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Abstract— We consider the distributed control of a network  (exceptions include [4], [5]). In addition, only symmetric
of heterogeneous agents with double integrator dynamics to control laws are considered in which the information from
maintain a rigid formation in 1D. The control signal at a  poth the neighboring agents are weighted equally, with [6],

vehicle is allowed to use relative position and velocity wit . . .
its two nearest neighbors. Most of the work on this problem, [3] being exceptions. Khatiet. al. proposes heterogeneous

though extensive, has been limited to homogeneous networks control gains to improve string stability (sensitivity tisd
in which agents have identical masses and control gains, turbance) at the expense of control gains increasing withou

and symmetric control, in which information from front and bound asN increases [4]. Middletoret. al. considers
back neighbors are weighted equally. We examine the effect oy nidirectional and bidirectional control, and comiga

of heterogeneity and asymmetry on the closed loop stability . . . ..
margin, which is measured by the real part of the least stable N€t€rogeneity has little effect on the string stability end

eigenvalue. By using a PDE approximation in the limit of ~Certain conditions on the the high frequency behavior [5].
large number of vehicles, we show that heterogeneity hastie ~ On the other hand, [6] examines the effect of asymmetry
effect while asymmetry has a significant effect on the stality  (but not heterogeneity) on the response of the platoon
margin. When control is symmetric, the stability margin a5 g result of sinusoidal disturbances in the lead vehicle,

decays to0 as 1/N?, where N is the number of agents, even d ludes th t k itivity t h
when the agents are heterogeneous in their masses and cortro 2Nd concludes the asymmetry makes sensitivity 1o suc

gains. In contrast, we show that arbitrarily small amount disturb_ances worse.
of asymmetry in the velocity feedback gains can improve In this paper we analyze the case when the agentsetre

the decay of the stability margin to O(1/N). Poor design erogeneousn their masses and control laws used, and also
of asymmetry makes the closed loop unstable for sufficiently allow asymmetry in the use of front and back information.

large N. With equal amount of asymmetry in both velocity and - - - . .
position feedback gains, the closed loop is stable for arbiry A decentralizedidirectional control law is considered that

N. Effect of asymmetry in position feedback gains alone is an Uses only relative position and relative velocity inforioat
open problem. Numerical computations of the eigenvalues ar from the two nearest neighbors. We examine the effect of

provided that corroborate the PDE-based analysis. heterogeneity and asymmetry on the stability margin of the
closed loop, which is measured by the absolute value of
. _ . the real part of the least stable pole. The stability margin
In this paper we examine the closed loop dynamics Qfgiermines the decay rate of initial formation keepingmsiro
a system consisting o interacting agents arranged in ag oy errors arise from poor initial arrangement of the
line, where the agents are modeled as double integratQqfSents. The main result of the paper is that in a decentcalize
and each agent interacts with its two nearest neighboggyirectional control, heterogeneity has little effect tre
through its local control action. This is a problem thalyapility margin of the overall closed loop, while even smal
is of primary interest to formation control applications,,symmetry can have a significant impact. In particular, we
especially to pl_atoons of vehicles, where_ the vehlclgs a&ow that in the symmetric case, the stability margin decays
modeled as point masses. An extensive literature exists gt 4¢ O(1/N?), where N is the number of agents. We
1D automated platoons; see [1], [2], [3] and referencegs, ghow that the asymptotic trend of stability margin is
therein. In the vehicular platoon problem, each vehickestri . changed by agent-to-agent heterogeneity as long as the
to maintain a constant gap between itself and its two neargegii;o| gains do not have front-back asymmetry. On the
neighbors. The desired trajectory of the entire network isiher hand, arbitrary small amount of asymmetry in the
available onl){ to. agenl. way the local controllers use front and back information
Although significant amount of research has been cons,, improve the stability margi@(1/N)! To achieve such

ducted on robustness-to-d|st_urbance anq stability iseties ,, improvement, each agent has to weigh relative velocity
double integrator networks with decentralized controlSmo ¢ rmation from its front neighbor more heavily than the

investigations consider the homogeneous case in which e behind it. In contrast, if more weight is given to the

agent has the same mass and employs the same controllgt e velocity information with the neighbor behind it,
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I. INTRODUCTION



1D vehicular platoons in a similar framework. Compared % Nz_]l é ;

to [3], this paper makes two novel contributions. First, 00 oX¢) (oXe) ()
we consider heterogeneous agents (the mass and control O LANN-1 | L2 | x
gains vary from agent to agent), whereas [3] consider (a) A pictorial representation of 1D network.
only homogeneous agents. Secondly, [3] considered the

scenario in which the desired trajectory of the platoon Neumann Dirichlet
was one with a constant velocity, and moreover, every Q Q Q !
agent knew this desired velocity. In contrast, the control (] 1/~ L UN AR

law we consider requires agents to know only the desired
inter-agent separation; the overall trajectory informatis

made available only to agent This makes the model Fig. 1. Desired geometry of a network witki agents and. "reference
more applicable to practical formation control applicatio agent’, which are moving in 1D Euclidean space. The fillednage the

