers from highsensitivity to external disturbances with
linear control [17, 18]. High sensitivity to external disturbance is typically referred to as slinky-
type effect [19, 20] or string instability [21]. Seileret al.showed that with linear control, the poor
robustness performance with the predecessor-following architecture is independent of the design of
the controller, but a fundamental artifact of the architecture [14]. The robustness performance can
be improved by non-identical linear controllers but at the expense of the control gains increasing
without bound as the number of the vehicles increases [11, 22]. It was shown in [14, 23, 15, 21] that
the symmetric bidirectional architecture also suffers from poor sensitivity to external disturbances.

Although a rich literature exist on sensitivity to disturbances for predecessor-following and
symmetric bidirectional architectures with linear control, to the best of our knowledge, a precise
comparison of these two architectures is lacking. Moreover, most of the works on formation control
have been limited to linear control laws, while little is known about nonlinear control. Nonlinear
terms in the closed loop dynamics may arise from either purposefully designed nonlinear control
laws (if beneficial) or unavoidable non-linearities in the agent dynamics, such as actuator saturation.
Both of these cases can be analyzed by considering linear plant dynamics and nonlinear controllers.

In this paper we examine the stability and robustness (sensitivity to external disturbances) of
large platoon of vehicles with linear as well as a class of nonlinear controllers, for both predecessor-
following and symmetric bidirectional architectures. Each vehicle is modeled as a fully actuated
point mass (double-integrator). A few authors have used first order kinematic models by ignoring
vehicle inertia. However, in general kinematic models (single integrator) fail to reproduce the slinky-
type effects that are exhibited by kinetic models (double integrator).

We prove stability of the closed loop with an arbitrary number of agents for a class of non-
linear controllers where the control gain functions satisfy certain sector conditions. The difference
between the transient responses of the two architectures incase of linear control is explained
by the expressions we derive for the least stable eigenvalueof the closed-loop state matrix and
its multiplicity. In particular, we show that the predecessor-following architecture has a larger
convergence rate compared to the symmetric bidirectional architecture:O(1) vs. O(1/N2). It
is worthwhile to mention the convergence rate of the formation with symmetric bidirectional
architecture scales poorly as a function ofN even with centralized LQR control [24]. The real
part of the least stable eigenvalue with LQR control scales asO(1/N). However, the predecessor-
following architecture suffers from algebraic growth of initial conditions due to the high multiplicity
of the least stable eigenvalue. For the non-linear control,we study the transient performance through
numerical simulations. The simulations show that in the predecessor-following architecture, the
transient response is significantly improved by using a saturation-type non-linearity in the control
gain instead of a linear control.
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Next, we examine the closed-loop’s performance in terms of the sensitivity to external
disturbances. Specifically, we examine thefirst-to-last amplification factor, defined as theL2

gain from a disturbance injected at the first vehicle to the position tracking error of the last
vehicle andall-to-all amplification factor, which is defined as theL2 gain from the disturbances
acting on all the vehicles to their position tracking errors. In case of linear controllers, we show
that whenN is large, the first-to-last amplification factor, which becomes aH∞ norm, grows
asO(αN ), α > 1, for predecessor-following architecture but only asO(N) for the symmetric
bidirectional architecture. The all-to-all amplificationfactor scales asO(αN ) for predecessor-
following architecture while asO(N3) for the symmetric bidirectional architecture. The first result
is known in the literature [14]. These results establish a precise comparison between therobustness
of symmetric bidirectional and predecessor-following architectures with linear control. Namely,
symmetric bidirectional architecture has a much smaller sensitivity to external disturbances.

Establishing scaling laws for robustness metrics with non-linear controllers is challenging.
We therefore study the response in the non-linear case through extensive numerical simulations,
with both sinusoidal and random disturbances as inputs, andestimate performance metrics from
simulation data. We observe from these studies that, withinthe predecessor-following architecture,
a nonlinear controller with a saturation-type non-linearity performs better than the corresponding
linear one. In the symmetric bidirectional architecture, the difference between the linear and
nonlinear controller’s performance is not significant.

The theoretical as well as numerical simulations lead to certain design guidelines. Comparing
all four combinations (linear, non-linear, predecessor following and symmetric bidirectional), we
observe that for the same number of agents, the symmetric bidirectional architecture performs
considerably better (both in terms of transient decay and robustness to disturbances) than the
predecessor following one, and this conclusion is valid forboth the linear and non-linear control
laws. Thus, the added complexity and cost of the symmetric bidirectional architecture due to
additional sensors is justified. If stringent cost considerations allow only the predecessor following
architecture, then the non-linear controller should be used over the linear one. Even with a linear
control law actuator saturation will make the overall system closer to the closed loop non-linear
system studied. Therefore, the fact that both the linear andnonlinear controllers with sector
nonlinearities are seen to perform comparably in the symmetric bidirectional architecture can be
seen as a “robustness to modeling errors” of this architecture. Some of the results for the linear
predecessor following case may be known or easily derived from existing results. We nevertheless
include them for the sake of completeness.

The conclusions about the architectures are derived only for the specific control laws we
investigated. The local control laws at the vehicles are either of PD (proportional-derivative) type
(in the linear case), or such that their linearization around the origin are of PD-type (in the non-
linear case). Nevertheless, analysis carried out with thiscontroller structure and double integrator
vehicle models is relevant even if there are additional dynamic elements in the loop (i.e, either in
the controller or in the vehicle dynamic model), at least in the linear case. Reasons for this can be
seen from the results in [23], which considered vehicle models with two integrators in series with an
additional transfer function (to model powertrain dynamics) and arbitrary LTI compensators. First,
a dynamic controller cannot have a zero at the origin since itwill result in a pole-zero cancellation
causing the steady-state errors to grow without bound asN increases [23]. Second, a dynamic
controller cannot have an integrator either if the vehicle model has two integrators. For if it does, the
closed-loop platoon dynamics become unstable for a sufficiently large values ofN [23]. As a result,
any allowable dynamic element in the loop must essentially act as a static gain at low frequencies.
The results of [23] indicate that the principal challenge in controlling a platoon of vehicles arises
due to the presence of a double integrator with its unboundedgain at low frequencies. Hence, the
issues discussed here with a PD controller structure is alsorelevant to the case where additional
dynamic elements appear in the loop.

In terms of the stability analysis with non-linear controllers, our work closely parallels that
of [25], which considers arbitrary information graphs (instead of the 1-D graph of a platoon we
consider). However, the results of [25] are not applicable to the scenario considered here, since we
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Figure 1. Desired geometry of a 1-D network ofN double-integrator agents. The reference agent with index
“0” need not to be real agent, it merely provides the reference trajectory of the formation to agent1.

consider relative velocity feedback while [25] considers absolute velocity feedback. Furthermore,
the assumption of symmetry made in [25] precludes the predecessor-following architecture from
their formulation. In terms of sensitivity to external disturbances with linear control, our work is
related to [26, 27, 28] and [29, 30]. In [26, 27], it is shown that if the information graph used
is undirected and has bounded degree, the maximum error due to sinusoidal disturbances can not
be made independent of the size of the formation. In [28], Veerman showed that the first-to-last
amplification grows linearly inN for the symmetric bidirectional case, but grows exponentially in
N for asymmetricbidirectional architecture, where asymmetric means the information from its front
and back neighbor are weighted differently. Scaling laws ofcertainH2 norms from disturbance to
outputs that quantify a number of performance measures are examined in [29, 30]. In particular,
it was shown that the “all-to-all”H2 norm scales exponentially inN for predecessor-following
architecture (although with absolute velocity feedback) [30], but asO(N3) for the symmetric
bidirectional architecture [29], which is the same as that of the all-to-allH∞ norm established in
this paper. They also show that the scaling laws for theH2 norm hold for arbitrary but fixed number
of front and back neighbors and arbitrary stabilizing feedback gains.

The rest of this paper is organized as follows. Section2 presents the problem statement. Section3
and Section4 present the stability and robustness analysis, respectively, along with corresponding
numerical studies. The paper ends with a summary in Section5.

2. PROBLEM STATEMENT

We consider the formation control ofN homogeneous agents which are moving in 1-D Euclidean
space, as shown in Figure1. The position of thei-th agent is denoted bypi and each agent is modeled
as a double integrator:

p̈i = ui + wi, i ∈ {1, 2, · · · , N}, (1)

whereui is the control input, andwi is the external disturbance. This is a commonly used model
for vehicle dynamics in studying vehicular platoons, and results from feedback linearization of non-
linear vehicle dynamics [11, 31].

