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Abstract—We study the problem of distributed control of  controlled to maintain a constant inter-vehicle separatio
a large network of double-integrator agents to maintain a has been extensively studied [4], [5], [6]. The generaldren
rigid formation. A few lead vehicles are given information of the results is that the problem scales poorly with the

on the desired trajectory of the formation; while every othe b f vehicles: th b f vehicles i th
vehicle only uses information on relative position and veloity number or venicies. as the number of VenIcies increase the

from a few other vehicles to compute its control, which Sensitivity to disturbances increases [7], [8], [9] and the
are called its neighbors. A predetermined information gragh  stability margin decays [10], [6]. The information graphs
defines the neighbor relationships. We limit our attention considered in the literature are usually limited to at most
to information graphs that are D-dimensional lattices, and two neighbors, with notable exceptions such as [11], [12],

examine the stability margin of the closed loop, which is 13] that id L inf i h
measured by the real part of the least stable eigenvalue of [13] that consider more general information exchange ar-

the state matrix. The stability margin is shown to decay to Chitectures.

0 as O(1/N*P) when the graph is “square”, where N is Our goal is to examine how the stability margin scales
the number of agents. Therefore, increasing the dimensionfo with the size of the formation and the structure of the
the information graph can improve the stability margin by @ = information graph that specifies allowable information ex-
significant amount. For a non-square information graph, the h betw - f vehicl Th | t of th
stability margin can be made independent of N by choosing change be _een paII’S.O venicies. e real part o _?
the “aspect ratio” appropriately. An information graph wit h  least stable eigenvalue is used as a measure of the stability
large D may require nodes that are physically apart to margin. The stability margin determines the decay rate of
exchange information. Similarly, choosing an aspect ratidto  jnitial formation keeping errors. Such errors arise from
improve stability margin may entail an increase in the numbe poor initial arrangement of the vehicles. In this paper we

of lead vehicles. These results are useful to the designer in limit ttention t ific cl finf i h
making trade-offs between performance and cost in designm imit-our attention 1o a Specilic class ot information grapns

information exchange architectures for decentralized cotrol. ~ namely, D-dimensional (finite) lattices. These are natural
choices for information graphs in 2D or 3D formation
[. INTRODUCTION problems in which vehicles are arranged in regular pattern

We consider the problem of formation control of vehi-and reIative_ measurements are possible among physically
cles so that neighboring vehicles maintain a constant prélosest vehicles. _
specified spacing while in motion. This problem is relevant Each vehicle is modeled as a double integrator, and
to a number of applications such as formation flying oft d!str|buted control algorithm is s_tudled in which every
aerial, ground, and autonomous vehicles for surveillanc¥ehicle (except for a few lead vehicles) use only relative
reconnaissance, mine-sweeping, etc. [1], [2], [3]. A fewPOSition and_ relatlve_ velocity with respect to its neigh-
lead vehicles are provided information on their desire0rs in the information graph. We show that when the
trajectories that they use in computing their control axtjo Network is homogeneous and symmetric (all vehicles use
while the rest of the vehicles are allowed to use only localljh€ Same control gains and information from each neighbor
available information. In a distributed control architeet, S 9iven equal weight), the stability margin decays (o
each vehicle can measure only the relative position and v@&° O(l/NQ/D) when the graph is “square”. Therefore,
locity with respect to a number afeighbors The neighbor increasing the dimension (which may need nodes physically
relationship is predefined in terms of a graph, which we caftPart to exchange information) of the information graph can
the information graph improve the ;tablllty margin by a c0n5|d_erable amount. For

The one-dimensional version of this problem, in whicHon-square information graph, the stability margin can be

a string of vehicles moving in a straight line have to bénade independent of the number of agents by choosing the

