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Abstract— We study the problem of distributed control of
a large network of double-integrator agents to maintain a
rigid formation. A few lead vehicles are given information
on the desired trajectory of the formation; while every other
vehicle only uses information on relative position and velocity
from a few other vehicles to compute its control, which
are called its neighbors. A predetermined information graph
defines the neighbor relationships. We limit our attention
to information graphs that are D-dimensional lattices, and
examine the stability margin of the closed loop, which is
measured by the real part of the least stable eigenvalue of
the state matrix. The stability margin is shown to decay to
0 as O(1/N2/D) when the graph is “square”, where N is
the number of agents. Therefore, increasing the dimension of
the information graph can improve the stability margin by a
significant amount. For a non-square information graph, the
stability margin can be made independent ofN by choosing
the “aspect ratio” appropriately. An information graph wit h
large D may require nodes that are physically apart to
exchange information. Similarly, choosing an aspect ratioto
improve stability margin may entail an increase in the number
of lead vehicles. These results are useful to the designer in
making trade-offs between performance and cost in designing
information exchange architectures for decentralized control.

I. I NTRODUCTION

We consider the problem of formation control of vehi-
cles so that neighboring vehicles maintain a constant pre-
specified spacing while in motion. This problem is relevant
to a number of applications such as formation flying of
aerial, ground, and autonomous vehicles for surveillance,
reconnaissance, mine-sweeping, etc. [1], [2], [3]. A few
lead vehicles are provided information on their desired
trajectories that they use in computing their control actions;
while the rest of the vehicles are allowed to use only locally
available information. In a distributed control architecture,
each vehicle can measure only the relative position and ve-
locity with respect to a number ofneighbors. The neighbor
relationship is predefined in terms of a graph, which we call
the information graph.

The one-dimensional version of this problem, in which
a string of vehicles moving in a straight line have to be
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controlled to maintain a constant inter-vehicle separation,
has been extensively studied [4], [5], [6]. The general trend
of the results is that the problem scales poorly with the
number of vehicles: as the number of vehicles increase the
sensitivity to disturbances increases [7], [8], [9] and the
stability margin decays [10], [6]. The information graphs
considered in the literature are usually limited to at most
two neighbors, with notable exceptions such as [11], [12],
[13] that consider more general information exchange ar-
chitectures.

Our goal is to examine how the stability margin scales
with the size of the formation and the structure of the
information graph that specifies allowable information ex-
change between pairs of vehicles. The real part of the
least stable eigenvalue is used as a measure of the stability
margin. The stability margin determines the decay rate of
initial formation keeping errors. Such errors arise from
poor initial arrangement of the vehicles. In this paper we
limit our attention to a specific class of information graphs,
namely,D-dimensional (finite) lattices. These are natural
choices for information graphs in 2D or 3D formation
problems in which vehicles are arranged in regular pattern
and relative measurements are possible among physically
closest vehicles.

Each vehicle is modeled as a double integrator, and
a distributed control algorithm is studied in which every
vehicle (except for a few lead vehicles) use only relative
position and relative velocity with respect to its neigh-
bors in the information graph. We show that when the
network is homogeneous and symmetric (all vehicles use
the same control gains and information from each neighbor
is given equal weight), the stability margin decays to0
as O(1/N2/D) when the graph is “square”. Therefore,
increasing the dimension (which may need nodes physically
apart to exchange information) of the information graph can
improve the stability margin by a considerable amount. For
non-square information graph, the stability margin can be
made independent of the number of agents by choosing the
“aspect ratio” appropriately. That may entail an increase
in the number of lead vehicles that have access to the
formation’s desired trajectory.

The results in this paper are a generalization of the
results in [14], which showed that the stability margin
when the information graph is a2-D lattice decays to0
asO(1/N). The results in [14] were obtained by using the
PDE approximation by taking the continuum limit when



the number of vehicles is large. In this paper we avoid such
approximation, and establish the scaling laws of the stability
margin for generalD-dimensional lattices. In addition, [14]
considered the scenario in which the desired trajectory
of the formation was one with a constant velocity, and
moreover, every vehicle knew this velocity. In contrast,
the control law we consider requires agents to know only
the desired inter-agent separation; the overall trajectory
information is made available only to the lead vehicles. This
makes the model more applicable to practical formation
control applications in which the formation may be required
to accelerate or decelerate occasionally, and the decisionto
do so is made available only to the lead vehicles. Our results
have some interesting connections with those in [12], which
are discussed at the end.