The control objective is to make the network of agents maintain a rigid formation geometry
while following a desired trajectory. The desired geometryof the formation is specified by the
desired gaps∆(i−1,i) for i ∈ {1, · · · , N}, where∆(i−1,i) is the desired value ofpi−1(t) − pi(t).
The desired inter-vehicular gaps∆(i−1,i)’s are positive constants and they have to be specified in a
mutually consistent fashion,∆(i,k) = ∆(i,j) + ∆(j,k) for every triple(i, j, k) wherei ≤ j ≤ k. The
desired trajectory of the formation is provided in terms of afictitiousreference agent with index0,
whose trajectory is denoted byp∗0(t). The information on the desired trajectory of the formationis
only provided to agent1. The desired trajectory of thei-th agent,p∗i (t), is given by

p∗i (t) = p∗0(t) − ∆(0,i) = p∗0(t) −
i

∑

j=1

∆(j−1,j). (2)

In this paper, we consider the following twodecentralizedcontrol architectures:

1. Predecessor-following architecture. The control action at thei-th agent depends on the relative
position and velocity measurements from its immediate front neighbor. In particular, we
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consider the following decentralized control law:

ui = − f(pi − pi−1 + ∆(i−1,i)) − g(ṗi − ṗi−1), (3)

wherei ∈ {1, 2, · · · , N} andf, g : R → R are scalar functions.
2. Symmetric bidirectional architecture. The control action at thei-th agent depends on the

relative position and velocity measurements from its immediate front and back neighbors,
and the information from its front and back neighbors are weighted equally. In particular, we
consider the following decentralized control law:

ui = − f(pi − pi−1 + ∆(i−1,i)) − g(ṗi − ṗi−1)

− f(pi − pi+1 − ∆(i,i+1)) − g(ṗi − ṗi+1),

uN = − f(pN − pN−1 + ∆(N−1,N)) − g(ṗN − ṗN−1), (4)

wherei ∈ {1, 2, · · · , N − 1} andf, g : R → R.

In both architectures, the information needed to compute the control action at each agent can be
easily obtained by on-board sensors such as radars, since only relative position and velocity are
used in the control.

In this paper, we make the following assumptions.

Assumption 1
In the above controllers (3) and (4), the possibly nonlinear functionsf, g : R → R are odd functions,
which are smooth enough to guarantee the existence of solution of the coupled ODEs. Each
agenti knows the desired gaps∆(i−1,i), ∆(i,i+1), while only agent1 knows the desired trajectory
p∗0(t) of the fictitious reference agent. The reference trajectoryis a constant velocity type, i.e.,
p∗0(t) = v0t+ c0 for some constantsv0, c0. The first agent must have access to its own absolute
position and velocity information. 2

To facilitate analysis, we define the following position tracking error:

p̃i := pi − p∗i , (5)

wherep∗i is given by (2). The closed-loop dynamics for the predecessor-followingarchitecture can
now be expressed as the following coupled-ODE model

¨̃pi = − f(p̃i − p̃i−1) − g( ˙̃pi − ˙̃pi−1) + wi, i ∈ {1, 2, · · · , N}. (6)

The closed-loop dynamics for the symmetric bidirectional architecture are

¨̃pi = − f(p̃i − p̃i−1) − g( ˙̃pi − ˙̃pi−1) − f(p̃i − p̃i+1) − g( ˙̃pi − ˙̃pi+1) + wi, i < N,

¨̃pN = − f(p̃N − p̃N−1) − g( ˙̃pN − ˙̃pN−1) + wN . (7)

Note thatp̃0(t) = ˙̃p0(t) ≡ 0, since the reference agent perfectly tracks its desired trajectory. The
system can be expressed in the state space form:

ẋ = f(x,w), (8)

where the state and disturbance vectors are defined asx := [p̃1, ˙̃p1, · · · , p̃N , ˙̃pN ]T and w :=
[w1, · · · , wN ]T . The special casef(z) = k0z andg(z) = b0z (wherez is the argument andk0 >
0, b0 > 0) in the above coupled-ODEs correspond to the case oflinear control in each architecture.
In the case of linear control, the closed-loop can be represented as:

ẋ = Ax+Bw, (9)

whereA is the state matrix that depends onk0, b0 andB is the input matrix with appropriate
dimension.

In this paper, we study the stability of the originx = 0 of the undisturbed systeṁx = f(x, 0)
given in (8) with linear as well as a class of nonlinear controllers for two architectures. In addition,
we examine the sensitivity of position tracking errorsp̃ = [p̃1, · · · , p̃N ]T to the external disturbances
w = [w1, · · · , wN ]T .

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2012)
Prepared usingrncauth.cls DOI: 10.1002/rnc



6

3. STABILITY ANALYSIS

In this section, we present the stability analysis of the origin x = 0 of the undisturbed system
ẋ = f(x, 0) given in (8) with both linear and nonlinear controllers. For the linearcase, we also
derive formulae showing how the least stable eigenvalue of the state matrixA in (9) changes with
increasing size of the formation. This eigenvalue quantifies the system’s convergence rate with
respect to initial errors. For the case of non-linear controller, we provide sufficient conditions
for asymptotic stability. Since convergence rates for non-linear systems are difficult to obtain
analytically, we perform numerical simulations to study the convergence rate with non-linear
controllers and compare with corresponding linear controllers. All simulations for studying transient
performance correspond to the following scenario: the disturbance acting on each agent is zero; we
perturb the initial position of the first agent from its desired value and observe the position tracking
error of the last agent̃pN(t). For the convenience of comparison, we define the following as a
measure of transient performance:

E := lim
T→∞

1

x2
0

∫ T

0

1

2
k0p̃

2
N (t) +

1

2
˙̃p2
N(t) dt. (10)

wherek0 > 0 is the linear position gain given as before andx0 is the initial error of the first agent:

p̃1(0) = x0. (11)

The quantityE is called theintegral of transient energy. We assume the limit in (10) exits, i.e. the
last agent has finiteL2 energy. In numerical simulations, we use the following estimate ofE,

Ê :=
1

x2
0

∫ T

0

1

2
k0p̃

2
N (t) +

1

2
˙̃p2
N (t) dt, (12)

whereT is sufficiently large such that all the errors die out. We study through numerical simulations
howE scales with the number of agentsN and the initial errorx0.

3.1. Stability analysis with linear control

In the statement of the next theorem, theleast stable eigenvalueof a matrix refers to the eigenvalue
with the largest real part.

Theorem 1
Consider a 1-D network ofN double-integrator agents with linear control law, i.e.f(z) = k0z,
g(z) = b0z. If k0 > 0, b0 > 0, the closed-loop dynamics are exponentially stable for both the
predecessor-following and symmetric bidirectional architectures. Under the same conditions, the
following statements hold.

1. With predecessor-following architecture, the least stable eigenvalue of the closed-loop state

matrixA is µ1 =
−b0+

√
b20−4k0

2 , and this eigenvalue occurs with multiplicityN .
2. With symmetric bidirectional architecture, whenN is large, the least stable eigenvalue is given

by µ1 = −π2b0
8N2 + ℑ, with multiplicity of 1, whereℑ is an imaginary number. 2

The first statement of the theorem seems to be well known in thecommunity; though we were
unable to find a reference for it. The proof of Theorem1 is given in the appendix.

Although stability guarantees that transients due to initial conditions decay to0 ast→ ∞, the
speed at which the transients decay depends quite strongly on the architecture and the controller
design. For a linear system, an appropriate measure of this convergence rate is the absolute value of
the real part of the least stable eigenvalue of state matrixA, as long as the least stable eigenvalue
is not repeated. If the least stable eigenvalue is repeated,then algebraic growth (peaking) occurs.
In that case, the convergence rate is proportional totkeRe(µ1)t, wherek is the algebraic multiplicity
of the least stable eigenvalueµ1. It follows from Theorem1 that the real part of the least stable
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eigenvalueRe(µ1) in predecessor following architecture is independent ofN , while it decays to0
with increasingN for symmetric bidirectional architecture. This makes the predecessor-following
architecture appear to have faster convergence rate than the symmetric bidirectional architecture,
especially for largeN . However, the large algebraic multiplicity of the least stable eigenvalue in the
predecessor-following architecture will cause large algebraic growth of the initial conditions before
they decay to0. Corroboration through numerical simulations is providedin Section3.3.

3.2. Stability analysis with non-linear control

The next two theorems are on the stability of the network withnon-linear controllers, their proofs
are given in the appendix. In the statements of the theorems that follow we say that a scalar function
f belongs to the sector[ε,K] if εz2 ≤ zf(z) ≤ Kz2, ∀ z ∈ R, and it belongs to the sector(0,∞] if
zf(z) > 0, ∀ z 6= 0.