“aspect ratio” appropriately. That may entail an increase
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the number of vehicles is large. In this paper we avoid such
approximation, and establish the scaling laws of the stabil consistent fashion, i.e., we must hate ; = A; , + Ay ;
margin for generaD-dimensional lattices. In addition, [14] for every triplei, j, k € V. Since we are interested in rigid
considered the scenario in which the desired trajectofprmations that do not change shape over tihe,’s are
of the formation was one with a constant velocity, anad¢onstants. To maintain a rigid formation, the control must
moreover, every vehicle knew this velocity. In contrastmake every vehicle track its desired trajectory. The ddsire
the control law we consider requires agents to know onlyrajectory of a real vehicle, denoted byp;(¢) can be
the desired inter-agent separation; the overall trajgctouniquely determined from the trajectories of the reference
information is made available only to the lead vehiclessThivehicles and the desired formation geometry. In particular
makes the model more applicable to practical formatiop; (t) = p;(t) + A, ; wherej is any reference vehicle, and
control applications in which the formation may be requireg; () is its trajectory.
to accelerate or decelerate occasionally, and the dedision Next we define aninformation graphthat makes it
do so is made available only to the lead vehicles. Our result®nvenient to describe distributed control architectures
have some interesting connections with those in [12], which Definition 1: An information graphis an undirected
are discussed at the end. graphG = (V,E). The set of edgeE C V x V specify
The rest of this paper is organized as follows. Sectlon which pairs of nodes (vehicles) are allowed to exchange
presents the distributed formation control problem. Sednformation to compute their local control actions. Two
tion 1l describes the technical results, including one onodes: and; are calledheighborsif (i, ) € E, and the set
eigenvalues of a grounded Laplacian matrix that plays af neighbors ofi are denoted by;. O
pivotal role on establishing the main result. The main rtesul In this paper we consider the followirgdjstributed con-
and its implications are presented in Sectivn trol law, whereby the control action at a vehicle depends
on the relative position and velocity measurements with its

Il. PROBLEM STATEMENT . . . . i
_ _ _ . ~neighbors in the information graph:
We consider the formation control d¥ identical vehi- ()

cles, where the position of each vehicle i®gdimensional  %; Z —k(PEd) - Pg-d) - AE,{?) - b(]jl(-d) - 75§d)) (2)
vector (with Dy = 1,2 or 3); D, is referred to as the JEN:
spatial dimensiorof the formation. Legpgd) € R be thed- wherei € {1,...,N} on the left hand side ang € V
th coordinate of the-th vehicle’s position, whose dynamicson the right hand side. The positive constaits are
are modeled by a double integrator: the position and velocity feedback gains, respectivelis It
(d) de1 D 1) assumed that vehicleknows its own neighbors (the s&f),
v T and the desired spacinggf?. If j is a reference vehicle,
where uz(.d) € R is the control input (acceleration or p§.d)(t) :p;d)*(t), wherep§.d)*(t) is thed-th coordinate of
deceleration command). The underlying assumption is thag reference trajectory.
each of theD, coordinates of a vehicle’s position can be Example 1:Consider the two formations shown in Fig-
independently actuated. We say that the vehiclesfale ure 1 (a) and (b). Their spatial dimensions afg, = 1
actuated The spatial dimensioD; is 1 for a platoon of andD, = 2, respectively. The information graph, however,
vehicles moving in a straight line, anf);, = 2 for a is the same in both case®¥ = {1,2,...,9}, E =
formation of ground vehicles. {(1,2),(1,3),---,(5,6),(6,9)}. A drawing of the infor-
The control objective is to make the group of vehiclesnation graph appears in Figute(c).
track a pre-specified reference trajectory while maintjni  In this paper we restrict ourselves to a specific class of
a desired formation geometry. Reference trajectory infoinformation graphs, namely a finite rectangular lattice:

B =u

mation is available only to a set déad vehicles This Definition 2 (D-dimensional lattice):A D-dimensional
information is represented by introducifigtitious reference lattice, specifically ar; x no x -+ x np lattice, is a graph
vehicles, one for each lead vehicle. Each reference vehicléth nins...np nodes, denoted b¥.,., xny---xnp- O

perfectly tracks its own desired trajectory. Each leadslehi  Figure 2 depicts two examples of lattices. AD-

can measure its relative position and velocity with respedimensional lattice is drawn iR” with a Cartesian ref-

to its corresponding reference vehicle, which is equivialererence frame whose axes are denotedrbyzs, ..., zp.

to lead vehicles having knowledge of the desired trajectojiote that these coordinate axes may not be related to the
of the formation. Denoting the number of reference vehiclesoordinate axes in the physical spdR&:. We also define

by N,, the setV :={1,...,N,N+1,...,N+ N, }isthe N, (d =1,...,D) as the number of real vehicles in the
set of allnodesin the formation, includingV real vehicles z, direction. Then we have the relatioly N> ... Np = N

and N,. fictitious reference vehicles. The desired formatiorandnins...np = N + N,.

geometry is specified by a desired relative position vector We assume that there is at least one boundary every node
A, ; for every pair of vehicles(i,j) € V x V, where of which is a reference vehicle. Reference vehicles are only
A, ; is the desired value op;(t) — p;(t). The desired placed on the boundaries; this typically corresponds td lea
inter-vehicular spacings have to be specified in a mutuallyehicles being the outermost vehicles in a formation. We
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(a_) The dgsired formation geometry of a 1D spatial platoon 0 )
with 6 vehicles and3 reference vehicles. ) )
() A 2D 4 x 4 lattice. (b) A 3D 2 x 3 x 3 lattice.
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Fig. 2. Examples of 2D and 3D lattices.

independence of control gains ah the spatial dimension
Dy plays no role in the results of this paper. The dimension
of the information graphD, on the other hand, will be
shown to play a crucial role.

2) %
" (1)

Ill. STABILITY MARGIN AND GROUNDED LAPLACIAN

0] X The dynamics of the&-th vehicle are obtained by com-
bining the open loop dynamicg)(with the control law ),

(b) The desired formation geometry of a 2D spatial ve-

hicle formation with6 vehicles and reference vehicles. which yields (suppressing the superscript
? Bi= Y —k(pi —p;— Aij) = bBi —p;). ()
JEN;
To facilitate analysis, we define the following trackingastr

pi(t) := pi(t) — pi (1), (4)

wherepj (t) is thei-th agent’s desired trajectory. Note that
for a rigid formation to be possible, the desired trajee®ri
must satisfyp; — p; = 0 for everyi, j, which meang,; —

pj = bi — ;. Therefore, substitutingd] into (3), we have

o

(c) The information graph for both the 1D platoon
and the 2D formation shown in (a) and (b).

Fig. 1. (a, b): Two distinct spatial formations that have shene associated pi = Z —k(pi — pj) — b(pi — pj)- (5)
information graph (c). Red (filled) circles represent refee vehicles and JEN:

black (unfilled) circles represent "real” vehicles. Daslieds (in (a), (b)) )

represent desired relative positions, while solid lingsesent edges in the Since the trajectory of a reference vehicle is assumed

information graph. to be equal to its desired trajectory; = 0 if i is a
reference vehicle. To express the closed-loop dynamics of

call such a boundary ®irichlet boundary A boundary the formation compactly, we define the following state:

of the information graph is either a Dirichlet boundary, in . . .

which case all nodes on it are reference vehicles, or none x = [p1,P1. P2, P2, -+ DN, DN]T

of the nodes on it are reference vehicles. Using (), the state-space model of the vehicle formation
For different configuration of Dirichlet boundariedls  can now be written compactly as:

andny has a slightly different but straightforward relation.