. . . . front of the network represents the reference agent, it iotel by 0"
in which the formation may be reqU|red to accelerate O(fa) is the original graph of the network in thee [0, oo] coordinate and

decelerate occasionally, and the decision to do so is maggis the redrawn graph of the same network in fhe [0, 1] coordinate.
solely by the lead agent. It was shown in [3] for the

homogeneous formation that asymmetry in the position

feedback can improve the stability margin frap{1/N?) are modeled as a double integrator:

to O(1/N) while the absolute velocity feedback gain did i

not affect the asymptotic trend. In contrast, we show in Mipi = Wi, 1)

this paper that with relative velocity and position feedtac wherew; is the control input (acceleration or deceleration

asymmetry in the velocity feedback gain is the most Signif{:ommand)

|can'F _determlr_1ant. It. can l?.ad to S|gn|f_|cant |mprovement "N The information on the desired trajectory of the network
stability margin, or instability, depending on the design o. . . o
) ) is provided to agent. We introduce dictitious reference

the asymmetry. With equal amount of asymmetry in both o : : .
o ; . agent with index that perfectly tracks its desired trajectory,
position and velocity feedback, the closed loop is stablé

for arbitrary N, but it is not clear if improvement can be which is denoted byy;(). Agent1 is allowed to com-
y N, but . mp . municate with the reference agent. The desired geometry
made on the stability margin by designing this asymmetr)é.f the formation is specified by thdesired gapsA,; ;

Similarly, the effect of asymmetry in position feedbac:kfor i -1 N where A is the desired value of
- 5ty ’ 7,1—1

alone is left as an open question. pi—1(t) — pi(t). The control objective is to maintain a rigid
Although the PDE approximation is valid only in the limit formation, i.e., to make neighboring agents maintain their

N — oo, numerical comparisons with the original state- re-specified desired gaps and to make adeftlow its
space model shows that the PDE model provides aCCur‘%gsired trajectoryg (t) — Ay . Since we are only interested

risifeltzo(i;]/;nogo{nsnr?::v_ (5arttci)cI1eO)s' zt[e)rlisagﬁ;?xgigaitrllosnt;:stm maintaining rigid formations that do not change shape
q y-p Y Y bver time, A, ;_;’s are positive constants.

cal physics and traffic-dynamics (see the article [7] for an In this paper, we consider the followingecentralized

extensive review.). The usefulness of PDE approxmanogOntrol law, whereby the control action at theh agent

in analyzing multi-agent coordination problems has bee&epends on i) thaelative position measurements the

recognized also by researchers the controls community; "~ . R . :
see [8], [9], [3], [10] for examples. A similar but distincttlyélatlve velocity measurementdth its immediate neighbors

framework based on partiaifferenceequations has been in the formation:

developed by Fgrrarl-Trepatﬂ. al._|n [171] w; = —k;-f(pi —pic1+ Aiily) — kP (pi — pig1 — Aisri)
The rest of this paper is organized as follows. Sectlon £ . by i )

presents the problem statement and the main results of” bi (Pi — Pi—1) = b/ (P — Pi1), i=1,...,N—1, (2)

this paper. Sectionll describes the state-space and PDE herek/ . k?. are the front and back position gains and

models of the network of agents. Analysis and controf ) ()70 _ : _

design results together with their numerical corroboratio?.) U, are the front and back velocity gains respectively.

appear in Sectiond/ andV, respectively. The paper endsFor the agent with indexV which does not have an agent

(b) A Redrawn graph of the same network.

with a discussion in Sectio¥|. behind it, the control law is slightly different:
_ f - .

Il. PROBLEM STATEMENT AND MAIN RESULTS u; =—kj (pi —pi-1 + Aiio1) = b; (i — pi-1). (3)

A. Problem statement Each agent knows the desired gap4;;—; and A4 ;,

We consider the formation control 6f heterogeneous While only agentl knows the desired trajectony;(t) of
agents which are moving in 1D Euclidean space, as shove fictitious reference agent.
in Figure 1 (a). The position and mass of each agent ar
denoted byp;, € R andm; respectively. The mass of each
agent is boundedsn; — mg|/mo < § for all ¢, wheremg > We formally define symmetric control and stability mar-
0 and¢ € [0,1) are constants. The dynamics of each agerin before stating the first main result.

g. Main results



Definition 1: The control law ) is symmetricif each all 7, with £ being a positive constant, amﬁf) = kfb) = ko.
agent uses the same front and back control gaii:ﬁs:: For vanishingly small values af, the following choice

b of _1b ;
l{:- b _bi’ fOI’ a” 1€ {1,2,,N—1} b{ _ (1+€)b0, bi; _ (1—€)b0, (6)

Definition 2: The stability margin of a closed loop dy-
namicsi = Az, which is denoted byS, is the absolute results in the stability margin
value of the real part of the least stable eigenvalué of eby 1 1

Theorem 1:Consider anV-agent heterogeneous network "o N O(W)' 7
with dynamics {) and control law ), (3), where the mass ¢ formula is asymptotic in the sense that it holds when
and the control gains of each agent satisfy —mo|/mo <y _, o ande — 0. In contrast, for the following choice
8, |k = kol/ky < & and [b) — bo|/by < & where  of asymmetry '
mo, ko @andb, are positive constants, amade [0, 1) denotes

the percent of heterogeneity. With symmetric control, the bl =(1-by b} =(1+8bo, (8)
stability marginS of the network satisfies the following:  where¢ e (0,1) is an arbitrary constant, the closed loop
72by 1 by 1 becomes unstable for sufficiently largé. O
(1-20)c—-75 <9< (1+20) 5, (4) The theorem says that with arbitrary small change in the
8mo N 8mo N front-back asymmetry, so that information from the front
whené < 1. O is weighted more heavily than the one from the back, the