Theorem 2
Consider a 1-D network of double-integrator agents with predecessor-following architecture
with controller (3). If f, g : R → R satisfy the sector conditionsf ∈ [ε1,K1], g ∈ [ε2,K2], where
0 < ε1 ≤ K1 <∞, 0 < ε2 ≤ K2 <∞, then the originx = 0 of the undisturbed dynamicṡx =
f(x, 0) (8) is globally asymptotically stable. 2

Theorem 3
Consider a 1-D network of double-integrator agents with symmetric bidirectional architecture with
controller (4). If f, g : R → R satisfy the sector conditionsf ∈ (0,∞], g ∈ (0,∞], then the origin
x = 0 of the undisturbed dynamicṡx = f(x, 0) (8) is globally asymptotically stable. 2

Remark 1
Note that stability with the linear controllers are specialcases of Theorem2 and Theorem3.
Comparing the above two theorems, we notice that the requirement on the sector condition in
the predecessor-following architecture is stricter than that of symmetric bidirectional architecture.
However, these sector conditions are only sufficient. 2

3.3. Numerical comparison between linear and nonlinear controllers for transient decay

Since every practical actuator has saturation limits, saturation-type nonlinearity is of particular
interest. The saturation-type nonlinearity in controlling large platoon is practically important and
draws many researchers’ attention [32, 33]. Throughout this section, we consider the following
specific linear and saturation-type nonlinear controllers. The control gain functionsf(z) andg(z)
used in controllers (3) and (4) are given by

Linear:f(z) = k0z, g(z) = b0z,

Non-linear:f(z) = B1 tanh(γ1z), g(z) = B2 tanh(γ2z), (13)

wherek0 = 1, b0 = 0.5, B1 = 5, γ1 = 0.2, B2 = 5, γ2 = 0.1. The parameters have been chosen in
such a way that the slopes off(z) of g(z) near the origin are equal tok0 andb0, respectively. This
is done to make the linear and non-linear cases comparable tosome extent. Note that thesef(z)
andg(z) do not satisfy the sector conditions assumed in Theorem2 globally, but only satisfy the
sector conditionslocally. However, the region in which they satisfy the sector condition can be made
arbitrarily large by choosing sufficiently smallε1 andε2.

We compare the convergence rate and transient performance between linear and nonlinear
controllers through numerical simulations. Figure2 (a) depicts the transients of the 1-D network
with linear and nonlinear controllers for predecessor-following architecture. The algebraic growth
for linear controller which is predicted by Theorem1 is observed. We also see that the nonlinear
controller has much smaller peak error than the linear controller. The transients in the symmetric
bidirectional architecture are shown in Figure2 (b). We see that (i) the performance of the non-
linear case is similar to that of the linear controller, and (ii) the peak value of the error is much
smaller compared to that in the predecessor-following architecture, no matter the controller is linear
or nonlinear.
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Figure 2. Comparison of transients of the position trackingerror of the last agent for a network ofN = 10
agents between linear and nonlinear controller. The initial condition of the first agent used isx0 = 10.
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Figure 3. Comparison of convergence rate for a network ofN = 10 agents between predecessor-following
and symmetric bidirectional architectures. The initial condition of the first agent used isx0 = 10.

Figure 3 shows a “zoomed-in” version of the transient response. We see from the figure that
the convergence rates of the linear and non-linear controllers in each architecture are similar. In
addition, the error in the predecessor-following architecture is smaller than in the case of symmetric
bidirectional architecture forlarget. This can be explained in the linear case from the real part ofthe
least stable eigenvalue: it is much larger in the predecessor-following architecture compared to the
symmetric bidirectional architecture,O(1) vs.O(1/N2) (recall Theorem1). The similarity between
the simulation results in the non-linear and linear cases indicate that the convergence rate in the
predecessor-following architecture is higher than that inthe symmetric bidirectional one, whether
control is linear or nonlinear.

Figure 4 and Figure5 show the estimate of energy measureÊ for T = 104 seconds (defined
in (12)) as a function ofN andx0 respectively. Recallx0 is the initial position error of the first
agent, it’s given in (11). We see that (i) the energy in the predecessor-following architecture has a
much worse scaling trend withN or x0 than that in symmetric bidirectional architecture, no matter
the controller is linear or nonlinear, (ii) nonlinear controller performs better than linear controller in
the predecessor-following architecture (Figure4 (a), Figure5 (a)), whereas it performs similarly or
worse in the symmetric bidirectional architecture (Figure4 (b), Figure5 (b)).
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function of initial conditionsx0. The measurêE is estimated by numerically evaluating the integral in (12)

for T = 104 s.

Table I. Comparison of transient performances between the two architectures.

predecessor-following symmetric bidirectional
convergence rate good bad
transient energy bad good

Table II. Comparison of transient performances between linear and nonlinear controllers.

linear controller nonlinear controller

predecessor-following bad good
symmetric bidirectional good bad
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3.4. Design guidelines based on transient response

Based on the numerical and analytical results, the comparisons of performance are summarized in
TableI and TableII . It follows that the predecessor-following architecture has a faster convergence
rate (good) but much higherintegral of transient energyE (bad) compared to the symmetric
bidirectional architecture. These conclusions hold irrespective of whether the controller is linear
or nonlinear, see Figure2-5. In fact the transients are so large with the predecessor-following
architecture that it is very likely to lead to collisions even for small initial errors. So if a design
choice is to be made among the two architectures, the symmetric bidirectional should be chosen.
Within the bidirectional architecture, the linear controller seems to perform slightly better than
the nonlinear one, so the linear controller should be chosen. If for some reason the predecessor-
following architecture has to be used, the non-linear control law should be used since it clearly
outperforms the linear one in terms of transient energy.

4. ROBUSTNESS (SENSITIVITY TO EXTERNAL DISTURBANCES)

In this section, we study the sensitivity of the network to external disturbances. Specifically, we
examine appropriate gains from (i) a disturbance on the firstagentw1 ∈ R to the position tracking
error of the last agent̃pN ∈ R, and (ii) disturbances acting on all agentsw ∈ R

N to the position
tracking errors of all agents̃p ∈ R

N . Both sinusoidal and random disturbances are considered. For
the first scenario, we consider the metricfirst-to-last amplification factor(AFTL), defined as theL2

gain from inputw1 to outputp̃N :

Alinear or nonlinear
FTL = sup

‖p̃N‖L2(τ)

‖w1‖L2(τ)
, (14)

where theL2 norm in the expression above is defined in the extended space [34], i.e. ‖e‖L2(τ) :=
√

∫ τ

0 ‖e(t)‖2dt for a large but finiteτ . In the linear case, denoting byGFTL(s) the SISO transfer

function fromw1 to p̃N , this is the same as theH∞ norm ofGFTL(s) [34], i.e.,

Alinear
FTL = max

ω
|GFTL(jω)| = |GFTL(jωp)|, whereωp := arg max

ω
|GFTL(jω)|, (15)

where we have assumed for the moment that the maximum is achieved at a finite frequency.
The justification will be provided later. In the non-linear case we use the following quantity as a
conservative estimate of the amplification factor:

Ânonlinear
FTL =

‖p̃N‖L2(τ)

‖w1‖L2(τ)
, (16)

wherew1 = a1 sin(ωpt), a1 is a positive constant, andωp is the peak frequency for the linear case
that is defined in (15).

For the second scenario (effect of disturbances acting on every agent on their position tracking
errors), we define theall-to-all amplification factorAATA as theL2 gain from the vector of
disturbancesw(t) = [w1(t), · · · , wN (t)] to position tracking error vector̃p(t) = [p̃1(t), · · · , p̃N (t)]:

Alinear or nonlnear
ATA = sup

‖p̃‖L2(τ)

‖w‖L2(τ)
, (17)

In the linear case this is theH∞ norm of the MIMO transfer functionGATA(s) fromw to p̃.

Alinear
ATA = max

ω
σmax(GATA(jω)) = σmax(GATA(jωp)),

where we have assumed the maximum is achieved,ωp := arg maxω σmax(GATA(jω)) andσmax

denotes the maximum singular value. In the non-linear case,evaluatingAnonlinear
ATA is intractable, so
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we use following conservative estimate:

Ânonlinear
ATA :=

‖p̃‖L2(τ)

‖w‖L2(τ)
, (18)

wherew = [a1 sin(ωpt+ θ1), · · · , aN sin(ωpt+ θN )] and a = [a1, · · · , aN ], θ = [θ1, · · · , θN ] are
the parameters that achieve theL2 norm in the linear case. The choice of these parameters is given in
Theorem4 and Corollary1. Note from (14), (16) and (17), (18) that the estimates for the non-linear
case are lower bounds:̂Anonlinear

FTL ≤ Anonlinear
FTL andÂnonlinear

ATA ≤ Anonlinear
ATA .