For example, in Figurel (c), N1 + 1 = n; since the &= Az (6)

boundary perpendicular to the positive axis is a Dirichlet  \ynere A is the closed-loop state matrix.

boundary, whileN; = n, since both boundaries perpendic-  pefinition 3: The stability marginis the absolute value

ular to thez, axis are not Dirichlet boundaries. For a givenpf the real part of the least stable eigenvalue of the state

N, the choice ofD and Ny, na,d = 1,...D specifies the magix A in (6). 0

choice of the information graph and its boundary condition. g facilitate analysis, we define the matricés, 4> and
Remark 1:The dimensionD of the information graph L, where

is distinct from the spatial dimensioR,. Figure 1 shows

an example of two formations in space, one with = 1 A = {O 1} . Ay = { 00 ] , (7

and the other withD, = 2. The information graph for both 00 —k =D

the formations is the same x 3 two-dimensional lattice, and L, is the grounded (or Dirichlet) Laplacianmatrix

i.e., D = 2. On account of the fully actuated dynamics andf the information graph with reference nodes defining the



grounded nodes. To precisely define this matrix recall that2 1

the Laplacian matrix of a grap@& = (V, E) with n nodes "
is defined as ..
11
deg(i) i=j -
[Lnxn]ij = -1 (Z,]) cE (8) 0 129[:1
0 otherwise.

where deg(i) is the number of neighbors of nodein

the graph. ThegroundedLaplacian L, matrix of G with
respect to a set of grounded nod®, C V is the
submatrix of L obtained by removing fronl, those rows
and columns corresponding to the grounded node¥ jn
This matrix occurs in the numerical solution of PDEs with
Dirichlet boundary conditions and analysis of electrical
networks [15]. For example, the grounded graph Laplacian
of the information graph shown in Figufie(c), with nodes Fig. 3. A pictorial representation of the possible Diri¢hteoundary
7,8,9 as the grounded nodes, is: configurations for a 2D information graph.

1 2 3 4 5 6
1 2 -1 -1 0 0 O The next theorem, whose proof is provided in the Ap-
2| -1 3 0 -1 0 0 pendix, gives an explicit formula for the eigenvalues of the
[ -1 0 3 -1 -1 0 ) grounded Laplacian for the graphs considered in this paper.
97 4 o -1 -1 4 0 -1
5 o o -1 0 2 -1 Theorem 2:The eigenvalues of the grounded graph
6 o o 0 -1 -1 3 Laplacian L, of a D-dimensional information graph
It is straightforward to show that Z, x .n, are positive and are given by the following
formula
A=Iy®A +L,® Ay, (20) D
. (bg —1)m
where Iy is the N x N identity matrix and® is the At = A..ep =20 = 2. {Io(xd)cos N,
Kronecker product. ot 1 d=1 ,
Theorem 1:The spectrum ofA is +14 (24) cos (26a = D + Iy(zq) cos dm } >0, (13)
A A 2Ng +1 Ng+1
A) = A 11 o
o(A) \ ELJ ){U( 1 Acda)}, (11) wherel; = 1,...,Ny (d = 1,...,D) and the indicator
e function I;(z4) (j = 0,1,2) is defined as:
- U f L @ . . .
nesiin) ko)\g —boAe |’ 1, if there arej Dirichlet boundaries
) ‘ Ii(xq) = perpendicular tar, axis, (14)
whereo(+) is the set of distinct eigenvalues. O .
0, otherwise.
Proof of Theoreni. The proof follows the analysis in [16]. =

From Schur’s triangularization theorem, every squareimatr

is unitarily similar to an upper-triangular matrix, theved, For example, in Fig3 (a), there is one Dirichlet bound-

there exists an unitary matri¥ such thatU*ngU = L,,
where L, is an upper-triangular matrix, whose diagona
entries are the eigenvalues bf. We now do a similarity
transformation on matrij,
A=U"'0L)AU® I,)
=(U ' @ L)IN® A1+ Ly ® Ag)(U ® I2)
=In® A1+ L, ® Ay,

aries perpendicular ta:y axis, sol;(z1) = 1; there is
po Dirichlet boundary perpendicular te, axis, Ip(z2) =
1. And in Fig. 3 (e), there are two Dirichlet boundaries
perpendicular toz; and xy, axes respectively, therefore
I>(xz1) = Io(x2) = 1 and the other indicator functions take
value of zero.