The rest of this paper is organized as follows. SectionII
presents the distributed formation control problem. Sec-
tion III describes the technical results, including one on
eigenvalues of a grounded Laplacian matrix that plays a
pivotal role on establishing the main result. The main result
and its implications are presented in SectionIV.

II. PROBLEM STATEMENT

We consider the formation control ofN identical vehi-
cles, where the position of each vehicle is aDs-dimensional
vector (with Ds = 1, 2 or 3); Ds is referred to as the
spatial dimensionof the formation. Letp(d)

i ∈ R be thed-
th coordinate of thei-th vehicle’s position, whose dynamics
are modeled by a double integrator:

p̈
(d)
i = u

(d)
i , d = 1, . . . , Ds, (1)

where u
(d)
i ∈ R is the control input (acceleration or

deceleration command). The underlying assumption is that
each of theDs coordinates of a vehicle’s position can be
independently actuated. We say that the vehicles arefully
actuated. The spatial dimensionDs is 1 for a platoon of
vehicles moving in a straight line, andDs = 2 for a
formation of ground vehicles.

The control objective is to make the group of vehicles
track a pre-specified reference trajectory while maintaining
a desired formation geometry. Reference trajectory infor-
mation is available only to a set oflead vehicles. This
information is represented by introducingfictitious reference
vehicles, one for each lead vehicle. Each reference vehicle
perfectly tracks its own desired trajectory. Each lead vehicle
can measure its relative position and velocity with respect
to its corresponding reference vehicle, which is equivalent
to lead vehicles having knowledge of the desired trajectory
of the formation. Denoting the number of reference vehicles
by Nr, the setV := {1, . . . , N, N +1, . . . , N +Nr} is the
set of allnodesin the formation, includingN real vehicles
andNr fictitious reference vehicles. The desired formation
geometry is specified by a desired relative position vector
∆i,j for every pair of vehicles(i, j) ∈ V × V, where
∆i,j is the desired value ofpi(t) − pj(t). The desired
inter-vehicular spacings have to be specified in a mutually

consistent fashion, i.e., we must have∆i,j = ∆i,k + ∆k,j

for every triplei, j, k ∈ V. Since we are interested in rigid
formations that do not change shape over time,∆i,j ’s are
constants. To maintain a rigid formation, the control must
make every vehicle track its desired trajectory. The desired
trajectory of a real vehiclei, denoted byp∗i (t) can be
uniquely determined from the trajectories of the reference
vehicles and the desired formation geometry. In particular,
p∗i (t) = p∗j (t) + ∆i,j wherej is any reference vehicle, and
p∗j (t) is its trajectory.

Next we define aninformation graph that makes it
convenient to describe distributed control architectures.

Definition 1: An information graph is an undirected
graphG = (V,E). The set of edgesE ⊂ V × V specify
which pairs of nodes (vehicles) are allowed to exchange
information to compute their local control actions. Two
nodesi andj are calledneighborsif (i, j) ∈ E, and the set
of neighbors ofi are denoted byNi. �

In this paper we consider the followingdistributedcon-
trol law, whereby the control action at a vehicle depends
on the relative position and velocity measurements with its
neighbors in the information graph:

u
(d)
i =

∑

j∈Ni

−k(p
(d)
i − p

(d)
j − ∆

(d)
i,j ) − b(ṗ

(d)
i − ṗ

(d)
j ) (2)

where i ∈ {1, . . . , N} on the left hand side andj ∈ V

on the right hand side. The positive constantsk, b are
the position and velocity feedback gains, respectively. Itis
assumed that vehiclei knows its own neighbors (the setNi),
and the desired spacing∆(d)

i,j . If j is a reference vehicle,

p
(d)
j (t) = p

(d)∗
j (t), wherep

(d)∗
j (t) is thed-th coordinate of

its reference trajectory.
Example 1:Consider the two formations shown in Fig-

ure 1 (a) and (b). Their spatial dimensions areDs = 1
andDs = 2, respectively. The information graph, however,
is the same in both cases:V = {1, 2, . . . , 9}, E =
{(1, 2), (1, 3), · · · , (5, 6), (6, 9)}. A drawing of the infor-
mation graph appears in Figure1 (c).

