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Abstract— We consider the distributed control of a network
of heterogeneous agents with double integrator dynamics to
maintain a rigid formation in 1D. The control signal at a
vehicle is allowed to use relative position and velocity with
its two nearest neighbors. Most of the work on this problem,
though extensive, has been limited to homogeneous networks,
in which agents have identical masses and control gains,
and symmetric control, in which information from front and
back neighbors are weighted equally. We examine the effect
of heterogeneity and asymmetry on the closed loop stability
margin, which is measured by the real part of the least stable
eigenvalue. By using a PDE approximation in the limit of
large number of vehicles, we show that heterogeneity has little
effect while asymmetry has a significant effect on the stability
margin. When control is symmetric, the stability margin
decays to0 as 1/N2, where N is the number of agents, even
when the agents are heterogeneous in their masses and control
gains. In contrast, we show that arbitrarily small amount
of asymmetry in the velocity feedback gains can improve
the decay of the stability margin to O(1/N). Poor design
of asymmetry makes the closed loop unstable for sufficiently
large N . With equal amount of asymmetry in both velocity and
position feedback gains, the closed loop is stable for arbitrary
N . Effect of asymmetry in position feedback gains alone is an
open problem. Numerical computations of the eigenvalues are
provided that corroborate the PDE-based analysis.

I. I NTRODUCTION

In this paper we examine the closed loop dynamics of
a system consisting ofN interacting agents arranged in a
line, where the agents are modeled as double integrators
and each agent interacts with its two nearest neighbors
through its local control action. This is a problem that
is of primary interest to formation control applications,
especially to platoons of vehicles, where the vehicles are
modeled as point masses. An extensive literature exists on
1D automated platoons; see [1], [2], [3] and references
therein. In the vehicular platoon problem, each vehicle tries
to maintain a constant gap between itself and its two nearest
neighbors. The desired trajectory of the entire network is
available only to agent1.

Although significant amount of research has been con-
ducted on robustness-to-disturbance and stability issuesof
double integrator networks with decentralized control, most
investigations consider the homogeneous case in which each
agent has the same mass and employs the same controller
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(exceptions include [4], [5]). In addition, only symmetric
control laws are considered in which the information from
both the neighboring agents are weighted equally, with [6],
[3] being exceptions. Khatiret. al. proposes heterogeneous
control gains to improve string stability (sensitivity to dis-
turbance) at the expense of control gains increasing without
bound asN increases [4]. Middletonet. al. considers
both unidirectional and bidirectional control, and concludes
heterogeneity has little effect on the string stability under
certain conditions on the the high frequency behavior [5].
On the other hand, [6] examines the effect of asymmetry
(but not heterogeneity) on the response of the platoon
as a result of sinusoidal disturbances in the lead vehicle,
and concludes the asymmetry makes sensitivity to such
disturbances worse.

In this paper we analyze the case when the agents arehet-
erogeneousin their masses and control laws used, and also
allow asymmetry in the use of front and back information.
A decentralizedbidirectionalcontrol law is considered that
uses only relative position and relative velocity information
from the two nearest neighbors. We examine the effect of
heterogeneity and asymmetry on the stability margin of the
closed loop, which is measured by the absolute value of
the real part of the least stable pole. The stability margin
determines the decay rate of initial formation keeping errors.
Such errors arise from poor initial arrangement of the
agents. The main result of the paper is that in a decentralized
bidirectional control, heterogeneity has little effect onthe
stability margin of the overall closed loop, while even small
asymmetry can have a significant impact. In particular, we
show that in the symmetric case, the stability margin decays
to 0 asO(1/N2), whereN is the number of agents. We
also show that the asymptotic trend of stability margin is
not changed by agent-to-agent heterogeneity as long as the
control gains do not have front-back asymmetry. On the
other hand, arbitrary small amount of asymmetry in the
way the local controllers use front and back information
can improve the stability marginO(1/N)! To achieve such
an improvement, each agent has to weigh relative velocity
information from its front neighbor more heavily than the
one behind it. In contrast, if more weight is given to the
relative velocity information with the neighbor behind it,
the closed loop becomes unstable ifN is sufficiently large.