It follows from Theorem? that the minimum eigenvalue
of the grounded Laplacian is given in the following corol-
lary.

which is a block upper-triangular matrix, and the block Corollary 1: Consider the D-dimensional information
on each diagonal isA; + A\ Az, where A, € o(L,). graphZ,, «..xn, Where Dy is the number of axes in
Since similarity transformation preserves eigenvalues, a the information graph that have Dirichlet boundaries (ei-
the eigenvalues of a block upper-triangular matrix are théner one or two) perpendicular to them. Without loss of
union of eigenvalues of each block on the diagonal, wgenerality, let these coordinates be,...,zp,. If Ng >
complete the proof. m 1 for d ., Dy, then the minimum eigenvalue



Amin Of the grounded LaplaciarL, is O(7), where
Na. ’ O

= ar InlIl
p L L

.....

It follows from Corollary 1 that it is possible to make
Amin arbitrarily small by choosingv, sufficiently large. We
chooseN, large enough so that,,i, < %—’;, which makes

Proof of Corollary 1. Consider the following case first: the term inside the square root ihg negative. Following
each of the firstDy coordinates that have Dirichlet bound-the definition of stability margin, we obtain

aries perpendicular to them have exactly one Dirichlet

boundary. That is];(z4) = 1, Iy(zq) = I2(z4) = 0 for
d=1,...,Dy, andIo(:vd) =1, Il(:vd) = Ig(xd) =0 for
d > Dy. We get from Theoren2 that

D

Dg
2£d (éd — 1)7‘(
)\g—2D—2ZC 2N+1 —2 Z COST
d=Dop+1
The minimum among them is obtained by settifig= 1
ford=1,..., D, which gives
Do

iy
Amin = 2Dg — 2 : .
0 ;C% INg + 1

SinceN, > 1 for eachd in the summation, we usesz =
1— x2/2 + O(z*) when|z| < 1 to obtaincos 3" =

1—8—N5+O( ) Hence,
Do
Amin =
d; (4N2 (37 ) -
2 1 Dyr? 1
S < < —).
i +0(N4> Amin < N7 +O(Np> (15)

/\minb

_ +\|
S = [Re(s})] = 22

IV. SCALING LAWS FORSTABILITY MARGIN

The main result of the paper is the following.

Theorem 4:Consider anV-vehicle formation with aD-
dimensional information graptZ,,, x...xn,, With vehicle
dynamics ) and control law 2), where D, is the num-
ber of axes in the information graph that have Dirichlet
boundaries (either one or two) perpendicular to them. The
closed-loop stability margin is given by

720 & [ 11 (z4)
SZTZ[ i

d=1

IQ (Id (19)

1
)jl N_an
when N, > 1, where N, is defined in Corollaryl. O
Proof. Follows from Theoren8 and Corollaryl. O

The implication of the theorem is discussed next.

A. Stability Margin with Square Information Graphs

It is straightforward (though tedious) to repeating these In interpreting Theorend, it is useful to start with the
calculations for the other cases (when the number apecial case of aguareinformation graph, which has equal
Dirichlet boundaries is not exactly one). We see from theseumber of real vehicles/nodes along each coordinate axis in
calculations that the asymptotic dependencé\grdoes not the drawing of the information graph.

change from that in1(5), only the coefficients differ among

the different cases. This proves the result. ]

give an explicit formula for the stability margin of the

formation.