We also examine the effect of random disturbances. Specifically, let w(t) in the closed-loop
dynamics (8) be a scalar (or vector) of white noise with zero mean and autocorrelation function
E[w(t)w(t + τ)T ] = σ0δ(τ)I, ∀ t, ∀ τ , whereσ0 is a constant,δ(τ) is the Dirac delta function andI
is the identity matrix with appropriate dimension. Similarto sinusoidal disturbances, we define the
following two metrics (i)first-to-last ratioand (ii)all-to-all ratio:

Rlinear or nonlnear
FTL := lim

t→∞

√

E(p̃2
N (t))

σ0
, Rlinear or nonlnear

ATA := lim
t→∞

√

E(p̃(t)T p̃(t))

σ0
, (19)

whereE(.) denotes the expected value and we have assumed the above limits exist. Notice in the
linear case, the above ratios are exactly theH2 norms of the appropriate transfer functions from the
white noise disturbances to the position tracking errors. The steady-state covariance matrix of the
statep̃(t) of the system (9) that is driven by a white noise processw(t) is given by solutionP of the
following Lyapunov equation [35, Chapter 4]:

AP + PAT = −Q,

whereQ = σ0BB
T , andB is the appropriate input matrix given in (9). SinceA is Hurwitz, it

guarantees the limit in (19) exists [35]. The steady-state expectationsE(p̃2
N (t)) andE(p̃(t)T p̃(t))

given in (19) can be obtained by extracting the second last diagonal entry of P and summing the
odd diagonal entries ofP respectively, which yields

Rlinear
FTL =

√

P (2N − 1, 2N − 1)

σ0
, Rlinear

ATA =

√

∑N
i=1 P (2i− 1, 2i− 1)

σ0
. (20)

It should be pointed out that these results are not as analytical as the results in [29, 36, 30].
Our study of random disturbances with linear control is closely related to the works by Bamieh,
Jovanovic and their coworkers [29, 30]. They derived scaling laws of all-to-all ratio for both
predecessor-following and symmetric bidirectional architecture, which are similar to the scaling
laws ofH∞ norms established in this paper, see Remark2 for more details.

For the non-linear controllers as well as linear controllers, we use the following estimate of the
ratio defined in (19), which can be computed from simulation data:

R̂linear or nonlnear
FTL :=

√

E(p̃2
N (T ))

σ0
, R̂linear or nonlnear

ATA :=

√

E(p̃(T )T p̃(T ))

σ0
, (21)

whereT is sufficiently large such that the transients die out. Monte-Carlo simulations are used
to estimate the first-to-last and all-to-all ratios. For example, to compute the first-to-last ratio for
the predecessor-following architecture with nonlinear controller, the noise-driven system (6) is
converted into a standard stochastic differential equation (SDE) form

dp̃1 = ˙̃p1dt, d ˙̃p1 = −f(p̃1)dt− g( ˙̃p1)dt+ σ0dW (t),

dp̃i = ˙̃pidt, d ˙̃pi = −f(p̃i − p̃i−1)dt− g( ˙̃pi − ˙̃pi−1)dt, (22)

whereW (t) is a standard Wiener process. Sample paths of the states are computed by using
Euler-Maruyama Method to numerically integrate the SDE (22) [37]. The metricR̂nonlnear

FTL is now
estimated by performing appropriate averaging over a largenumber of simulations, after letting each
simulation proceed sufficiently long to allow transients todie out.
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4.1. Sensitivity to disturbance with linear control

As stated earlier, analytical results on the sensitivity todisturbances are possible only for the linear
case. The first result is on the sensitivity of the predecessor-following architecture with linear
control.

Theorem 4
Consider a 1-D network ofN double-integrator agents with predecessor-following architecture.
With linear controllerf(x) = k0x andg(x) = b0x in (3), the first-to-last amplificationAlinear

FTL and
all-to-all amplificationAlinear

ATA satisfy

β1α
N−1 ≤ Alinear

FTL ≤ β2α
N−1, β1α

N−1 ≤ Alinear
ATA ≤ β2(α

N − 1)

α− 1
,

whereα = |T (jωT )| > 1, β1 = |S(jωT )| andβ2 = |S(jωS)|, in which T (s) = b0s+k0

s2+b0s+k0
, S(s) =

1
s2+b0s+k0

, andωT andωS are the peak frequencies ofT (s) andS(s) respectively.
Furthermore, whenN ≫ 1,

Alinear
FTL ≈ β1α

N−1, Alinear
ATA ≈ β1

√

(α2N − 1)

α2 − 1
, ωp ≈

√

√

k4
0 + 2k3

0b
2
0 − k2

0

b0
. (23)

Moreover, a sufficient condition for a disturbancew = [w1, · · · , wN ] = [a1 sin(ωt+
θ1), · · · , aN sin(ωt+ θN )] to yield the worst amplification factors isa = [a1, · · · , aN ] =
[a1, 0, · · · , 0], wherea1 is an arbitrary constant andω = ωp, θ = [θ1, · · · , θN ] = 0. 2

The proof of this theorem is omitted here, since it is similarto the proof of Lemma1 in [14]. The
interested reader can find a detailed proof in [38].

The next theorem is the corresponding result for the symmetric-bidirectional architecture.

Theorem 5
Consider a 1-D network ofN double-integrator agents with symmetric bidirectional architecture.
With linear controllerf(x) = k0x andg(x) = b0x in (4), the first-to-last and all-to-all amplifications
satisfy

( 16

π3b0
√
k0

)

N ≤ Alinear
FTL ≤

( π3 + 18π

12b0
√

2k0

)

N, whenN ≫ 1,

( 1

b0
√
k0π3

)

(2N + 1)3 ≤ Alinear
ATA ≤

( 1

4b0
√

2k0

)

(2N + 1)3, ∀ N.

Furthermore, whenN ≫ 1, the all-to-all amplification and its peak frequency are asymptotically

Alinear
ATA ≈ 8N3

√
k0b0π3

, ωp ≈
√
k0π

2N
. 2

The asymptotic formulae for the first-to-last amplificationand its peak frequency with symmetric
bidirectional architecture are conjectured as follows. The argument for the conjecture is given in the
end of appendix.

Conjecture 1
Assume the conditions of Theorem5 hold. WhenN ≫ 1, the first-to-last amplification and the peak
frequency of the 1-D network are asymptotically

Alinear
FTL ≈ 8N√

k0b0π2
, ωp = ω1 ≈

√
k0π

2N
. 2

The following result is a corollary of Theorem5, it provides sufficient conditions for an input to
achieve theL2 gain in the all-to-all scenario.
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Table III. Comparison of robustness performances between the two architectures.

predecessor-following symmetric bidirectional
first-to-last amplification bad (O(αN ), α > 1) good (O(N))
all-to-all amplification bad (O(αN ), α > 1) good (O(N3))

Table IV. Comparison of robustness performances between linear and nonlinear controllers.

linear controller nonlinear controller

predecessor-following bad good
symmetric bidirectional good bad

Corollary 1
Assume the conditions of Theorem5 hold, if the disturbance input satisfiesw = [w1, · · · , wN ] =
v1 sin(ω1t), wherev1 andω1 are given in (34) and (38) respectively, are the eigenvector and the
peak frequency corresponding to the principal eigenvalueλ1 of L given in (32), then

Alinear
ATA =

‖p̃‖L2(τ)

‖w‖L2(τ)
. 2

The above corollary indicates that a sufficient condition for a disturbancew = [w1, · · · , wN ] =
[a1 sin(ωt+ θ1), · · · , aN sin(ωt+ θN )] to yield the all-to-all amplification factor for the symmetric
bidirectional architecture isa = [a1, · · · , aN ] = v1, ω = ω1 andθ = [θ1, · · · , θN ] = 0. This result
will be used to compute the estimate of all-to-all amplification factor Ânonlinear

ATA for nonlinear
controllers, which is defined in (14).

Remark 2
Based on the analytical results in Theorem4 and Theorem5 (and Conjecture1), we summarize
the robustness results in TableIII . We observe that symmetric bidirectional architecture hasmuch
better robustness than predecessor-following architecture. In particular, the first-to-last amplification
scales geometrically inN asO(αN ), α > 1 for predecessor-following architecture but only linearly
inN asO(N) for symmetric bidirectional architecture. The all-to-allamplification scales asO(αN )
for predecessor-following architecture while asO(N3) for symmetric bidirectional architecture.
Similar to the results onH∞ norms established in this paper, it’s worthy to mention thatwith
predecessor-following architecture, the “all-to-all” ratio/H2 norm of the 1-D network also scales
exponentially with the number of agentsN , even with absolute velocity feedback [30], whereas
we consider in this paper the relative velocity feedback case. For the symmetric bidirectional
architecture, Bamieh et al. showed in [29] that the “all-to-all” ratio/H2 norm scales only asO(N3).