Most of the results in this paper are established by using
a PDE approximation of the coupled system of ODEs that
model the closed loop dynamics of the network. This is
inspired by the work [3] that examined stability margin of



1D vehicular platoons in a similar framework. Compared
to [3], this paper makes two novel contributions. First,
we consider heterogeneous agents (the mass and control
gains vary from agent to agent), whereas [3] consider
only homogeneous agents. Secondly, [3] considered the
scenario in which the desired trajectory of the platoon
was one with a constant velocity, and moreover, every
agent knew this desired velocity. In contrast, the control
law we consider requires agents to know only the desired
inter-agent separation; the overall trajectory information is
made available only to agent1. This makes the model
more applicable to practical formation control applications
in which the formation may be required to accelerate or
decelerate occasionally, and the decision to do so is made
solely by the lead agent. It was shown in [3] for the
homogeneous formation that asymmetry in the position
feedback can improve the stability margin fromO(1/N2)
to O(1/N) while the absolute velocity feedback gain did
not affect the asymptotic trend. In contrast, we show in
this paper that with relative velocity and position feedback,
asymmetry in the velocity feedback gain is the most signif-
icant determinant. It can lead to significant improvement in
stability margin, or instability, depending on the design of
the asymmetry. With equal amount of asymmetry in both
position and velocity feedback, the closed loop is stable
for arbitraryN , but it is not clear if improvement can be
made on the stability margin by designing this asymmetry.
Similarly, the effect of asymmetry in position feedback
alone is left as an open question.

Although the PDE approximation is valid only in the limit
N → ∞, numerical comparisons with the original state-
space model shows that the PDE model provides accurate
results even for smallN (5 to 10). PDE approximation is
quite common in many-particle systems analysis in statisti-
cal physics and traffic-dynamics (see the article [7] for an
extensive review.). The usefulness of PDE approximation
in analyzing multi-agent coordination problems has been
recognized also by researchers the controls community;
see [8], [9], [3], [10] for examples. A similar but distinct
framework based on partialdifferenceequations has been
developed by Ferrari-Trecateet. al. in [11]

The rest of this paper is organized as follows. SectionII
presents the problem statement and the main results of
this paper. SectionIII describes the state-space and PDE
models of the network of agents. Analysis and control
design results together with their numerical corroboration
appear in SectionsIV andV, respectively. The paper ends
with a discussion in SectionVI .

II. PROBLEM STATEMENT AND MAIN RESULTS

A. Problem statement

We consider the formation control ofN heterogeneous
agents which are moving in 1D Euclidean space, as shown
in Figure 1 (a). The position and mass of each agent are
denoted bypi ∈ R andmi respectively. The mass of each
agent is bounded,|mi−m0|/m0 ≤ δ for all i, wherem0 >
0 andδ ∈ [0, 1) are constants. The dynamics of each agent
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(a) A pictorial representation of 1D network.
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(b) A Redrawn graph of the same network.

Fig. 1. Desired geometry of a network withN agents and1 ”reference
agent”, which are moving in 1D Euclidean space. The filled agent in the
front of the network represents the reference agent, it is denoted by ”0”.
(a) is the original graph of the network in thep ∈ [0,∞] coordinate and
(b) is the redrawn graph of the same network in thep̃ ∈ [0, 1] coordinate.

are modeled as a double integrator:

mip̈i = ui, (1)

whereui is the control input (acceleration or deceleration
command).

The information on the desired trajectory of the network
is provided to agent1. We introduce afictitious reference
agent with index0 that perfectly tracks its desired trajectory,
which is denoted byp∗0(t). Agent 1 is allowed to com-
municate with the reference agent. The desired geometry
of the formation is specified by thedesired gaps∆i,i−1

for i = 1, . . . , N , where ∆i,i−1 is the desired value of
pi−1(t)− pi(t). The control objective is to maintain a rigid
formation, i.e., to make neighboring agents maintain their
pre-specified desired gaps and to make agent1 follow its
desired trajectoryp∗0(t)−∆1,0. Since we are only interested
in maintaining rigid formations that do not change shape
over time,∆i,i−1’s are positive constants.

In this paper, we consider the followingdecentralized
control law, whereby the control action at thei-th agent
depends on i) therelative position measurementsii) the
relative velocity measurementswith its immediate neighbors
in the formation:

ui = −kf
i (pi − pi−1 + ∆i,i−1) − kb

i (pi − pi+1 − ∆i+1,i)

− bfi (ṗi − ṗi−1) − bbi(ṗi − ṗi+1), i = 1, . . . , N − 1, (2)

wherekf
(.), k

b
(.) are the front and back position gains and

bf(.), b
b
(.) are the front and back velocity gains respectively.