Theorem 3:Let A\, be the minimum eigenvalue of the
grounded Laplacial,. The stability margin of the closed

loop with N vehicles is

/\minb
2 )

when N, > 1, where N, is defined in Corollaryl. O

S:

(16)

Proof. From Theoreni, it follows that the eigenvalues of

state matrixA, denoted bys, satisfy:
52 4+ \bs + Mgk = 0, a7)

where \; € o(L,). From Theorem2, we see that\, is
positive. Sincek > 0 andb > 0, it follows that A is

Hurwitz. Moreover, it follows from {7) that the least stable

eigenvalue ofA, denoted bys;", is given by:

Amind 4k
N U b wwr)

5 (18)

Definition 4: An information graph is said to bequare
if N1 N2 = ND [ ]
For a square |nformat|on grapty; = N for everyd,
J\ﬁnch gives us the following corollary to Theorefn

Corollary 2: The closed-loop stability margin for a vehi-
cle formation withD-dimensional square information graph
has the asymptotic trenfl = O(Nz/D) when N/P > 1.

O

This result shows that for a square information graph,
stability margin approache8 with an asymptotic decay
of O(1/N?/P), irrespective of on which boundary (bound-
aries) the lead vehicles are present. The stability margin
scales a®)(1/N?) in an 1D information graph, a9(1/N)
in a 2D information graph, and a®(1/N?%/3) in a 3D
information graph. Thusfor the same control gains and
arrangements of lead vehicles, increasing the dimension
of the information graph improves the stability margin
significantly In practice, increasing the dimension of the
graph may require a communication network with long
range connections in the physical space. The reason is that
two nodes that are neighbors in the information graph need
not be physically close. Thus, one can strike a trade-off
between the cost of long-range communication vis-a-vis the
improvement in stability margin.



B. Stability Margin with Non-square Information Graphs

For ease of description, we describe the idea for non-
square information graph with only one Dirichlet boundary.
The information graph with other boundary configurations
can be interpreted in a similar manner. The following
corollary is immediate from Theorerh

Corollary 3: Suppose only one of the boundaries of the
information graph has lead vehicles, and let this boundary
be pergendicular to, axis, without loss of generality. Then,
s-mb L .

8 NP
It follows from this result that by choosing the structure
of the information graph in such a way that increases
slowly in relation toN, the loss of the stability margin as a
function of N can be slowed down. In fact, whéyy is held
at a constant value independent®f the stability margin ‘
is a constant independent of the total number of vehicles! (b) Non-square information grapls;, = O(1/N?)

More generally, if Ny = O(N€), wherec € [0,1] is
a fixed constant, it follows from Corollarg that S =
O(1/N*) asN — oc. If ¢ < 3, the resulting reduction
of S with N is slower than that obtained for a square
lattice; cf. Corollary2. This shows that within the class of
D dimensional lattices (for a fixed), certain information
graphs provide better scaling of the stability margin than
others. The price one pays for improving stability margin by
reducingV; is an increase in the number of lead vehicles.
This is because the number of lead vehiclgs, is related to () Square information grapl§ = O(1/N)
N; (under the assumptions in Corolla8yby N, = N/Nj.
There is thus a trade-off between improved stability margiﬁig. 4. (a) A2D information graph in which the first dimension is
and cost of having a large number of lead vehicles. held constant, resulting in a stability margin that is ineleglent of IV,

It is important to stress that not all non-square graphs afe= ©(1). (b) A 2D information graph that is "asymptotically” 1D (as

. . N — o0) since the size of the first dimension increases linearly it

advantageous. For example, A, = O(NV), which means resulting in a stability margin scaling la¥ = O(1/N?), which is the
N, through N areO(1), it follows from Corollary3 that ~ same as that with an 1D information graph. (cR® information graph in
the stability margin isS = O(l/NQ). This is the same trend Which both sides are of lengt®(v/N), for which we haveS = O(1/N).
as in a 1-D information graph. In this case, we can say that
theD dimensiona| information graph effective|y behaves a§|0WeVer, |t Should be taken intO account that increasing the
a one dimensional graph. dimension of the information graph or choosing a beneficial