2

4.2. Numerical comparison of sensitivity to disturbances between linear and nonlinear controllers

In this section, we present robustness metrics of the 1-D network with linear and nonlinear
controllers empirically estimated using numerical computations. The analytical predictions of the
performance metrics for the linear controllers are also presented to verify these predictions. The
controllers used are the ones given by (13).

Figure 6 shows the first-to-last amplification factor as a function ofN : Figure 6 (a) is for
predecessor following and Figure6 (b) is for symmetric bidirectional. The following observations
are made. (i) The lower and upper bounds and asymptotic formulae derived are quite accurate,
especially for the predecessor following case. For the symmetric bidirectional architecture,
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Figure 6. First-to-last amplification: sinusoidal disturbances. Comparison of first-to-last amplification factor
with linear and nonlinear controllers. The sinusoidal disturbance on the first agent used is0.1 sin(ωpt). LB

and UB stands for “lower bound” and “upper bound”.
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Figure 7. All-to-all amplification: sinusoidal disturbances. Comparison of all-to-all amplification factor with
linear and nonlinear controllers. The sinusoidal disturbances used isv1 sin(ωpt), wherev1 is the first

eigenvector ofL given in (34). LB and UB stands for “lower bound” and “upper bound”.

Conjecture1 is quite accurate. (ii) In the predecessor-following architecture, the growth of the
first-to-last amplification factor with respect toN is much slower with the nonlinear controller
than with the linear controller, as readily seen in Figure6 (a). In the symmetric bidirectional
architecture, there is little difference between the two controllers for this sinusoidal disturbance, as
seen from Figure6 (b). (iii) Comparing Figure6 (a) and (b) we see that the symmetric bidirectional
architecture has a much smaller first-to-last amplificationfactor than the predecessor-following
architecture, when the controller is linear. However, whennonlinear controller is applied, the
symmetric bidirectional architecture has a slightly worsescaling trend than that of the predecessor-
following case. The same conclusions can be drawn to the caseof all-to-all amplification factor,
whose numerical results are shown in Figure7.

To examine the effect of random disturbances, we compute theestimateR̂ that is defined in (21)
for T = 3000 seconds, through Monte-Carlo simulations for both linear and non-linear cases. For
the first-to-last ratio, Figure8 showsR̂FTL vs.N for a fixedσ0 while Figure9 showsR̂FTL vs.
σ0, the strength of the noise, for a fixedN . Numerical and analytical (Eq. (20)) results on the all-
to-all ratio are shown in Figure10 and Figure11. The conclusion of robustness to random noise
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drain from Figure8-11 are the same as that for robustness to sinusoidal disturbances, we omit the
discussion due to space limit.
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Figure 8. First-to-last ratio: random disturbance (σ0 = 1), for both linear and non-linear controllers.
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Figure 9. First-to-last ratio: random disturbances. Comparison of the ratiosRFTL, R̂FTL of a network of
10 agents as a function of the standard deviationσ0 of the white noises.

4.3. Design guidelines based on robustness

Based on the empirical as well as the analytical results, therobustness performance results are
summarized in TaleIII and TableIV. A few broad conclusions can be arrived at that are useful for
making design choices: (i) by comparing part (a) with part (b) for Figures8-11we conclude that the
predecessor following architecture has poorer performance compared to the symmetric bidirectional
one, and the difference gets more pronounced asN increases. Moreover, this conclusion holds
irrespective of whether the disturbance is sinusoidal or random, and whether the first-to-last ratio
or the all-to-all ratio is used as a metric of robustness; (ii) If symmetric bidirectional architecture
is indeed used, both the linear and non-linear control laws have almost identical robustness. The
only exception is when the strength of the disturbance is large, in which case the non-linear control
law performs poorly compared to the linear one. Thus, a designer can use the linear control law
due to simplicity without losing performance. Since, actuator saturation will be present in practice,
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the resulting closed loop system even with a linear control law will be closer to the non-linear
system studied here. The previous observation therefore tells us that the symmetric bidirectional
architecture is robust to modeling errors as well and therefore preferable from a practical standpoint;
(iii) If the predecessor architecture is to be used due to other constraints such as cost, the non-linear
control law has better robustness to disturbance than its linear counterpart; see part (a) of Figure8-
11. Therefore, in this case the non-linear controller should be used.
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Figure 10. All-to-all ratio: random disturbances. Comparison of the ratiosRATA, R̂ATA as a function of
the number of agentsN with white noise disturbances. The value ofσ0 used is1.
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Figure 11. All-to-all ratio: random disturbances. Comparison of the ratiosRATA, R̂ATA of a platoon of10
agents as a function of the standard deviationσ0 of the white noises.

5. SUMMARY

We studied the stability and robustness of large 1-D networks of double-integrator agents for
two different decentralized architectures: predecessor following and symmetric bidirectional. Both
linear and nonlinear controllers with certain sector non-linearities were examined. For the linear
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case, we obtained exact formulae for convergence rates of the closed loop, while for the non-linear
case, closed loop stability was proved. It was shown that thepredecessor-following architecture
with linear control has much faster convergence rate than the symmetric bidirectional architecture,
but it suffers from high algebraic growth of initial errors.To compare performance with the non-
linear controller for which convergence rate could not be computed, a “integral of transient energy”
measure was proposed. Simulations showed that the symmetric bidirectional architecture has a
better transient performance than the predecessor following one, whether the controller is linear
and non-linear.

The robustness (sensitivity to external disturbances) of the closed loop is studied through two
metrics - called the first-to-last amplification factor and all-to-all amplification factor (called ratios
instead of amplification factors when the disturbance is random instead of sinusoidal). In case of
linear control, we derived scaling laws of the amplificationfactors of the 1-D network with respect
to the number of agents for both architectures. For the nonlinear control case, the amplification
factors were examined by extensive numerical simulations.The overall conclusion derived from
a mix of analysis and simulations was that the symmetric bidirectional architecture’s performance
scales withN much better than that of the predecessor-following architecture. Simulations show
that in case of the predecessor-following architecture, a class of saturation-type nonlinear controllers
perform better compared to the linear control, both in termsof transient performance and sensitivity
to external disturbances.

It should be noticed that the conclusions - and design guidelines - drawn from robustness
considerations are consistent with the design guidelines drawn purely from transient response
considerations; cf. Section4.3and Section3.4. Another important conclusion of these studies is the
following: architecture has a more profound impact on performance than linearity or non-linearity
of the plant dynamics/control. The symmetric bidirectional architecture is seen to perform better
than the predecessor-following architecture in almost allcases, with linear or non-linear control, for
various metrics of performance, and with sinusoidal or random disturbance. The only exception
is convergence rate. Everything else being equal, the predecessor-following architecture has a
faster convergence rate than the symmetric bidirectional.However, this comes with the associated
cost of higher peak transients and higher transient energy,so that with the predecessor-following
architecture, collisions between agents can be avoided only if the initial spacial errors are extremely
small.

Some of the simplifying assumptions made in the paper for theease of exposition can be removed
without much technical difficulty. Here we have limited ourselves to ahomogeneousnetwork: each
agent in the network has the same open-loop dynamics and usesthe same control law. Convergence
rate results in the linear case remain the same asymptotically (for largeN ) even in the case of a
heterogeneousnetwork, in which the masses and control gains vary from one agent to another. It
was shown in [39] that in the linear symmetric bidirectional case, heterogeneity in agent masses
and control gains do not affect the asymptotic scaling (withN ) of the convergence rate, they only
change the coefficient. The non-linear stability analysis in this paper can also be extended in a
straightforward manner to the heterogeneous network. The linear stability results of this paper can
be extended to formations with more general information graphs - compared to the 1-D formation
studied here - by using the methodology of [38, 40].

The scaling laws for the convergence rate and robustness metrics for the linear case can also be
extended to more general class of agent models and dynamic compensators. In particular, when
the agent modelH(s) (transfer function from input to position) is not simply1/s2 but 1/s2P (s)
whereP (s) is a transfer function with0 < P (0) <∞, the analysis can be carried out in a manner
similar to that in [14] for the predecessor following case and [23] for the symmetric bidirectional
case. As shown in [23], the key attribute of the model that determines robustnessscaling is the
number of integrators in the loop, additional dynamics onlyaffect the high frequency portion while
the robustness scaling withN is determined only by the low frequency portion of the frequency
response of the loop transfer function. The reason for the importance of the low frequency band is
the unbounded gain and−1800 phase of1/s2 at dc. As a result the worst-case amplification occurs
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at a progressively lower frequency asN increases. Recall Theorem5: the peak frequencies for the
symmetric bidirectional case isO(1/N).