In this paper we restrict ourselves to a specific class of
information graphs, namely a finite rectangular lattice:

Definition 2 (D-dimensional lattice):A D-dimensional
lattice, specifically an1 × n2 × · · · × nD lattice, is a graph
with n1n2 . . . nD nodes, denoted byZn1×n2···×nD . �

Figure 2 depicts two examples of lattices. AD-
dimensional lattice is drawn inRD with a Cartesian ref-
erence frame whose axes are denoted byx1, x2, . . . , xD.
Note that these coordinate axes may not be related to the
coordinate axes in the physical spaceR

Ds . We also define
Nd (d = 1, . . . , D) as the number of real vehicles in the
xd direction. Then we have the relationN1N2 . . . ND = N
andn1n2 . . . nD = N + Nr.

We assume that there is at least one boundary every node
of which is a reference vehicle. Reference vehicles are only
placed on the boundaries; this typically corresponds to lead
vehicles being the outermost vehicles in a formation. We
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(a) The desired formation geometry of a 1D spatial platoon
with 6 vehicles and3 reference vehicles.
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(b) The desired formation geometry of a 2D spatial ve-
hicle formation with6 vehicles and3 reference vehicles.
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(c) The information graph for both the 1D platoon
and the 2D formation shown in (a) and (b).

Fig. 1. (a, b): Two distinct spatial formations that have thesame associated
information graph (c). Red (filled) circles represent reference vehicles and
black (unfilled) circles represent ”real” vehicles. Dashedlines (in (a), (b))
represent desired relative positions, while solid lines represent edges in the
information graph.

call such a boundary aDirichlet boundary. A boundary
of the information graph is either a Dirichlet boundary, in
which case all nodes on it are reference vehicles, or none
of the nodes on it are reference vehicles.

For different configuration of Dirichlet boundaries,Nd

andnd has a slightly different but straightforward relation.
For example, in Figure1 (c), N1 + 1 = n1 since the
boundary perpendicular to the positivex1 axis is a Dirichlet
boundary, whileN2 = n2 since both boundaries perpendic-
ular to thex2 axis are not Dirichlet boundaries. For a given
N , the choice ofD andNd, nd, d = 1, . . .D specifies the
choice of the information graph and its boundary condition.

Remark 1:The dimensionD of the information graph
is distinct from the spatial dimensionDs. Figure1 shows
an example of two formations in space, one withDs = 1
and the other withDs = 2. The information graph for both
the formations is the same3 × 3 two-dimensional lattice,
i.e., D = 2. On account of the fully actuated dynamics and
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(a) A 2D 4 × 4 lattice.
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o

(b) A 3D 2 × 3 × 3 lattice.

Fig. 2. Examples of 2D and 3D lattices.

independence of control gains ond, the spatial dimension
Ds plays no role in the results of this paper. The dimension
of the information graphD, on the other hand, will be
shown to play a crucial role.

III. STABILITY MARGIN AND GROUNDED LAPLACIAN

The dynamics of thei-th vehicle are obtained by com-
bining the open loop dynamics (1) with the control law (2),
which yields (suppressing the superscriptd)

p̈i =
∑

j∈Ni

−k(pi − pj − ∆i,j) − b(ṗi − ṗj). (3)

To facilitate analysis, we define the following tracking error:

p̃i(t) := pi(t) − p∗i (t), (4)

wherep∗i (t) is the i-th agent’s desired trajectory. Note that
for a rigid formation to be possible, the desired trajectories
must satisfyṗ∗i − ṗ∗j = 0 for every i, j, which meansṗi −
ṗj = ˙̃pi − ˙̃pj . Therefore, substituting (4) into (3), we have

¨̃pi =
∑

j∈Ni

−k(p̃i − p̃j) − b( ˙̃pi − ˙̃pj). (5)

Since the trajectory of a reference vehicle is assumed
to be equal to its desired trajectory,̃pi = 0 if i is a
reference vehicle. To express the closed-loop dynamics of
the formation compactly, we define the following state:

x := [p̃1, ˙̃p1, p̃2, ˙̃p2, · · · , p̃N , ˙̃pN ]T

Using (5), the state-space model of the vehicle formation
can now be written compactly as:

ẋ = Ax (6)

whereA is the closed-loop state matrix.
Definition 3: The stability margin is the absolute value

of the real part of the least stable eigenvalue of the state
matrix A in (6). �

To facilitate analysis, we define the matricesA1, A2 and
Lg, where

A1 =

[

0 1
0 0

]

, A2 =

[

0 0
−k −b

]

, (7)

and Lg is the grounded (or Dirichlet) Laplacianmatrix
of the information graph with reference nodes defining the



grounded nodes. To precisely define this matrix recall that
the Laplacian matrix of a graphG = (V,E) with n nodes
is defined as

[Ln×n]ij =











deg(i) i = j

−1 (i, j) ∈ E

0 otherwise.