Numerical corroboration of the result is presented irstability margin improves significantly. On the other hand,
Figure 3 in SectionlV. The result above is also provableif information from the back is weighted more heavily than
for an arbitraryd < 1 (not necessarily small) when there isthat from the front, the closed loop will become unstable
only heterogeneity in mass using standard results on Struimhthe network is large enough. It is interesting to note that
Louiville theory [12, Chapter 5]. For that case, the resulthe optimal gains turns out to be homogeneous.
is given in the following lemma and its proof is given in The astute reader may inquire at this point what are the
the end of the Appendix. effects of introducing asymmetry in the position-feedback

Lemma 1:Consider anV-agent heterogeneous networkgains while keeping velocity gains symmetric, or intro-
with dynamics {) and control law ), (3), where the mass ducing asymmetry in both position and velocity feedback
and the control gains of each agent satiefyc m,,;, < gains. It turns out when equal asymmetry in both position
m; < Mmax, kif = k! = ko and b{ = b = by, where and velocity feedback gains are introduced, the closed loop
mo, ko and by are positive constants. The stability marginis stable for arbitraryN. We state the result in the next
S of the network satisfies the following: theorem.

Theorem 3:The closed loop dynamics of th&-agent

mbo 1 < §< by L (5) network with the following asymmetry in contri;:[c = (14
8Mmax N2~ = 8Mmin N? p)ko, k? = (1—p)k0, sz = (1+p)b0, b? = (1—p)b0, where
O p is a constant satisfying € (—1,1], are exponentially
The main implication of the result above is tHatero- stable. O

geneity of masses and control gains plays no role in the The result above is for a equal amount (as a fraction
asymptotic trend of the stability margin with as long as ©f the nominal value) of asymmetry in the position feed-
the control gains are symmetritéNote that theO(1/N2) back and velocity feedback gains. This constraint of equal
decay of the stability margin described above has beé$ymmetry in position and velocity feedback is imposed
shown for homogeneous platoons (all agents have the saffieorder to make the analysis tractable. Veerman proved
mass and use the same control gains) independently in [18].very similar result [6, Theorem 4.2], though the model
A similar result for homogeneous platoons with relativevas slightly different: theN-th agent's control law was
position and absolute velocity feedback was also estalishun = &/ (py—1 — pn) — b/ (py—1 — pn). Our proof
in [3]. (provided in the Appendix) follows a similar line of attack

The second main result of this work is that the stabilityaS [6, Theorem 4.2]. B o _
margin can be greatly improved by introducing front-back The analysis of the stability margin in the following
asymmetry in the velocity-feedback gains. We call th&ases are open problems: (i) unequal asymmetry in position
resulting designmistuningbased design because it reliesand velocity feedback, (ii) velocity feedback gains are
on small changes from the nominal symmetric gajnin !<ept at thel-r nommal_gymmetnc value; and asymmetry is
addition, a poor choice of such asymmetry can also matgtroduced in the position feedback gains only.
the closed loop unstable. Since heterogeneity is seen ® haM|. CLOSED-LOOP DYNAMICS: STATE-SPACE ANDPDE
little effect, and for ease of analysis, we let; = mg in MODELS
the sequel. A. State-space model of the network

Theorem 2:For an N-agent network with dynamicsl) . . .
and control law ), (3), with m; — mq for all i, consider Combining the open loop dynamic$)(with the control
the problem of maximizing the stability margin by choosind®W (9. we get
the control gains with the constrait’aé') — bo|/bo < € for m;p; = — kf(pi —pic1 — Aiic1)



— k2 (pi — piv1 — Diig1) following scalar functionsk’ (z), k®(z), b7 (x),b°(z) and
b (s — Picr) — BO(Bs — Pivt) ) m(x) : [0,1] — R defined according to the stipulation:

forb _ ;. forb ) forb _ pforb
wherei € {1,..., N —1}. The dynamics of théV-th agent k; =k (@b;%a b, =0 (@)l
are obtained by combinindlY and @), which are slightly (15)
different from Q). The desired trajectory of theth agent andm; = m(z)| _~_:. In addition, we define functions

N—i
= )
T="N

r=

is pi(t) — Z;:i Aj -1 =: pi(t). To facilitate analysis, we K (2), kffb(x)'_bflykb(x)' b b(x): 0,1 — R as
define the tracking error:
. ) . BT (x) =k (2) + K (2), K 0(2) =k (2) — Kb (2),
p=pimpi = p=pio A0 ey i) @), b ) = b (@) - D).
Substituting {0) into (9), and usingp;_;(t) — p;(t) = pue to (L5), these satisfy
A; -1, we get Fib Fib f—b f—b
k7 =K (@) e=viyyNs KT =R T(@) [e=(v—iyv

mip; = — sz(ﬁz — pi1) — k2 (i — Piv1)
=0l (pi = pir) = b(pi — Pivr).  (11)

where we have used the fact thg{t) = 0 since the trajec- W= (5 _ B (5 95, 1 5,
tory of the reference agent is equal to its desired trajgctor 5, =2 (pi-1 — Pix1) 4+ (Pi—1 — 2pi + Pit1)