It should be emphasized that the results for the symmetric architecture obtained here do not
extend to theasymmetriccase, in which an agent uses information from its predecessor (front-
neighbor) differently than the information from its follower (back neighbor). One can introduce
a mistuning parameterǫ ∈ [−1, 1] to quantity this asymmetry:ǫ = 0 corresponds to the case of
symmetric bidirectional case whileǫ = 1 corresponds to the predecessor following architecture,
with 0 < ǫ < 1 corresponding to a case when the front neighbor’s information is weighted more
heavily than that of the back neighbor, and−1 < ǫ < 0 corresponding to the opposite. The difference
between the two architectures established here already provides evidence that asymmetry has a non-
negligible effect. Recent works have shown that even small amount of asymmetry can have a huge
impact, on both convergence rate [41, 39] and robustness in terms of, respectively,H∞ norm [28]
andH2 norm [30]. It was shown in [39, 28, 30] that asymmetry can either significantly improve
or deteriorate the system’s convergence rate and robustness, depends on the choice of asymmetry.
These works have studied the linear case. Analysis of stability with general asymmetric non-linear
control is an open problem. In fact, analysis of the sensitivity to disturbance with general asymmetric
control (linear or non-linear) is also an open problem.
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APPENDIX

Proof of Theorem1. For the predecessor-following architecture with linear controller, it follows
from straightforward algebra that the state matrixA can be written as

A =











A1

A2 A1

.. .
. ..
A2 A1











, A1 =

[

0 1
−k0 −b0

]

, A2 =

[

0 0
k0 b0

]

. (24)

The state matrixA is a lower block triangular matrix, whose eigenvalues are determined by the block

matrixA1 on the diagonal. The eigenvalues ofA1 are
−b0±

√
b20−4k0

2 . Since there areN such block
matrices on the diagonal ofA, its eigenvalues have multiplicityN . Since the least stable eigenvalue

is the one closest to the imaginary axis, it is given byµ1 =
−b0+

√
b20−4k0

2 , and this eigenvalue occurs
with multiplicity N .
The result for the symmetric bidirectional architecture follows from Theorem4 in [42] in a
straightforward manner and is therefore omitted.

The proof of Theorem2 will use the following proposition.
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Proposition 1
Consider the second order autonomous systemẏ1 = y2, ẏ2 = −f(y1 − u1) − g(y2 − u2), where
y1, y2, u1, u2 ∈ R and the odd functionsf, g : R → R lie in the sectorsf ∈ [ε1,K1], g ∈ [ε2,K2],
where 0 < ε1 ≤ K1 <∞, 0 < ε2 ≤ K2 <∞. The origin of the unforced system (withu(t) =
[u1(t), u2(t)]

T ≡ 0) is globally exponentially stable (GES) and the system is input-to-state stable
(ISS) withu as the input. 2

Proof of Proposition1. First, we consider the unforced system with statey = [y1, y2]
T ,

ẏ1 = y2, ẏ2 = −f(y1) − g(y2). (25)

Consider the following Lyapunov function candidate:

V (y) =
1

2
yTPy + γ

∫ y1

0

f(z)dz, (26)

whereP =

[

1 1
1 γ

]

and γ ≥ max {1, 1
ε2

+ (1+K2)
2

ε1ε2
}, which ensures thatP is positive definite.

From the Rayleigh Ritz Theorem [34], we have the following inequalityλmin(P )‖y‖2 ≤ yTPy ≤
λmax(P )‖y‖2, whereλmin(P ) > 0, λmax(P ) > 0 are the minimum and maximum eigenvalues ofP
respectively. This shows thatV (y) is radially unbounded, and in addition satisfies the following

V (y) ≤ λmax(P )

2
‖y‖2 +

γK1

2
y2
1 ≤ λmax(P ) + γK1

2
‖y‖2, (27)

where the second inequality follows from the fact that the function f(z) belongs to the sector
[ε1,K1]. The derivative ofV along the trajectory of (25) is given by

V̇ = yTP ẏ + γf(y1)y2 = −y1f(y1) − γy2g(y2) + y2
2 + y1y2 − y1g(y2)

≤ −ε1y2
1 − (γε2 − 1)y2

2 + (1 +K2)|y1||y2|,

≤ −1

2
(ε1y

2
1 + (γε2 − 1)y2

2) −
1

2
[ε1y

2
1 − 2(1 +K2)|y1||y2| + (γε2 − 1)y2

2)]

≤ −1

2
(ε1y

2
1 + (γε2 − 1)y2

2) ≤ −1

2
min{ε1, (γε2 − 1)}‖y‖2, (28)

where the second last inequality follows fromγ ≥ max {1, 1
ε2

+ (1+K2)2

ε1ε2
}, upon a completion of

squares. SinceV is radially unbounded and satisfies (27), it follows from (28) that the originy = 0
of (25) is globally exponentially stable. Since the functionsf, g are assumed to be smooth enough,
the ISS property follows from the fact that a globally exponentially stable system with inputu is
ISS [34, Lemma 4.6].

Proof of Theorem2. We first consider the subsystem consisted of only the first agent. Its closed-
loop dynamics can be written as below by using the factp̃0 = ˙̃p0 ≡ 0,

¨̃p1 = −f(p̃1 − p̃0) − g( ˙̃p1 − ˙̃p0) ⇒ ¨̃p1 = −f(p̃1) − g( ˙̃p1) ⇒ x(1) = f1(x
(1)),

wherex(1) = [p̃1, ˙̃p1]
T . From Proposition1, we have that the originx(1) = 0 of the subsystem

x(1) = f1(x
(1)) is GES. Next, we consider the subsystem consisted of the firsttwo agents. Its closed-

loop dynamics can be written as

{

¨̃p1 = −f(p̃1) − g( ˙̃p1),
¨̃p2 = −f(p̃2 − p̃1) − g( ˙̃p2 − ˙̃p1),

⇒ x(1+2) = f1+2(x
(1+2)),
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wherex(1+2) = [p̃1, ˙̃p1, p̃2, ˙̃p2]
T . The above dynamics can be divided into two parts:

x(1+2) = f1+2(x
(1+2)) ⇒

{

x(1) = f1(x
(1)),

x(2) = f2(x
(2), x(1)),

(29)

wherex(2) = [p̃2, ˙̃p2]
T . The unforced systemx(2) = f2(x

(2), 0) is given by

x(2) = f1(x
(2), 0) ⇒ ¨̃p2 = −f(p̃2) − g( ˙̃p2).

According to Proposition1, the originx(2) = 0 of the unforced systemx(2) = f2(x
(2), 0) is GES

and it’s ISS withx(1) as the input. We now invoke [34, Lemma 4.7], the origin of the cascade
systemx(1+2) = f1+2(x

(1+2)) given in (29) is globally asymptotically stable (GAS). We now prove
the origin of the whole system is GAS by induction. Suppose the originx(1+···+N−1) = 0 of the
subsystem consisted of the firstN − 1 agentsx(1+···+N−1) = f1+···+N−1(x

(1+···+N−1)) is GAS,
we consider the whole system, whose dynamics is given by

ẋ = f(x) ⇒ x(1+···+N) = f1+···+N (x(1+···+N)).

The above dynamics can be divided into two parts:

x(1+···+N) = f1+···+N (x(1+···+N)), ⇒
{

x(1+···+N−1) = f1+···+N−1(x
(1+···+N−1)),

x(N) = fN (x(N), x(1+···+N−1)),
(30)

The unforced systemx(N) = fN (x(N), 0) is given by

x(N) = fN (x(N), 0) ⇒ ¨̃pN = −f(p̃N) − g( ˙̃pN ).

According to Proposition1, the originx(N) = 0 of the unforced systemx(N) = fN (x(N), 0) is GES
and it’s ISS withx(1+···+N−1) as the input. Invoking [34, Lemma 4.7] again, we see that the origin
x = x(1+···+N) = 0 of the whole system whose dynamics is given in (30) is globally asymptotically
stable. This completes the proof by induction.