(8)

where deg(i) is the number of neighbors of nodei in
the graph. ThegroundedLaplacianLg matrix of G with
respect to a set of grounded nodesVg ⊂ V is the
submatrix ofL obtained by removing fromL those rows
and columns corresponding to the grounded nodes inVg.
This matrix occurs in the numerical solution of PDEs with
Dirichlet boundary conditions and analysis of electrical
networks [15]. For example, the grounded graph Laplacian
of the information graph shown in Figure1 (c), with nodes
7, 8, 9 as the grounded nodes, is:

Lg =

















1 2 3 4 5 6

1 2 −1 −1 0 0 0
2 −1 3 0 −1 0 0
3 −1 0 3 −1 −1 0
4 0 −1 −1 4 0 −1
5 0 0 −1 0 2 −1
6 0 0 0 −1 −1 3

















. (9)

It is straightforward to show that

A = IN ⊗ A1 + Lg ⊗ A2, (10)

where IN is the N × N identity matrix and⊗ is the
Kronecker product.

Theorem 1:The spectrum ofA is

σ(A) =
⋃

λℓ∈σ(Lg)

{σ(A1 + λℓA2)}, (11)

=
⋃

λℓ∈σ(Lg)

{σ
[

0 1
−k0λℓ −b0λℓ

]

}, (12)

whereσ(·) is the set of distinct eigenvalues. �

Proof of Theorem1. The proof follows the analysis in [16].
From Schur’s triangularization theorem, every square matrix
is unitarily similar to an upper-triangular matrix, therefore,
there exists an unitary matrixU such thatU−1LgU = Lu,
where Lu is an upper-triangular matrix, whose diagonal
entries are the eigenvalues ofLg. We now do a similarity
transformation on matrixA,

Ã =(U−1 ⊗ I2)A(U ⊗ I2)

=(U−1 ⊗ I2)(IN ⊗ A1 + Lg ⊗ A2)(U ⊗ I2)

=IN ⊗ A1 + Lu ⊗ A2,

which is a block upper-triangular matrix, and the block
on each diagonal isA1 + λℓA2, where λℓ ∈ σ(Lg).
Since similarity transformation preserves eigenvalues, and
the eigenvalues of a block upper-triangular matrix are the
union of eigenvalues of each block on the diagonal, we
complete the proof.

x1

x2

o

1 2 3

4 5 6

7 8 9

10 11 12

13

14

15

16

(a)

x1

x2

o

1 2

3 4

5 6

7 8

9

10

11

12

13

14

15

16

(b)

x1

x2

o

1 2 3

4 5 6

7 8 9

10

11

12

131415

(c)

x1

x2

o

1 2 3

4 5 6

7

8

9

10

11

12

13

14

(d)

x1

x2

o

1 2

3 4

5

6

7

8

9

10

11

12

(e)

Fig. 3. A pictorial representation of the possible Dirichlet boundary
configurations for a 2D information graph.

The next theorem, whose proof is provided in the Ap-
pendix, gives an explicit formula for the eigenvalues of the
grounded Laplacian for the graphs considered in this paper.

Theorem 2:The eigenvalues of the grounded graph
Laplacian Lg of a D-dimensional information graph
Zn1×...nD are positive and are given by the following
formula

λℓ := λℓ1,...,ℓD = 2D − 2

D
∑

d=1

[

I0(xd) cos
(ℓd − 1)π

Nd

+I1(xd) cos
(2ℓd − 1)π

2Nd + 1
+ I2(xd) cos

ℓdπ

Nd + 1

]

> 0, (13)

where ℓd = 1, . . . , Nd (d = 1, . . . , D) and the indicator
function Ij(xd) (j = 0, 1, 2) is defined as:

Ij(xd) =











1, if there arej Dirichlet boundaries

perpendicular toxd axis,

0, otherwise.