For the agent with indexN which does not have an agent
behind it, the control law is slightly different:

ui = − kf
i (pi − pi−1 + ∆i,i−1) − bfi (ṗi − ṗi−1). (3)

Each agenti knows the desired gaps∆i,i−1 and ∆i+1,i,
while only agent1 knows the desired trajectoryp∗0(t) of
the fictitious reference agent.

B. Main results

We formally define symmetric control and stability mar-
gin before stating the first main result.



Definition 1: The control law (2) is symmetricif each
agent uses the same front and back control gains:kf

i =
kb

i , b
f
i = bbi , for all i ∈ {1, 2, . . . , N − 1}.

Definition 2: The stability margin of a closed loop dy-
namics ẋ = Ax, which is denoted byS, is the absolute
value of the real part of the least stable eigenvalue ofA.

Theorem 1:Consider anN -agent heterogeneous network
with dynamics (1) and control law (2), (3), where the mass
and the control gains of each agent satisfy|mi−m0|/m0 ≤
δ, |k(·)

i − k0|/k0 ≤ δ and |b(·)i − b0|/b0 ≤ δ where
m0, k0 andb0 are positive constants, andδ ∈ [0, 1) denotes
the percent of heterogeneity. With symmetric control, the
stability marginS of the network satisfies the following:

(1 − 2δ)
π2b0
8m0

1

N2
≤ S ≤ (1 + 2δ)

π2b0
8m0

1

N2
, (4)

whenδ ≪ 1. �

Numerical corroboration of the result is presented in
Figure 3 in SectionIV. The result above is also provable
for an arbitraryδ < 1 (not necessarily small) when there is
only heterogeneity in mass using standard results on Strum-
Louiville theory [12, Chapter 5]. For that case, the result
is given in the following lemma and its proof is given in
the end of the Appendix.

Lemma 1:Consider anN -agent heterogeneous network
with dynamics (1) and control law (2), (3), where the mass
and the control gains of each agent satisfy0 < mmin ≤
mi ≤ mmax, kf

i = kb
i = k0 and bfi = bbi = b0, where

m0, k0 and b0 are positive constants. The stability margin
S of the network satisfies the following:

π2b0
8mmax

1

N2
≤ S ≤ π2b0

8mmin

1

N2
. (5)

�

The main implication of the result above is thathetero-
geneity of masses and control gains plays no role in the
asymptotic trend of the stability margin withN as long as
the control gains are symmetric. Note that theO(1/N2)
decay of the stability margin described above has been
shown for homogeneous platoons (all agents have the same
mass and use the same control gains) independently in [13].
A similar result for homogeneous platoons with relative
position and absolute velocity feedback was also established
in [3].

The second main result of this work is that the stability
margin can be greatly improved by introducing front-back
asymmetry in the velocity-feedback gains. We call the
resulting designmistuning-based design because it relies
on small changes from the nominal symmetric gainb0. In
addition, a poor choice of such asymmetry can also make
the closed loop unstable. Since heterogeneity is seen to have
little effect, and for ease of analysis, we letmi = m0 in
the sequel.

Theorem 2:For anN -agent network with dynamics (1)
and control law (2), (3), with mi = m0 for all i, consider
the problem of maximizing the stability margin by choosing
the control gains with the constraint|b(.)i − b0|/b0 ≤ ε for

all i, with ε being a positive constant, andk(f)
i = k

(b)
i = k0.

For vanishingly small values ofε, the following choice

bfi = (1 + ε)b0, bbi = (1 − ε)b0, (6)

results in the stability margin

S =
εb0
m0

1

N
+O(

1

N2
). (7)

The formula is asymptotic in the sense that it holds when
N → ∞ and ε → 0. In contrast, for the following choice
of asymmetry

bfi = (1 − ξ)b0 bbi = (1 + ξ)b0, (8)

whereξ ∈ (0, 1) is an arbitrary constant, the closed loop
becomes unstable for sufficiently largeN . �

The theorem says that with arbitrary small change in the
front-back asymmetry, so that information from the front
is weighted more heavily than the one from the back, the
stability margin improves significantly. On the other hand,
if information from the back is weighted more heavily than
that from the front, the closed loop will become unstable
if the network is large enough. It is interesting to note that
the optimal gains turns out to be homogeneous.

The astute reader may inquire at this point what are the
effects of introducing asymmetry in the position-feedback
gains while keeping velocity gains symmetric, or intro-
ducing asymmetry in both position and velocity feedback
gains. It turns out when equal asymmetry in both position
and velocity feedback gains are introduced, the closed loop
is stable for arbitraryN . We state the result in the next
theorem.