I = b2 e v iy BT = 0T (@) e vy v

To obtain a PDE model froml@), we first rewrite it as

By deﬁning the State) = [ﬁlaﬁlaﬁQaﬁQa"' ,ﬁN,ﬁN]T,the N . 2(1/N) 2N? . 1/N2 .
closed loop dynamics of the network can now be written b{‘b (Pi—1 — Dit1) bifﬂ’ (Pie1 — 2Di + Dit1)
compactly from (1) as: N 2(1/N) + IN2 1/N?

b=Ay 12) . | o

In the limit when N — oo, this can be seen as a finite
whereA is the closed-loop state matrix. In this paper, analgifference discretization of the following PDE:
ysis and design is performed using a PDE approximation 92 b 5 kb 52
of the state space model), which is described next. The () (—)[)(x,t) — ( (2) (z) %
results are validated by numerical computations using the ot?

o ; l{\f ox 2N2 Oa2

state-space model?). L G I A A CO N A

i 0 STy rerr) LU N L)

B. PDE model of the network The boundary conditions of PDELY) depend on the ar-
We now derive a continuum approximation of the closedangement of reference agent in the information graph. For

loop dynamics 12) in the limit of large N, by following our case, the boundary conditions are of the Dirichlet type

the steps involved in a finite-difference democratization iat x = 1 where the reference agent is, and Neumann at

reverse. We defing/ ™ := k/ + &0, k/ 7" = &/ — kY, z=0:

b/ = ol +bf, /7" = bl — bb. Substituting these . op
into (12), p(1,t) =0, 5,00 =0 (18)
mip; = IV. SYMMETRIC CONTROL
RELINN A ST fb The starting point of our analysis is the investig(:;ation of
_%(ﬁi —Pi-1) — %(ﬁi — Pit1) the homogeneous and symmetric casg: = my, ki') =
pIH0 L pf b pf o b ' ko, bg') = by for some positive constanisy, kg, by, for i €
—b T (p— i) — At (B — Diiq). ,...,N}. The analysis leading to the proof of Theorém
5 (Pi — Pi—1 5 (pi — Pit1 1 N}.Th lysis leadi h f of Theor@

(13) is carried out using the PDE model derived in the previous
section. In the homogeneous and symmetric control case,
To facilitate analysis, we redraw the graph of the 1Llusing the notation introduced earlier, we get
network, so that the position errgr; are defined in the
interval [0, 1], irrespective of the number of agents. The ' ' '
th agent in the “original” graph, is now drawn at positionk’ " (z) = 2ko, &/ ~"(z) = 0,6/ (2) = 2b, b *(z) = 0.
(N —i)/N in the new graph. Figuré shows an example. P .
The starting point for the PDE derivation is to conside;rhe PDE (7) simplifies to:

m(x) = my,

a functionj(z, t) : [0,1] x [0, co) — R that satisfies: o Pp(x,t) _ ko *plx,t) | by Pp(x,t) (19)
. - ot? N2 0Ox2 N2 9z20t
pi(t) = (@, )lo=(v—i)/n, (14 This is wave equation with Kelvin-Voight damping. Taking

such that functions that are defined at discrete paimdl @ Laplace transform w.r.t. the variableof the above, we
be approximated by functions that are defined everywhef€t

in [0, 1]. The original functions are thought of as samples of 5 bos—+ ko 02

their continuous approximations. We formally introduce th (mos” — N2 @)U(SVI) =0 (20)




wheren(z, s) is the Laplace transform qi(x, t). ¢(x) =
cos(252mz) is the (-th eigenfunction of the Laplacian Next we do anO(§) balance, which leads to:

82 . o o
#== with the boundary conditiom(1,s) = 0, 5=1(0,s) = o (5 B 0.2
0, which come from the boundary conditioridj. The Py’ = (_ 2m03§ )Sé )77(0) - m(ff)(sg )) n'®

associated eigenvalues are fo(x) 0%n© © b(z) 92(® S(é)b_oazn(o)) B
20— 1) 2 2 ¢ 2 2 ’ 2 2 )~
/\z:ﬂ'Q( ) Ci=12 .. (21) 2N? Ox 2N? Ox N2 Ox
4 For a solution;(® to exist, R must lie in the range space

Plugging the expansion(z, s) = >_,°, ¢¢(x)B¢(s), where of the operatorP. SinceP is self-adjoint, its range space
3, are weights intoZ0), we get the characteristic equationis orthogonal to its null space. Thus, we have,
mos? 4 Lestko ), = 0, so that the eigenvalues of the PDE

are <R,00>=0 (25)
252 where ¢, is also the/!" basis vector of the null space of
oMb 1 \/)\Ebo—él)\mk (22) torP. W have the followi tion:
C T T maNE T 2meN V N2 ¢emoko operatorP. We now have the following equation:
! - 2 k(z) 92n©
For small ¢ and large N so that N > (20 — / (—2m05§0)5§5)77(0) _m(x)@o)) n© + ( g 772
1)wbo/(4v/moko), the discriminant is negative, making the /o 2N? Ox
real part of the eigenvalues equal%d\gbo/@molN?)._The ©) B(I) 92n(0) @) bo RO P
least stable eigenvalue, the one closest to the imaginasy ax 5t N2 op2 5t N2 o2 ¢edz = 0.