(14)

�

For example, in Fig.3 (a), there is one Dirichlet bound-
aries perpendicular tox1 axis, so I1(x1) = 1; there is
no Dirichlet boundary perpendicular tox2 axis, I0(x2) =
1. And in Fig. 3 (e), there are two Dirichlet boundaries
perpendicular tox1 and x2 axes respectively, therefore
I2(x1) = I2(x2) = 1 and the other indicator functions take
value of zero.

It follows from Theorem2 that the minimum eigenvalue
of the grounded Laplacian is given in the following corol-
lary.

Corollary 1: Consider theD-dimensional information
graph Zn1×···×nD where D0 is the number of axes in
the information graph that have Dirichlet boundaries (ei-
ther one or two) perpendicular to them. Without loss of
generality, let these coordinates bex1, . . . , xD0 . If Nd ≫
1 for d = 1, . . . , D0, then the minimum eigenvalue



λmin of the grounded LaplacianLg is O( 1
N2

p
), where

p := arg min
d=1,...,D0

Nd. �

Proof of Corollary1. Consider the following case first:
each of the firstD0 coordinates that have Dirichlet bound-
aries perpendicular to them have exactly one Dirichlet
boundary. That is,I1(xd) = 1, I0(xd) = I2(xd) = 0 for
d = 1, . . . , D0, andI0(xd) = 1, I1(xd) = I2(xd) = 0 for
d > D0. We get from Theorem2 that

λℓ = 2D − 2

D0
∑

d=1

cos
(2ℓd − 1)π

2Nd + 1
− 2

D
∑

d=D0+1

cos
(ℓd − 1)π

Nd
.

The minimum among them is obtained by settingℓd = 1
for d = 1, . . . , D, which gives

λmin = 2D0 − 2

D0
∑

d=1

cos
π

2Nd + 1
.

SinceNd ≫ 1 for eachd in the summation, we usecosx =
1 − x2/2 + O(x4) when |x| ≪ 1 to obtaincos π

2Nd+1 =

1 − π2

8N2
d

+ O( 1
N4

d

). Hence,

λmin =

D0
∑

d=1

(

π2

4N2
d

+ O(
1

N4
d

)

)

⇒

π2

4N2
p

+ O(
1

N4
p

) ≤ λmin ≤ D0π
2

4N2
p

+ O(
1

N4
p

). (15)

It is straightforward (though tedious) to repeating these
calculations for the other cases (when the number of
Dirichlet boundaries is not exactly one). We see from these
calculations that the asymptotic dependence onNp does not
change from that in (15), only the coefficients differ among
the different cases. This proves the result.

The next result combines the ones establishes so far to
give an explicit formula for the stability margin of the
formation.

Theorem 3:Let λmin be the minimum eigenvalue of the
grounded LaplacianLg. The stability margin of the closed
loop with N vehicles is

S =
λminb

2
, (16)

whenNp ≫ 1, whereNp is defined in Corollary1. �

Proof. From Theorem1, it follows that the eigenvalues of
state matrixA, denoted bys, satisfy:

s2 + λℓbs + λℓk = 0, (17)

where λℓ ∈ σ(Lg). From Theorem2, we see thatλℓ is
positive. Sincek > 0 and b > 0, it follows that A is
Hurwitz. Moreover, it follows from (17) that the least stable
eigenvalue ofA, denoted bys+

1 , is given by:

s+
1 = −λminb

2

(

1 +

√

1 − 4k

λminb2

)

(18)

It follows from Corollary 1 that it is possible to make
λmin arbitrarily small by choosingNp sufficiently large. We
chooseNp large enough so thatλmin < 4k

b2 , which makes
the term inside the square root in (18) negative. Following
the definition of stability margin, we obtain

S = |Re(s+
1 )| =

λminb

2
.

IV. SCALING LAWS FOR STABILITY MARGIN

The main result of the paper is the following.
Theorem 4:Consider anN -vehicle formation with aD-

dimensional information graphZn1×···×nD , with vehicle
dynamics (1) and control law (2), whereD0 is the num-
ber of axes in the information graph that have Dirichlet
boundaries (either one or two) perpendicular to them. The
closed-loop stability margin is given by

S =
π2b

2

D0
∑

d=1

[I1(xd)

4
+ I2(xd)

] 1

N2
d

, (19)

whenNp ≫ 1, whereNp is defined in Corollary1. �

Proof. Follows from Theorem3 and Corollary1. �

The implication of the theorem is discussed next.