Theorem 3:The closed loop dynamics of theN -agent
network with the following asymmetry in controlkf

i = (1+

ρ)k0, kb
i = (1−ρ)k0, bfi = (1+ρ)b0, bbi = (1−ρ)b0, where

ρ is a constant satisfyingρ ∈ (−1, 1], are exponentially
stable. �

The result above is for a equal amount (as a fraction
of the nominal value) of asymmetry in the position feed-
back and velocity feedback gains. This constraint of equal
asymmetry in position and velocity feedback is imposed
in order to make the analysis tractable. Veerman proved
a very similar result [6, Theorem 4.2], though the model
was slightly different: theN -th agent’s control law was
uN = kf (pN−1 − pN ) − bf(ṗN−1 − ṗN ). Our proof
(provided in the Appendix) follows a similar line of attack
as [6, Theorem 4.2].

The analysis of the stability margin in the following
cases are open problems: (i) unequal asymmetry in position
and velocity feedback, (ii) velocity feedback gains are
kept at their nominal symmetric values and asymmetry is
introduced in the position feedback gains only.

III. C LOSED-LOOP DYNAMICS: STATE-SPACE ANDPDE
MODELS

A. State-space model of the network

Combining the open loop dynamics (1) with the control
law (2), we get

mip̈i = − kf
i (pi − pi−1 − ∆i,i−1)



− kb
i (pi − pi+1 − ∆i,i+1)

− bfi (ṗi − ṗi−1) − bbi(ṗi − ṗi+1), (9)

wherei ∈ {1, . . . , N−1}. The dynamics of theN -th agent
are obtained by combining (1) and (3), which are slightly
different from (9). The desired trajectory of thei-th agent
is p∗0(t)−

∑1
j=i ∆j,j−1 =: p∗i (t). To facilitate analysis, we

define the tracking error:

p̃i := pi − p∗i ⇒ ˙̃pi = ṗi − ṗ∗i . (10)

Substituting (10) into (9), and usingp∗i−1(t) − p∗i (t) =
∆i,i−1, we get

mi
¨̃pi = − kf

i (p̃i − p̃i−1) − kb
i (p̃i − p̃i+1)

− bfi ( ˙̃pi − ˙̃pi−1) − bbi( ˙̃pi − ˙̃pi+1). (11)

where we have used the fact thatp̃0(t) ≡ 0 since the trajec-
tory of the reference agent is equal to its desired trajectory.
By defining the stateψ := [p̃1, ˙̃p1, p̃2, ˙̃p2, · · · , p̃N , ˙̃pN ]T , the
closed loop dynamics of the network can now be written
compactly from (11) as:

ψ̇ = Aψ (12)

whereA is the closed-loop state matrix. In this paper, anal-
ysis and design is performed using a PDE approximation
of the state space model (12), which is described next. The
results are validated by numerical computations using the
state-space model (12).

B. PDE model of the network

We now derive a continuum approximation of the closed
loop dynamics (12) in the limit of largeN , by following
the steps involved in a finite-difference democratization in
reverse. We definekf+b

i := kf
i + kb

i , kf−b
i := kf

i − kb
i ,

bf+b
i := bfi + bfi , bf−b

i := bfi − bbi . Substituting these
into (11),

mi
¨̃pi =

−k
f+b
i + kf−b

i

2
(p̃i − p̃i−1) −

kf+b
i − kf−b

i

2
(p̃i − p̃i+1)

−b
f+b
i + bf−b

i

2
( ˙̃pi − ˙̃pi−1) −

bf+b
i − bf−b

i

2
( ˙̃pi − ˙̃pi+1).

(13)

To facilitate analysis, we redraw the graph of the 1D
network, so that the position error̃pi are defined in the
interval [0, 1], irrespective of the number of agents. Thei-
th agent in the “original” graph, is now drawn at position
(N − i)/N in the new graph. Figure1 shows an example.

The starting point for the PDE derivation is to consider
a functionp̃(x, t) : [0, 1]× [0, ∞) → R that satisfies:

p̃i(t) = p̃(x, t)|x=(N−i)/N , (14)

such that functions that are defined at discrete pointsi will
be approximated by functions that are defined everywhere
in [0, 1]. The original functions are thought of as samples of
their continuous approximations. We formally introduce the

following scalar functionskf (x), kb(x), bf (x), bb(x) and
m(x) : [0, 1] → R defined according to the stipulation:

kf or b
i = kf or b(x)|x= N−i

N
, bf or b

i = bf or b(x)|x= N−i
N
,

(15)

andmi = m(x)|x= N−i
N

. In addition, we define functions

kf+b(x), kf−b(x), bf+b(x), bf−b(x) : [0, 1]D → R as

kf+b(x) := kf (x) + kb(x), kf−b(x) := kf (x) − kb(x),

bf+b(x) := bf (x) + bb(x), bf−b(x) := bf(x) − bb(x).