is obtained with? = 1. Following straightforward manipulations, we got:

+ 7T2b0 1 7T2b0

5] =———-m > 5= : 23 boA !
L= e T T e 9 ) =2 [ G on) P
m 0
We are now ready to present the proof of Theorem 0)\@ 1
— b 2 S
Proof of Theorenl. Recall that in case of symmetric con- 2moN2 /0 b(@)(ge(z))"dw + 3, (26)
trol we have

where S is an imaginary number whely is large (V >
sz =k, bzf =W, Vie{l,...,N}. (20 — 1)wbo/(4v/moko)). Using t?is, and substituting the

_ _ L _ equation above inte, = sf) +6s§ ), and setting = 1, we
In this case, using the notation introduced earlier, we haygyain the stability margin of the heterogeneous network:

kf_b(x) = Oa bf_b(x) = Oa S — bOTl'2 5 b07T2 ! - 9 /T
o = s—0——-— | m(x)cos® (sx)dx
The PDE (7) is simplified to: 8moN? 4mgN= Jo 2
2 1
*p(x,t) _ kI(x) Ppla,t) | b (x) OPp(x, 1) T / b(x) cos? (z:v)dx.
) "gE T ToNT e T IN? 0w%0r 8moN? Jo 2
(24) Plugging the boundsn(z)| < mo and|b(z)| < 2by , we
The proof proceeds by a perturbation method. To be cowbtain the desired result. ]

sistent with the bounds of the mass and control gains %f

each agent, let Numerical comparison

We now present numerical computations that corrobo-

m(x) =mo + om(x), m(x) € (—mo, mo] rates the PDE-based analysis. We consider the following
kb (2) = 2ko + 0k(z), k(x) € [—2ko, 2ko] mass and control gain profile:
b0 (z) = 2b + 6b(x),  b(x) € [—2bg, 2bg)]. k{ =k =1+ 02sin2n(N —i)/N),
whered is a small positive number anil(z), k(z), b(z) are b = b} = 0.5+ 0.1sin(2r(N — i)/N),
the perturbation profiles. And let the perturbed eigenvalue m; =1+ 0.2sin(2n(N —i)/N). (27)

0 5

be s, = SE '+ §S§ ', the Laplace transform Of(,t) be In the associated PDE modeP4), this corresponds to
= 3O + 57®, wheres!” and,® correspond to the . ’ P
=1 n ¢ e P k (z) = kb(z) = 14 0.2sin(2rz), b/ (z) = b¥(z) = 0.5+
u(rg);))erturbed PEEl@). Eq. @9) provides the formula for 0.1sin(27wz), m(x) = 14 0.2sin(27x). The eigenvalues of
o _ _ . , . .

s, (actually,s7), andn® is the solution to 20). Taking e PDE, that are computed numerically using a Galerkin
a Laplace transform of PDE2§) with respect td/, plugging  methoqd with Fourier basis, are compared with that of the
in the expressions for, andr, and doing ar0(1) balance giate space model to check how well the PDE model
leads to the eigenvalue equation for the unperturbed PD'tz:éptures the closed loop dynamics. Fig@relepicts the

b HO ko 02 comparison of eigenvalues of the state-space model and
- —¢ =5 the PDE model. It shows the eigenvalues of the state-

Pn® =0, whereP := (mo(s,go))2 a3
* space model is accurately approximated by the PDE model,
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Fig. 2. Numerical comparison of closed-loop eigenvalueth wymmetric
control predicted by the state-space model (SSM) &nd PDE model44)
with mixed Dirichlet-Neumann boundary conditions. Eigelmes shown
are for a network o060 agents, and the mass and control gains profile ar
given in 27). Only a few eigenvalues are compared in the figure.

the forward and the backward velocity gains will lead
to non-zerob/~’(z) and a presence of)(4;) term as

coefficient ofai—zt. By a judicious choice of asymmetry,

there is thus a potential to improve the stability margimfro
O(5=) to O(+). A poor choice of control asymmetry may
lead to instability, as we’ll show in the sequel.

We begin by considering the forward and backward
feedback gain profiles

K (x) = ko, K"(2) = ko,
bl (x) = by + ebf (), b(x) = by +eb(z),  (28)

wherees > 0 is a small parameter signifying the percent of
asymmetry and’ (z), b°(x) are functions defined ovén, 1]
that capture velocity gain perturbation from the nominal
value by. Define

b (z) = b (x) + b°(x), O™ (x):=bf(x) —0°(x). (29)
Due to the definition of/+?, &/~ b/*® andb/~?, we have
E+b(z) = 2k, k=0 (z) =0,

b (z) = 200 + eb°(x), b TU(x) = eb™(x).