A. Stability Margin with Square Information Graphs

In interpreting Theorem4, it is useful to start with the
special case of asquareinformation graph, which has equal
number of real vehicles/nodes along each coordinate axis in
the drawing of the information graph.

Definition 4: An information graph is said to besquare
if N1 = N2 = . . . = ND.
For a square information graph,Nd = N

1
D for every d,

which gives us the following corollary to Theorem4.
Corollary 2: The closed-loop stability margin for a vehi-

cle formation withD-dimensional square information graph
has the asymptotic trendS = O( 1

N2/D ), whenN1/D ≫ 1.
�

This result shows that for a square information graph,
stability margin approaches0 with an asymptotic decay
of O(1/N2/D), irrespective of on which boundary (bound-
aries) the lead vehicles are present. The stability margin
scales asO(1/N2) in an 1D information graph, asO(1/N)
in a 2D information graph, and asO(1/N2/3) in a 3D
information graph. Thus,for the same control gains and
arrangements of lead vehicles, increasing the dimension
of the information graph improves the stability margin
significantly. In practice, increasing the dimension of the
graph may require a communication network with long
range connections in the physical space. The reason is that
two nodes that are neighbors in the information graph need
not be physically close. Thus, one can strike a trade-off
between the cost of long-range communication vis-a-vis the
improvement in stability margin.



B. Stability Margin with Non-square Information Graphs

For ease of description, we describe the idea for non-
square information graph with only one Dirichlet boundary.
The information graph with other boundary configurations
can be interpreted in a similar manner. The following
corollary is immediate from Theorem4.

Corollary 3: Suppose only one of the boundaries of the
information graph has lead vehicles, and let this boundary
be perpendicular tox1 axis, without loss of generality. Then,

S =
π2b

8

1

N2
1

. �

It follows from this result that by choosing the structure
of the information graph in such a way thatN1 increases
slowly in relation toN , the loss of the stability margin as a
function ofN can be slowed down. In fact, whenN1 is held
at a constant value independent ofN , the stability margin
is a constant independent of the total number of vehicles!

More generally, ifN1 = O(N c), where c ∈ [0, 1] is
a fixed constant, it follows from Corollary3 that S =
O(1/N2c) as N → ∞. If c < 1

D , the resulting reduction
of S with N is slower than that obtained for a square
lattice; cf. Corollary2. This shows that within the class of
D dimensional lattices (for a fixedD), certain information
graphs provide better scaling of the stability margin than
others. The price one pays for improving stability margin by
reducingN1 is an increase in the number of lead vehicles.
This is because the number of lead vehicles,Nr, is related to
N1 (under the assumptions in Corollary3) by Nr = N/N1.
There is thus a trade-off between improved stability margin
and cost of having a large number of lead vehicles.

It is important to stress that not all non-square graphs are
advantageous. For example, ifN1 = O(N), which means
N2 throughND areO(1), it follows from Corollary3 that
the stability margin isS = O(1/N2). This is the same trend
as in a 1-D information graph. In this case, we can say that
theD dimensional information graph effectively behaves as
a one dimensional graph.

Figure 4 shows a few examples of information graph
that are relevant to the discussion above. Figure5 provides
numerical corroboration of the discussion above. It is clear
from the figure that the prediction from Corollary3 and
Theorem 4 match very well with numerical computed
eigenvalues of the state matrixA.

V. CONCLUSION AND DISCUSSION

We study the problem of distributed control of a large
network of double-integrator agents withD-dimensional
information graph. We showed that the stability margin
scales asO(1/N2/D) for a D-dimensional square infor-
mation graph. Therefore, increasing the dimension of the
information graph can improve the stability margin by a
considerable amount. For non-square information graph, the
stability margin can be made independent of the number
of agents by choosing the “aspect ratio” appropriately.

x1

x2

N1 = O(1)

N
2

=
O

(N
)

o

(a) Non-square information graph,S = O(1)

x1

x2

o
N1 = O(N)

N
2

=
O

(1
)

(b) Non-square information graph,S = O(1/N2)

x1

x2

o
N1 = O(

√
N)

N
2

=
O

(√
N

)

(c) Square information graph,S = O(1/N)

Fig. 4. (a) A 2D information graph in which the first dimension is
held constant, resulting in a stability margin that is independent ofN ,
S = O(1). (b) A 2D information graph that is ”asymptotically” 1D (as
N → ∞) since the size of the first dimension increases linearly with N ,
resulting in a stability margin scaling lawS = O(1/N2), which is the
same as that with an 1D information graph. (c) A2D information graph in
which both sides are of lengthO(

√
N), for which we haveS = O(1/N).