Proof of Theorem3. For the 1-D network of double-integrator agents with symmetric bidirectional
architecture, we consider the following Lyapunov functioncandidate, which is inspired by the one
used in [25]:

V (x) =

N
∑

i=1

∫ p̃i−p̃i−1

0

f(z)dz +
1

2

N
∑

i=1

˙̃p2
i ,

wherex = [p̃1, ˙̃p1, p̃2, ˙̃p2, · · · , p̃N , ˙̃pN ]. The derivative ofV along the trajectory of (7) with wi = 0
is

V̇ =

N
∑

i=1

f(p̃i − p̃i−1)( ˙̃pi − ˙̃pi−1) +

N
∑

i=1

˙̃pi
¨̃pi = −

N
∑

i=1

( ˙̃pi − ˙̃pi−1)g( ˙̃pi − ˙̃pi−1) ≤ 0,

If V̇ = 0, then we have˙̃pi = 0 for all i, sinceg(z) satisfieszg(z) > 0, ∀x 6= 0 and ˙̃p0 = 0 by
definition. Asymptotic stability now follows from LaSalle’s Invariance Principle. In addition, we
haveV (x) → ∞ as‖x‖ → ∞. Therefore, the Lyapunov functionV is radially unbounded, and we
get global asymptotic stability.
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Proof of Theorem5. Take Laplace transform of the coupled-ODE model (7) and assume zero
initial conditions, the transfer function from the disturbancew = [w1, . . . , wN ]T to position error
p̃ = [p̃1, . . . , p̃N ]T is given by

G(s) = (s2I + (b0s+ k0)L)−1, (31)

whereI is theN ×N identity matrix andL is given by

L =















2 −1
−1 2 −1

. ..
. ..

. ..
−1 2 −1

−1 1















. (32)

Following Theorem 3.1 of [43], the eigenvalues ofL and its corresponding orthonormal eigenvectors
are given by

λℓ = 2 − 2 cos(
(2ℓ− 1)π

2N + 1
) = 4 sin2(

(2ℓ− 1)π

2(2N + 1)
), (33)

vℓ =
2√

2N + 1

[

sin(
(2ℓ− 1)π

2N + 1
), · · · , sin(

(2ℓ− 1)Nπ

2N + 1
)
]T
. (34)

(1) For the case of first-to-last amplification, the transfer functionGFTL from disturbancew1 on
the first agent to the position error of the last agentp̃N isGFTL = φT

NG(s)φ1, whereφi is thei-th
canonical basis vector ofR

N whosei-th entry is1 and the rest are all0’s. Therefore,

GFTL(s) =φT
NM(s2I + (b0s+ k0)Λ)−1MTφ1

=φT
NM







1
s2+λ1b0s+λ1k0

.. .
1

s2+λN b0s+λN k0






MTφ1

=
4

2N + 1

N
∑

ℓ=1

(

sin
(2ℓ− 1)Nπ

2N + 1
sin

(2ℓ− 1)π

2N + 1
Gℓ(s)

)

, (35)

whereM = [v1, v2, · · · , vN ], Λ = diag(λ1, λ2, · · · , λN ) such thatL = MΛMT and

Gℓ(s) :=
1

s2 + λℓb0s+ λℓk0
. (36)

It can be shown using straightforward calculus that for eacheigenvalueλℓ, the maximum amplitude
and its peak frequency ofGℓ(s) are

Aℓ := max
ω

|Gℓ(jω)| =

{

2

λ
3/2
ℓ b0

√
4k0−λℓb20

, if λℓ ≤ 2k0/b
2
0,

1
λℓk0

, otherwise.
(37)

ωℓ := argmax |Gℓ(jω)| =

{
√

4λℓk0−2λ2
ℓ
b20

2 , if λℓ ≤ 2k0/b
2
0,

0, otherwise.
(38)

From (33), λ1 < λ2 < · · · < λN , which can be used to show by straightforward algebra that
A1 > A2 > · · · > AN . For future use, we have from2π θ ≤ sin θ ≤ θ, ∀ θ ∈ [0, π

2 ] that

4(2ℓ− 1)2

(2N + 1)2
≤ λℓ ≤

(2ℓ− 1)2π2

(2N + 1)2
. (39)
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We first expressGFTL(s) in (35) as

GFTL(s) = T (s) + Z(s), (40)

where

T (s) =
4

2N + 1
sin

Nπ

2N + 1
sin

π

2N + 1
G1(s), (41)

Z(s) =
4

2N + 1

N
∑

ℓ=2

(

sin
(2ℓ− 1)Nπ

2N + 1
sin

(2ℓ− 1)π

2N + 1
Gℓ(s)

)

. (42)

Now,

sup
ω

|GFTL(jω)| ≤ sup
ω

|T (jω)| + sup
ω

|Z(jω)| = |T (jω1)| + sup
ω

|Z(jω)|,

sup
ω

|GFTL(jω)| ≥ |T (jω1) + Z(jω1)| ≥ |T (jω1)| − |Z(jω1)|,

whereω1 is given in (38). Combining the above two inequalities, we obtain

|T (jω1)| − |Z(jω1)| ≤ sup
ω

|G(jω)| ≤ |T (jω1)| + sup
ω

|Z(jω)|. (43)

We now derive a upper bound forsupω |Z(jω)|. Using triangle inequality, it follows from (42)
satisfies

sup
ω

|Z(jω)| ≤ 4

2N + 1

N
∑

ℓ=2

(

sin
(2ℓ− 1)Nπ

2N + 1
sin

(2ℓ− 1)π

2N + 1
sup

ω
|Gℓ(jω)|

)

≤ 4

2N + 1

N
∑

ℓ=2

(

sin
(2ℓ− 1)π

2N + 1
Aℓ

)

≤ 4

2N + 1

N
∑

ℓ=2

(2ℓ− 1)π

2N + 1
Aℓ, (44)

where the last inequality follows from the fact thatsin θ ≤ θ for θ ∈ [0, π/2] and (2ℓ−1)π
2N+1 ∈ [0, π/2]

for 2 ≤ ℓ ≤ N . From Eq. (37), we notice that depending on whetherλℓ ≤ 2k0/b
2
0 or not, the

expressions ofAℓ’s are different. First we have

λℓ ≤ 2k0/b
2
0 ⇒ 1

4k0 − λℓb20
≤ 1

2k0
, and λℓ > 2k0/b

2
0 ⇒ 1

λℓ
<

b20
2k0

. (45)

Let Nc be in the index so thatℓ ≤ Nc ⇒ λℓ ≤ 2k0/b
2
0 andℓ > Nc ⇒ λℓ > 2k0/b

2
0. The inequality

in (44) can be written as

sup
ω

|Z(jω)| ≤ 4

2N + 1

(

Nc
∑

ℓ=2

(2ℓ− 1)π

2N + 1

2

λ
3/2
ℓ b0

√

4k0 − λℓb20
+

N
∑

ℓ=Nc

(2ℓ− 1)π

2N + 1

1

λℓk0

)

≤ 4

(2N + 1)2

N
∑

ℓ=2

((2ℓ− 1)π√
2k0b0

2

λ
3/2
ℓ

+ (2ℓ− 1)π
b20
2k2

0

)

. (46)

From (39), we have 1

λ
3/2
ℓ

≤ (2N+1)3

8(2ℓ−1)3 . The inequality (46) becomes

sup
ω

|Z(jω)| ≤ π(2N + 1)√
2k0b0

N
∑

ℓ=2

1

(2ℓ− 1)2
+

2b20π

k2
0(2N + 1)2

N
∑

ℓ=2

(2ℓ− 1)

≤ π(2N + 1)

4
√

2k0b0

∞
∑

ℓ=2

1

(ℓ − 1)2
+

2b20π

k2
0(2N + 1)2

N
∑

ℓ=2

(2ℓ− 1)

≤ π(2N + 1)

4
√

2k0b0
(
π2

6
− 1) +

2b20π

k2
0(2N + 1)2

(N2 − 1), (47)
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where the last inequality follows from
∑∞

ℓ=1
1
ℓ2 = π2

6 and
∑N

ℓ=1 (2ℓ− 1) = N2. This proves an
upper bound forsupω |Z(jω)|.
We now obtain an upper bound for|T (jω1)|

|T (jω1)| =
4

2N + 1
sin

Nπ

2N + 1
sin

π

2N + 1
A1 ≤ 4

2N + 1

π

2N + 1
A1

≤ 4

2N + 1

π

2N + 1

2

λ
3/2
1 b0

√

4k0 − λ1b20
+

4

2N + 1

π

2N + 1

1

λ1k0

≤ 4π

(2N + 1)2
(2N + 1)3

4b0
√

2k0

+
4π

(2N + 1)2
b20
2k2

0

≤ π(2N + 1)

b0
√

2k0

+
2b20π

k2
0(2N + 1)2

, (48)

Substituting inequalities (47) and (48) into (43), we get a upper bound forsupω |GFTL(jω)|

sup
ω

|GFTL(jω)| ≤
( π3 + 18π

12b0
√

2k0

)

N + c1, (49)

wherec1 is a constant independent ofN .
To prove the lower bound for|T (jω1)|, we first use the fact that2π θ ≤ sin θ, ∀ θ ∈ [0, π

2 ],

|T (jω1)| =
4

2N + 1
sin

Nπ

2N + 1
sin

π

2N + 1
A1

≥ 4

2N + 1

2

π

Nπ

2N + 1

2

π

π

2N + 1
A1 ≥ 16N

(2N + 1)3
A1. (50)

For any fixedk0, b0, whenN is large, we haveλ1 < 2k0/b
2
0, which implies

A1 =
2

λ
3/2
1 b0

√

4k0 − λ1b20
≥ 1

λ
3/2
1 b0

√
k0

≥ 1

b0
√
k0

(2N + 1)3

π3
, (51)

where the last inequality is obtained from (39). The inequality (50) now becomes

|T (jω1)| ≥
16N

π3b0
√
k0

. (52)

In addition, we have

|Z(jω1)| ≤
4

2N + 1

N
∑

ℓ=2

((2ℓ− 1)π

2N + 1
|Gℓ(jω1)|

)

≤ 4

2N + 1

N
∑

ℓ=2

((2ℓ− 1)π

2N + 1

1

λℓk0

√

(1 − λ1/λ2)2

)

.