Figure 4 shows a few examples of information graph@sPect ratio may require long range communication or
that are relevant to the discussion above. Figupgovides entail an increase in the number of lead vehicles. Thus,
numerical corroboration of the discussion above. It isrcled larger stability margin can be achieved by designing the
from the figure that the prediction from Corollag/and 9raph (and its boundary conditions) appropriately, but tha
Theorem 4 match very well with numerical computed May be accompanied by the increased cost of long-range

eigenvalues of the state matri. communication or large number of lead vehicles. These
results are therefore useful to the designer in making trade
V. CONCLUSION AND DISCUSSION offs between performance and cost in designing information

We study the problem of distributed control of a largeexchange architectures for decentralized control.
network of double-integrator agents witR-dimensional Our results for squaré-lattices are complementary to
information graph. We showed that the stability margirthose of [12], in which the effect of graph dimension on
scales asO(1/N?/P) for a D-dimensional square infor- the response of the closed loop to stochastic disturbances
mation graph. Therefore, increasing the dimension of this quantified in terms of “microscopic” and “macroscopic”
information graph can improve the stability margin by ameasures. It was shown in [12] that fé&» > 5, these
considerable amount. For non-square information gragh, tiperformance measures become independent,afhile for
stability margin can be made independent of the numbemaller D, the performance becomes worse without bound
of agents by choosing the “aspect ratio” appropriatelas the number of vehicles increase. In contrast, we showed
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Fig. 5. Stability margin for a vehicle formation with infoation
graphs of various “shapes” as shown in FigureThe legend "SSM”
means computed from the "state space modé); (hich is presented
in Sectionll. For the first caseN; = 5 and No = N/5. Corollary 3
predicts that in this casé = O(1) even asN — oo. In the second case,
N2 = 5 and Ny = N/5, which leads toS = O(1/N?). The third case
is that of a square information graphj; = Ny = +/N, which leads to
S = O(1/N). Corollary 3 and Theorem4 predict the stability margin
quite accurately in each of the cases. The control gains used the
calculations arék = 0.1 andb = 0.5.
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APPENDIX

Proof of Theoren®?. The proof proceeds by an induction
method. We'll study the 1D and 2D cases in detail, and
induce the D-dimensional case from the hypothesis for
(D —1)-dimensional information graph. Before we proceed
further, let’s first look at the eigenvalues of three special
n x n tridiagonal matricesk,,, S, and7,. Matrix R, has

independent ofV. To achieve a size-independent stabilitythe form:

margin, the graph needs to be non-square. Since the analysis
of [12] is done in the spatial Fourier domain, it is not clear
if non-square lattices with boundaries can be handled in tha

framework.
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(a—1) -1
-1 a —1
a — . (20)
-1 a -1
-1 (a—1)
The eigenvalues oR, are given by (see [17]):
/\gza—2COSM, (=1,2,...,n. (22)
n
And S, has the following form:
(a—1) -1
-1 a —1
Sa = S (22)
-1 a -1
-1 a
The eigenvalues of,, are given by (see [17]):
e :a—2cos%, (=1,2,...,n. (23)
Matrix T, is a tridiagonal Toeplitz matrix,
a —1
-1 a -1
T, = . (24)
-1 a -1
-1 a
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The eigenvalues df, are standard results: Now, we assume the general formula for the eigenvalues of

the grounded LapIaciaﬂE,D_l) of a (D — 1)-dimensional
I . .
A¢ = a — 2cos g (=1,2,...,n. (25) information is given by
n

_ _ _ = (ba—1)m
For al1D information graph, there are 3 possible boundary e ....ep , = 2(D — 1) —2 g [IO(Id) €08~
configurations: 1) there is no reference vehicle (This is the ¢§:1 d
trivial case, since there is a zero eigenvalue); 2) there is (20 — )7 Lam