However, it should be taken into account that increasing the
dimension of the information graph or choosing a beneficial
aspect ratio may require long range communication or
entail an increase in the number of lead vehicles. Thus,
a larger stability margin can be achieved by designing the
graph (and its boundary conditions) appropriately, but that
may be accompanied by the increased cost of long-range
communication or large number of lead vehicles. These
results are therefore useful to the designer in making trade-
offs between performance and cost in designing information
exchange architectures for decentralized control.

Our results for squareD-lattices are complementary to
those of [12], in which the effect of graph dimension on
the response of the closed loop to stochastic disturbances
is quantified in terms of “microscopic” and “macroscopic”
measures. It was shown in [12] that forD > 5, these
performance measures become independent ofN , while for
smallerD, the performance becomes worse without bound
as the number of vehicles increase. In contrast, we showed
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Fig. 5. Stability margin for a vehicle formation with information
graphs of various “shapes” as shown in Figure4. The legend ”SSM”
means computed from the ”state space model” (6), which is presented
in Section II . For the first case,N1 = 5 and N2 = N/5. Corollary 3
predicts that in this caseS = O(1) even asN → ∞. In the second case,
N2 = 5 andN1 = N/5, which leads toS = O(1/N2). The third case
is that of a square information graph,N1 = N2 =

√
N , which leads to

S = O(1/N). Corollary 3 and Theorem4 predict the stability margin
quite accurately in each of the cases. The control gains usedin all the
calculations arek = 0.1 andb = 0.5.

that the stability margin decays to0 asN increases in every
D. Though the decay is slower for largerD, it is never
independent ofN . To achieve a size-independent stability
margin, the graph needs to be non-square. Since the analysis
of [12] is done in the spatial Fourier domain, it is not clear
if non-square lattices with boundaries can be handled in that
framework.
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APPENDIX

Proof of Theorem2. The proof proceeds by an induction
method. We’ll study the 1D and 2D cases in detail, and
induce the D-dimensional case from the hypothesis for
(D−1)-dimensional information graph. Before we proceed
further, let’s first look at the eigenvalues of three special
n × n tridiagonal matricesRa, Sa andTa. Matrix Ra has
the form:

Ra =















(a − 1) −1
−1 a −1

. . .
. . .

. . .
−1 a −1

−1 (a − 1)















. (20)

The eigenvalues ofRa are given by (see [17]):

λℓ = a − 2 cos
(ℓ − 1)π

n
, ℓ = 1, 2, . . . , n. (21)

And Sa has the following form:

Sa =















(a − 1) −1
−1 a −1

. . .
. . .

. . .
−1 a −1

−1 a















. (22)

The eigenvalues ofSa are given by (see [17]):

λℓ = a − 2 cos
(2ℓ − 1)π

2n + 1
, ℓ = 1, 2, . . . , n. (23)

Matrix Ta is a tridiagonal Toeplitz matrix,

Ta =















a −1
−1 a −1

. . .
. . .

. . .
−1 a −1

−1 a















. (24)
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The eigenvalues ofTa are standard results:

λℓ = a − 2 cos
ℓπ

n + 1
, ℓ = 1, 2, . . . , n. (25)

For a1D information graph, there are 3 possible boundary
configurations: 1) there is no reference vehicle (This is the
trivial case, since there is a zero eigenvalue); 2) there is
only one reference vehicle on one end of the1D lattice;
3) there is one reference vehicle on each end of the1D
lattice. For these three scenarios, the grounded Laplacians
are respectivelyR2, S2 andT2, their eigenvalues are given
by (21), (23) and (25) respectively.
Combining these results, we obtain the formula for the
eigenvalues of the grounded LaplacianL

(1)
g for a general

1D information graph,

λℓ1 =2 − 2
[

I0(x1) cos
(ℓ1 − 1)π

N1
+ I1(x1) cos

(2ℓ1 − 1)π

2N1 + 1

+ I2(x1) cos
ℓ1π

N1 + 1

]

, (26)

where ℓ1 = 1, 2, . . . , N1 and Ij(x1) (j = 0, 1, 2) is the
indicator function defined in (14).
For a2D information graph, there are 5 nontrivial possible
boundary configurations, as shown in Figure3. It can be
shown that the general grounded LaplacianL