The PDE (7) with homogeneous mass, now becomes

e

- %N . ko 02 by 0% .
|0 mo( t2)p(””’t)~_ (N238:1:2 B 8x2<2t)p(x’t)
107 O% b*(x) O b™(x) O .
~E E(21\72 9z20t N 6x6t)p(z’t)'
R (30)
@5 e We now study the problem of how does the choice of
R 107 % ® the perturbation$®(x) and b™(z) (within limits so that
s the gainsh/ (z) andb®(x) are within pre-specified bounds)
o SSM %e% affect the stability margin. An answer to this question
* PDE bound i ® also helps in designing beneficial perturbations to improve
o b%‘gg; bgldﬂd :2 &ig | the stability margin. The following result is used in the
% subsequent analysis.
: 5 > = \iéo Theorem 4:Consider the eigenvalue problem of the
N PDE 30) with mixed Dirichlet and Neumann boundary
condition (L8). The least stable eigenvalue is given by the
_ N . N following formula that is valid wher — 0 and N — oc:
Fig. 3. The stability margin of the heterogeneous formatisith

symmetric control as a function of number of agents: therldgeof SSM,
PDE and lower bound, upper bound stand for the stability mamgmputed
from the state space model, from the PDE model, and the asyimfmwer
and upper boundss) in Theoreml. The mass and control gains profile
are given in 27).

especially the ones close to the imaginary axis. We s

from Figure 3 that the closed-loop stability margin of the

controlled formation is well captured by the PDE model. IfMaginary number whedV is large (V > mbo/(4/moko)).

addition, the plot corroborates the predicted bous)d (

V. ASYMMETRIC CONTROL

(0)

51 = 854

1
s “m .
— EW ‘/0 b (x) Sin (ﬂ-x) dx

2

1
ot 1s 2 z o
ESmONQ /0 b*(z) cos (296) de +< (32)

eresgo) is the least stable eigenvalue of the unperturbed
PDE (19) with the same boundary conditions afidis an

O
Now we are ready to prove Theoremn

Proof of Theoren®. It follows from Theorem4 that to

We'll now develop the necessary tools to prove Theminimize the least stable eigenvalue, one needs to choose
orem 2. With symmetric control, one obtains @(x=)  only 4 (x) carefully. The reason is the second term involv-
scaling Ia\gv for the stability margin because the coefﬁmeqhg l;s(x) has theO(1/N?) trend. Therefore, we choose
of the ;% term in the PDE 24) is O(#>) and the .
coefficient of the% term is0. Any asymmetry between b*(x) = 0.



This means that the perturbations to the “front” and “back %
velocity gains satisfy: ¥ g 8 o
~ ~ ~ - -2 QYa
b (z) = —bb(x) & b™(z) = 20/ (). 1074 TRy fo &
- . . . Rg O
The most beneficial gains can now be readily obtained froi % R 98 5
Theorem4. To minimize the least stable eigenvalue with @ @ \?p@@
b*(x) = 0, we should choosé™(z) to make the integral 1073 , Yo “*x@\@@ |
[ b () sin(wx)dz as large as possible, which is achievec * Nominal SSM ® TRy
o V" (@)sin(nz)dz g p e, o Nominal PDE e 0
by settingb™ (x) to be the largest possible value everywher: o Mistuned SSM ®g
in the interval [0, 1]. The constraintb!’ — bo|/by < & O%’Hﬂé’r@?ﬁ EDE “o
translates tdo(1 — ) < b0)(z) < bo(1 + ¢), which means w0t e |
6/ |oc < bo and|[b®]| < bo. With the choice ofh® made ‘ ‘ ‘ ‘ *e
above, we therefore have the constrdjbt’|| < 2by. The 5 10 20 N 50 100
solution to the optimization problem is therefore obtaineu
by choosingb™(z) = 2by Vx € [0,1]. This gives us the
optimal gains Fig. 4. Stability margin improvement by mistuning desigmeThominal
~ 5 control gains arésp = 1, bgp = 0.5, and the mistuned gains used are the
bf(x) = by bb(x) = —b ones given by &) in Theorem2 with ¢ = 0.1. The legends “Nominal
’ ’ SSM” and “Nominal PDE” stand for the stability margin comgditirom
= bf () =bo(1+¢), bb(x) =bo(l —¢). the state-space model and the PDE model, respectively, syitimetric

control. The legends “Mistuned SSM” and “Mistuned PDE” stdar the

The least stable eigenvalue is obtained from Theordm ( stability margin computed from the state-space model ané& Fiddel,
respectively, with mistuned control.

g0 o
$ =S N + 5.

Sinces(¥ is the least stable eigenvalue for the symmetric
PDE, we know from Theoreni that s() = O(1/N?).
Therefore, it follows from the equation above that the
stability margin isS = Re(s]) = 2% + O(gz). This
proves the first statement of the theorem. —~ .
To prove the second statement, the control gain deisfigﬁ JEEO'OOO& o
(1 —&)by andb? = (1 + &)by becomes/ (z) = (1 — )by e O
and v’(z) = (1 + £)by. With this choice, it follows from 0.0004 o
Theorem §) that ’ O
€bo 5 Mistuned SSM o
st =50+ moN 0+%. o Mistuned PDE 95,
---Eq. @) o

0.0011

g
QQQ A
0.0008} Oy
O

N
N
.