' . T +I1(zq) cos ——— + Is(x4) cos .

only one reference vehicle on one end of the lattice; 1(@a) 2Ng+1 2(2a) Ng+1

3) there is one reference vehicle on each end of ithe (30)

lattice. For these three scenarios, the grounded Lapkcigaor a D-dimensional information graph, the grounded
are respectively?,, Sy and 75, their eigenvalues are given | gplacianL'”’ can be shown to be expressed as:
by (21), (23) and @5) respectively. ‘

Combining these results, we obtain the formula for the L) =In, @ LP~D + M @ Iy, Ny, (31)

. 2 (1)
elge_nvalues_of the grounded Laplacmé for a general where theLéD—l) is the grounded Laplacian for t®—1)-
1D information graph,

dimensional lattice with boundary condition (ﬁf,D) on
(6 — (264 —1)m  the z; to xp_, axes andM is the grounded Laplacian

Aoy =2 = 2[IO($1) COSTN 9N, +1  for the 1D lattice with boundary ofZ.;”) on thex), axis.

2L The dimension ofo]D’l) and M are (N1Ny---Np_1) X

1
) + I (21) cos

+ I2(x1) cos N, +1) (26) (N1Ns---Np_1) and Np x Np respectively. From Theo-
. 1, the ei lues of P iven b
wheref, = 1,2,...,N; and [;(z1) (j = 0,1,2) is the o e Slgenvaiues kg = are given by
indicator function defined in1@). Aot = ML) + A(M) (32)

For a2D information graph, there are 5 nontrivial possibl

boundary configurations, as shown in Fig®elt can be eUsmg the induction hypothesis i@, we have

shown that the general grounded Laplaciaff’ can be b-1 _
expressed as: ’ ’ pactef Ayootp =2(D —1) =2 Z [Io(xd) o8 W
d=1
2 1 _
L? =1y, @ LY + M ® Iy, (27) 1y () cos % + Do) cos Nidi 1}
where theLél) is the grounded Laplacian for tHeD lattice (¢p—-1m
with boundary condition oLEf) on thez; axis andM is the +2- [IO (p) cos Np
grounded Laplacian for theD lattice with boundary oLff) (20p — 1)m lpm
on thex, axis. The dimension of'") and M are Ny x N, +L(xp)cos INp + 1 +Ia(zp) cos Np + 1}
and N, x N, respectively. For example, the grounded graph D (g — )
Laplacian for the information graph shown in Fi§j(a) can =2D -2 Z {IO (z4) cos N
be shown as: d=1 d
20— ) bam
LY =L ®S+ Ry @I (28) + Li(za) cos % + Iz(a) cos Ndd—i— 1} '

33
where Sy is defined in 22) with dimension3 x 3 and R; . . (33)
is defined in 20) with dimensiond x 4. To prove the eigenvalues, .. ,,,’'s are all positive, we start

Following Theorent, the eigenvalues 0@572) are given by from the_ formula of eigenvalues given |r33) Under the _
assumption that there is at least one Dirichlet boundary in

ey oy = U(L_ff)) = U {a(Lf]” + e, In)} theD-dimensionaI infermation graph, without loss of gener-
Aoy € (M) ality, let it be perpendicular teq, thus we havd; (z1) = 1,
) In(zq4) =1(d =2,...,D)and the other indicator functions
- U {o(Ly”) + A}y take values of zero. The minimum eigenvalue becomes:
)\@2 GU(M) -
= Ay (L) + A (M), Anin = At =22 208 gy 20
2 .. . .
B (g —1)m Moreover, the more Dirichlet boundaries it has than before,
=4- 2; {Io(xd) cos Ny + the bigger the minimum eigenvalue is. ]
(2£d — 1)71' dam
I —+1I }, 29
1(zq) cos ON, 1 + Ix(z4) cos Ny 1 (29)

wherel; =1,2,..., Ny and/ly =1,2,..., Ns.
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