(2)
g can be

expressed as:

L(2)
g = IN2 ⊗ L(1)

g + M ⊗ IN1 , (27)

where theL(1)
g is the grounded Laplacian for the1D lattice

with boundary condition ofL(2)
g on thex1 axis andM is the

grounded Laplacian for the1D lattice with boundary ofL(2)
g

on thex2 axis. The dimension ofL(1)
g andM areN1×N1

andN2×N2 respectively. For example, the grounded graph
Laplacian for the information graph shown in Fig.3 (a) can
be shown as:

L(2)
g = I4 ⊗ S2 + R2 ⊗ I3 (28)

whereS2 is defined in (22) with dimension3 × 3 andR2

is defined in (20) with dimension4 × 4.
Following Theorem1, the eigenvalues ofL(2)

g are given by

λℓ1,ℓ2 = σ(L(2)
g ) =

⋃

λℓ2
∈σ(M)

{σ(L(1)
g + λℓ2IN1)},

=
⋃

λℓ2
∈σ(M)

{σ(L(1)
g ) + λℓ2},

= λℓ1(L
(1)
g ) + λℓ2(M),

= 4 − 2

2
∑

d=1

[

I0(xd) cos
(ℓd − 1)π

Nd
+

I1(xd) cos
(2ℓd − 1)π

2Nd + 1
+ I2(xd) cos

ℓdπ

Nd + 1

]

, (29)

whereℓ1 = 1, 2, . . . , N1 andℓ2 = 1, 2, . . . , N2.

Now, we assume the general formula for the eigenvalues of
the grounded LaplacianL(D−1)

g of a (D − 1)-dimensional
information is given by

λℓ1,...,ℓD−1 = 2(D − 1) − 2

D−1
∑

d=1

[

I0(xd) cos
(ℓd − 1)π

Nd

+I1(xd) cos
(2ℓd − 1)π

2Nd + 1
+ I2(xd) cos

ℓdπ

Nd + 1

]

.

(30)

For a D-dimensional information graph, the grounded
LaplacianL

(D)
g can be shown to be expressed as:

L(D)
g = IND ⊗ L(D−1)

g + M ⊗ IN1N2···ND−1 , (31)

where theL(D−1)
g is the grounded Laplacian for the(D−1)-

dimensional lattice with boundary condition ofL(D)
g on

the x1 to xD−1 axes andM is the grounded Laplacian
for the 1D lattice with boundary ofL(D)

g on thexD axis.
The dimension ofL(D−1)

g andM are(N1N2 · · ·ND−1) ×
(N1N2 · · ·ND−1) andND ×ND respectively. From Theo-
rem 1, the eigenvalues ofL(D)

g are given by

λℓ1,...,ℓD = λ(L(D−1)
g ) + λ(M) (32)

Using the induction hypothesis in (30), we have

λℓ1,...,ℓD = 2(D − 1) − 2
D−1
∑

d=1

[

I0(xd) cos
(ℓd − 1)π

Nd

+ I1(xd) cos
(2ℓd − 1)π

2Nd + 1
+ I2(xd) cos

ℓdπ

Nd + 1

]

+ 2 −
[

I0(xD) cos
(ℓD − 1)π

ND

+ I1(xD) cos
(2ℓD − 1)π

2ND + 1
+ I2(xD) cos

ℓDπ

ND + 1

]

= 2D − 2
D

∑

d=1

[

I0(xd) cos
(ℓd − 1)π

Nd

+ I1(xd) cos
(2ℓd − 1)π

2Nd + 1
+ I2(xd) cos

ℓdπ

Nd + 1

]

.

(33)

To prove the eigenvaluesλℓ1,...,ℓD ’s are all positive, we start
from the formula of eigenvalues given in (33). Under the
assumption that there is at least one Dirichlet boundary in
theD-dimensional information graph, without loss of gener-
ality, let it be perpendicular tox1, thus we haveI1(x1) = 1,
I0(xd) = 1 (d = 2, . . . , D) and the other indicator functions
take values of zero. The minimum eigenvalue becomes:

λmin = λ1,...,1 = 2 − 2 cos
π

2N1 + 1
> 0

Moreover, the more Dirichlet boundaries it has than before,
the bigger the minimum eigenvalue is.
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