From (39), we obtain that1λℓ
≤ (2N+1)2

4(2ℓ−1)2 ,
λ1

λ2
≤ π2

36 . Thus the above inequality can be simplified to

|Z(jω1)| ≤ 2c2

N
∑

ℓ=2

( (2ℓ− 1)

(2N + 1)2
(2N + 1)2

4(2ℓ− 1)2

)

≤ 2c2

N
∑

ℓ=2

( 1

(2ℓ− 1)

)

≤ c2

N−1
∑

ℓ=1

1

ℓ
,

wherec2 = π

2k0

√
(1−π2/36)2

is a constant independent ofN . Moreover,
∑N−1

ℓ=1
1
ℓ = 1 +

∑N−1
ℓ=2

1
ℓ ≤

1 +
∫ N−1

1
1
s ds, we have

∑N−1
ℓ=1

1
ℓ ≤ 1 + ln(N − 1). Thus, we have

|Z(jω1)| ≤ c2 ln(N − 1) + c2. (53)

Substituting inequalities (53) and (52) into (43), we get a lower bound forsupω |GFTL(jω)|

sup
ω

|GFTL(jω)| ≥ 16N

π3b0
√
k0

− c2 ln(N − 1) − c2. (54)
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In addition, whenN is large, the constantsc1, c2 and theO(ln(N − 1)) term are dominated by the
O(N) term, therefore we ignore them in (49) and (54) respectively, we obtain

( 16

π3b0
√
k0

)

N ≤ Alinear
FTL ≤

( π3 + 18π

12b0
√

2k0

)

N.

(2) For the case of all-to-all amplification, the transfer function from the disturbancew =
[w1, · · · , wn] on all the agents to their position tracking errorsp̃ = [p̃1, · · · , p̃N ] are given by

GATA(s) = G(s) = (s2I + (b0s+ k0)L)−1 = M(s2I + (b0s+ k0)Λ)−1MT

= M







G1(s)
. . .

GN (s)






MT , (55)

whereGℓ(s) is given in (36) andM is the orthonormal matrix given as before. TheH∞ norm of
GATA(s) (i.e.Alinear

ATA ) is now given by

‖GATA‖H∞
=sup

ω
‖GATA(jω)‖2 = sup

ω

√

λmax(G∗
ATA(jω)GATA(jω))

= sup
ω

max
ℓ

1
√

(−ω2 + λℓk0)2 + b20ω
2λ2

ℓ

= max
ω

max
ℓ

‖Gℓ(jω)‖ = max
ℓ
Aℓ = A1,

whereA1 is given in (37). Again for largeN , we obtain from (51),

A1 ≥ 1

b0
√
k0

(2N + 1)3

π3
. (56)

In addition, usingλ1 < 2k0/b
2
0 and 1

λ
3/2
ℓ

≤ (2N+1)3

8 , we have

A1 =
2

λ
3/2
1 b0

√

4k0 − λ1b20
≤ 2

λ
3/2
1 b0

√
2k0

≤ (2N + 1)3

4b0
√

2k0

. (57)

Combining (56) and (57), we obtain

( 1

b0
√
k0π3

)

(2N + 1)3 ≤ Alinear
ATA ≤

( 1

4b0
√

2k0

)

(2N + 1)3, ∀ N.

To get the asymptotic formula, whenN is large, we use the approximationλ1 ≈ π2

4N2 . Therefore,
λ1 < 2k0/b

2
0 is true for large enoughN irrespective of the values ofk0 and b0. Substituting

λ1 ≈ π2

4N2 into (37) and (38), we obtain thatA1 ≈ 8N3
√

k0b0π3 , ωp = ω1 ≈
√

k0π
2N . SinceAlinear

ATA = A1,
this concludes the proof.

Proof of Corollary1. We first rewrite the coupled-ODE model (7) with linear controller as

¨̃p+ b0L ˙̃p+ k0Lp̃ = v1 sin(ω1t), (58)

whereL is given in (32) andv1 is the eigenvector ofL corresponding to the smallest eigenvalueλ1

given in (34). By the method of eigenfunction expansion [44], we can writep̃(t) =
∑N

ℓ=1 vℓhℓ(t),
wherevℓ’s are the eigenvectors ofL given in (34). Substituting it into Eq. (58), we obtain

N
∑

ℓ=1

(vℓḧℓ(t) + b0Lvℓḣℓ(t) + k0Lvℓhℓ(t)) = v1 sin(ω1t).

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2012)
Prepared usingrncauth.cls DOI: 10.1002/rnc



26

Due to superposition property of linear system, the above equation can be split intoN ordinary
differential equations by usingLvℓ = λℓvℓ,

ḧ1(t) + b0λℓḣ1(t) + k0λℓh1(t) = sin(ω1t),

ḧℓ(t) + b0λℓḣℓ(t) + k0λℓhℓ(t) = 0, ℓ ∈ {2, · · · , N}.

Following straightforward algebra, the steady-state response of eachhℓ(t) is given by

h1(t) = A1 sin(ω1t+ ψ1), hℓ(t) = 0, ℓ ∈ {2, · · · , N},

whereA1 is given in (37). Thus the steady state response ofp̃ is given byp̃ = v1A1 sin(ω1t+ ψ1),
which yields ‖p̃‖L2

‖w‖L2
= A1. Recall from Theorem5 thatAlinear

ATA = A1, we complete the proof.

A “proof” of the conjecture is as follows. First notice that

Alinear
FTL = sup

ω
|GFTL(jω)| ≤ sup

ω
|T (jω)| + sup

ω
|Z(jω)| = |T (jω1)| + sup

ω
|Z(jω)|

WhenN is large, the smallest eigenvalueλ1 ≈ π2

4N2 andsin Nπ
2N+1 ≈ 1. The expression|T (jω1)| are

then approximately given by

|T (jω1)| ≈
4

2N + 1

π

2N + 1
A1 ≈ 4

2N + 1

π

2N + 1

(2N + 1)3

b0
√
k0π3

≈ 8N√
k0b0π2

. (59)

Under the assumptionN is large, theO(N) term in the upper bound ofsupω |Z(jω)| which is given
in (47) dominates theO(1) term. Moreover, thisO(N) term is still smaller than|T (jω1)| given
in (59). Notice that this upper bound is obtained by letting each term in |Z(jω)| containingGℓ(jω)
(ℓ ∈ {1, 2, · · · , N}) to achieve their maximum. In fact, the maximum of|GFTL(jω)| can be only
achieved at a single frequency. We thus conjecture that thisfrequency should be equal toω1, the peak
frequency corresponding to the principal modelλ1. This idea is similar to that a wave equation’s
resonance is achieved at the peak frequency correspond to its principle mode [44] and itsH∞ norm
is determined by the peak response of the principle mode. Now, theH∞ norm ofGFTL(s) is given
by ‖GFTL(jω)‖ = |G(jω1)|. Thus from (40), we have

|T (jω1)| − |Z(jω1)| ≤ sup
ω

|G(jω)| ≤ |T (jω1)| + |Z(jω1)|

WhenN ≫ 1, the lower and upper bound will be dominated by the term|T (jω1)|, since|Z(jω1)|
isO(ln(N − 1)) but |T (jω1)| isO(N). Thus theH∞ norm ofGFTL(s) is determined by|T (jω1)|.
From (59), we have the firs-to-last amplificationAlinear

FTL ≈ |T (jω1)| = 8N√
k0b0π2 .
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