Sinces®) = O(1/N?), the second term, which i9(1/N), 0.00024
will dominate for largeN. Since this term is positive, the 25
second statement is proved. ]

A. Comparison of stability margin computed from miStunegig. 5. The real part of the most unstable eigenvalues withr po

SSM and PDE asymmetry. The nominal control gains ag = 1, bp = 0.5, and the

. . . . . istuned gains used are the ones given&)yir{ Theorem2 with £ = 0.1.
Figure 4 depicts the numerically obtained mistuned a-n@he legends “Mistuned SSM” and “Mistuned PDE” stand for traity

nominal stability margins for both the PDE and state-spaceargin computed from the state-space model and PDE modpkctvely,
models. The nominal control gains akg = 1, by = 0.5,  With mistuned control.
and the mistuned velocity gains used are the ones given
by (6) in Theorem2 with ¢ = 0.1. The figure shows
that i) the closed-loop least stable eigenvalue match t
PDE’s accurately, even for small values of; ii) the
mistuned eigenvalues show large improvement over t
symmetric case even though the velocity gains differ fro
their nominal values only by-10%. The improvement is
particularly noticeable for large values of, while being
significant even for small values a¥f. Numerical validation that poor choice of asymmetry in
For comparison, the figure also depicts the asymptotimontrol gains can lead to instability is shown in Figiie
eigenvalue formula given in Theoretn The improvement Note that the real part of these eigenvalues are positive and
in the stability margin with mistuning is remarkable everEq. ) makes an accurate prediction.

qge velocity gains are changed from their symmetric values

PPey only £10%. Another interesting aspect of the result

rﬂ; Theorem?2 is that the improvement fron®(1/N?) to
(1/N) can be achieved bwrbitrarily small changesto

the nominal velocity gains.



VI. SUMMARY [8] A. Sarlette and R. Sepulchre, “A PDE viewpoint on basioparties

. . of coordination algorithms with symmetries,” #8th IEEE Confer-
We studied the role of heterogeneity and control asymme-  ence on Decision and ContraDecember 2009, pp. 5139-5144.

try on the stability margin of a largeD network of double-  [9] E. W. Justh and P. S. Krishnaprasad, “Steering laws amtireaim

; ; ; . models for planar formations,” ih2nd IEEE Conference on Decision
integrator agents. The control is decentralized; the obntr and Contro] December 2003, pp. 3609 — 3614,

Signa! at every agent depends on the re|ative.p03iti0n a@ﬁ)] H. Hao, P. Barooah, and P. G. Mehta, “Distributed cdnabtwo
velocity measurements from its two nearest neighbors. It is  dimensional vehicular formations: stability margin impeenent by
shown that heterogeneity does not effect how the stability ~[DiStuning: in ASME Dynamic Systems and Control: Conference
margin scales WithN., the number of agents, Wherea_s[ll] G. Ferrari-Trecate, A. Buffa, and M. Gati, “Analysis edordination
asymmetry plays a significant role. As long as control is  in multi-agent systems through partial difference equesjolEEE

symmetric, meaning information on relative position and ;g%%sa‘:t'ons on Automatic Controtol. 51, no. 6, pp. 1058 — 1063,

velocity from both neighbors are weighed equally, agent-tqQ12] r. HabermanElementary applied partial differential equations: with
agent heterogeneity does not change ¢He /N?) scaling Fourier series and boundary value problemsPrentice-Hall, 2003.
of stability margin. If front-back asymmetry is introduced![!3] J- Veerman, B. StoSi¢, and F. Tangerman, “Automatafi¢ and the

. . . . . finite size resonanceJournal of Statistical Physi¢cvol. 137, no. 1,
in the velocity feedback gains, even by an arbitrarily small  pp. 189-203, October 2009.

amount, the stability margin can be improved@Ql/N)_ [14] W. Yueh, “Eigenvalues of several tridiagonal matritespplied
This is a significant improvement, especially for large  Mathematics E-Notesol. 5, pp. 66-74, 2005.

N. In addition, the optimal asymmetric (mistuned) gain APPENDIX

profile is quite simple to implement. With a maximum

allowable variation of+10% from the symmetric velocity Proof of Theorem. The proof proceeds by a perturbation

. . . : . rpethod. Let the eigenvalues and Laplace transformation
gains, the optimal gains are obtained by letting the front, 0
gains to bel0 percent larger than the nominal gain andf Ep(x’t) for the perturbed P_DESO) be SZ(O)_ Sp0 Tt
letting the back gains to b&0 percent smaller. If relative €5 7 = 7 + en'®) respectively, wheres, and-n(())
velocity information from the back neighbor is weighed@re corresponding to the unperturbed POE)( Taking a
more heavily than that from the front one, no matter how-@aplace transform of PDE3(), plugging in the expressions
small the asymmetry is, the closed loop becomes unstaff s¢ andz, and doing arO(e) balance, which leads to:
for sufficiently largeN. m (0) 7s 2,(0)

The general case of asymmetry in both position and ve- P =S§O)bT(x)% Sgo) 192](\7:52) ddZQ
locity feedback gains is an open problem. Some preliminary b d2n(©
answers are available in the special case when equal amount — 2ms§0)s§5)n(0) + sée) —02 772 =:
of asymmetry in both position and velocity feedback is N? dz
introduced, which is parameterized by Then the closed For a solution;() to exist, R must lie in the range space
loop is stable for arbitraryV, but the scaling laws of the of the self-adjoint operatgP. Thus, we have,
stability margin with NV is not known yet. Interestingly, it <R, ¢y >=

. . . , 00 >=0
was shown by Veermaet. al. that in this special case,
the sensitivity to disturbances is worsefis other than We now have the following equation:
0. On the other hand, it was shown in [3] that asymmetry 1 im (0) is 2, (0)
may help in reducing sensitivity to disturbance; though the / (sf)b (x) dn + sg@b ("Z) d 772
scenario involved absolute position feedback. The efféct o 0 N dz 2N® dz
control asymmetry in sensitivity to disturbance therefore ﬁdQW(O) dodz = 0
N2 da? ) o=

needs study.
Following straightforward manipulations, we get:

—2m05§0) sf)n(o) + sgg)
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where Iy is the N x N identity matrix and® is the Proof of Lemmal. With the given profiles of thms and
Kronecker product. Andi;, A, andL are defined as below control gains, the PDEL() simplifies to:

0 1 0 0 O?*p(x,t) ko 0*p(x,t) | by O*p(x,t)
A = A - . 34 P et s — R S s Il ek Rt
! { } o {—ko —bO] B4 m@) =5 N o2 T N® owzar 0 A0

where kg, by are the nominal position and velocity gainswheremuyi, < m(z) < mmax. Taking a Laplace transform
respectively.L is the grounded grapbaplacian which is w.r.t. the variablet, we get
specified as follows:

bos + ko 0?
2 0 0 v _
2 -1+ P (m(x)s N2 8x2 )W(Sa (E) 0 (41)
I— —loe 2 _1+ p (35) wheren(z, s) is the Laplace transform gf(z, t).
- 1 9 14 Due to the linearity and homogeneity of the above PDE
P 1-p 1+ pp and boundary conditions, we are able to apply the method

of separation of variables. We assume solution of the form
From Schur’s triangularization theorem, every squareimatrz(s, ) = ¢(x)h(s). Substituting the solution into4() and

is unitarily similar to an upper-triangular matrix. Thesed, dividing both sides by(z)h(s), we obtain:

there exists an unitary matriX such that 2

s __9"(2)
U™'LU = L,, kot hos m(x)g(x) (42)

where L,, is an upper-triangular matrix, whose diagonalSince each side of the above equation is independent from
entries are the eigenvalues 6f We now do a similarity the other, so it's necessary for both sides equal to the same

transformation on matriA. constant—\,. Then we have two separate equations:
A:=(U'®L)AU® L) ¢"(x) + Aem(z)d(z) = 0 (43)
=(U~! b k
(U ®IQ)(IN®A1+L®A2)(U®IQ) SQ+ 0)\2£S+ O)QE —0 (44)
=IN®A1 + L, ® As N N

It is a block upper-triangular matrix, and the block on eacﬂ—he spatial part solves the following regular Sturm-

diagonal isA4; + \As, where )\, € o(L), whereo(-) Liouville eigenvalue problem

denotes the spectrum (the set of distinct eigenvalueseSin ¢" () + Aem(z)p(x) = 0,

similarity preserves eigenvalues, and the eigenvalues of a dg(0)

block upper-triangular matrix are the union of eigenvalues ——= =¢(1) =0. (45)

of each block on the diagonal, we have dx
The Rayleigh quotient is given by

o(A)=0(A) = |J {o(4i+ A2}, (36)
Mea(L) - Jo (do(x) /dz)?dx us)
= 05" .
= U {0 {_ko)\ _bl/\ }} (37) fo @2 (x)m(x)dx
Ae€o(L) o 07 Plugging the inequality forn(z), we have the following
It follows now that the eigenvalues o are the roots of:  '€/ation:

1 2 1 9
52+ Abos + Arko = 0 38 L b (d?(fc)/dx) dr oLk (dslb(:c)/d:c) da

Mmaz fo 2 (z)dx Momin fo $2(z)dx

The ¢-th eigenvalue\, of the grounded graph Laplacidh -
is given by (see [14]), Since we know the eigenvalue, corresponding to

1 2
Rayleigh quotient% is the eigenvalue ob-
0

tained from @¢5) with m(z) = 1. And ), is given by

5 (20 —1)%7?

1+p . . = 4
sin(N + 1)0 =sin N¢, andf # mm, m € Z.
I=p where/ is the wave number, = 1,2, ....

It follows from (39) that A, > 0 for every ¢, which Itis straight forward to see that the least eigenvaluds
shows that the coefficients of the second order charadterisbbtain by settingd = 1, i.e. \; = 7%/4. So we have the
equation 88) are positive. Hence, the eigenvalues of thédollowing bounds for the least eigenvalue bf.

state matrixA are in the left half plane, and thus the closed 9 9

loop is exponentially stable. [ | T <\ <
4mmm 4mmin

Ae=2—2y/1—p2cost (39)

wheref satisfies the following condition:
(47)

(48)



The eigenvalues of PDELQ) turn out to be the roots of the
characteristic equatiort{). The two roots of 44) are

ot . —boA¢/N? £ \/bENZ/N* — dkgA¢/N?

7 = 5 .
We call sj[ the ¢-th pair of eigenvalues. The discriminant
D in (49 is given by:

D :=b2\2/N* — dko)y /N2

(49)

For large N and small¢, D is negative. So both the
eigenvalues in49) are complex, then the stability margin is
only determined by the real partsgﬁ. It follows from (49)

that the least stable eigenvalugsg,, (the ones closest to the
imaginary axis) among them is the one that is obtained by
minimizing A, over ¢. Then, this minimum is achieved at
(=1,

Smin = Slia
and the real part is obtained
boA1
R min) = — .
€(Smin) e

Following the definition of stability margif§ := |Re(Smin)|
as well as the bounds fox; given by @8), we complete
the proof. ]
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