Due to (15), these satisfy

kf+b
i = kf+b(x)|x=(N−i)/N , kf−b

i = kf−b(x)|x=(N−i)/N

bf+b
i = bf+b(x)|x=(N−i)/N , bf−b

i = bf−b(x)|x=(N−i)/N .

To obtain a PDE model from (13), we first rewrite it as

mi
¨̃pi =

kf−b
i

N

(p̃i−1 − p̃i+1)

2(1/N)
+
kf+b

i

2N2

(p̃i−1 − 2p̃i + p̃i+1)

1/N2

bf−b
i

N

( ˙̃pi−1 − ˙̃pi+1)

2(1/N)
+
bf+b
i

2N2

( ˙̃pi−1 − 2 ˙̃pi + ˙̃pi+1)

1/N2
.

(16)

In the limit whenN → ∞, this can be seen as a finite
difference discretization of the following PDE:

m(x)
( ∂2

∂t2

)

p̃(x, t) =
(kf−b(x)

N

∂

∂x
+
kf+b(x)

2N2

∂2

∂x2
+

bf−b(x)

N

∂2

∂x∂t
+
bf+b(x)

2N2

∂3

∂x2∂t

)

p̃(x, t). (17)

The boundary conditions of PDE (17) depend on the ar-
rangement of reference agent in the information graph. For
our case, the boundary conditions are of the Dirichlet type
at x = 1 where the reference agent is, and Neumann at
x = 0:

p̃(1, t) = 0,
∂p̃

∂x
(0, t) = 0. (18)

IV. SYMMETRIC CONTROL

The starting point of our analysis is the investigation of
the homogeneous and symmetric case:mi = m0, k

(·)
i =

k0, b
(·)
i = b0 for some positive constantsm0, k0, b0, for i ∈

{1, . . . , N}. The analysis leading to the proof of Theorem2
is carried out using the PDE model derived in the previous
section. In the homogeneous and symmetric control case,
using the notation introduced earlier, we get

m(x) = m0,

kf+b(x) = 2k0, k
f−b(x) = 0, bf+b(x) = 2b0, b

f−b(x) = 0.

The PDE (17) simplifies to:

m0
∂2p̃(x, t)

∂t2
=

k0

N2

∂2p̃(x, t)

∂x2
+

b0
N2

∂3p̃(x, t)

∂x2∂t
. (19)

This is wave equation with Kelvin-Voight damping. Taking
a Laplace transform w.r.t. the variablet of the above, we
get

(m0s
2 − b0s+ k0

N2

∂2

∂x2
)η(s, x) = 0 (20)



whereη(x, s) is the Laplace transform of̃p(x, t). φℓ(x) =
cos(2ℓ−1

2 πx) is the ℓ-th eigenfunction of the Laplacian
∂2

∂x2 with the boundary conditionη(1, s) = 0, ∂
∂xη(0, s) =

0, which come from the boundary condition (18). The
associated eigenvalues are

λℓ = π2 (2ℓ− 1)2

4
, ℓ = 1, 2, . . . (21)

Plugging the expansionη(x, s) =
∑∞

ℓ=1 φℓ(x)βℓ(s), where
βℓ are weights into (20), we get the characteristic equation
m0s

2 + b0s+k0

N2 λℓ = 0, so that the eigenvalues of the PDE
are

s±ℓ = − λℓb0
2m0N2

± 1

2m0N

√

λ2
ℓb

2
0

N2
− 4λℓm0k0 (22)

For small ℓ and large N so that N > (2ℓ −
1)πb0/(4

√
m0k0), the discriminant is negative, making the

real part of the eigenvalues equal to−λℓb0/(2m0N
2). The

least stable eigenvalue, the one closest to the imaginary axis,
is obtained withℓ = 1:

s±1 = −π
2b0

8m0

1

N2
⇒ S =

π2b0
8m0N2

. (23)

We are now ready to present the proof of Theorem1.

Proof of Theorem1. Recall that in case of symmetric con-
trol we have

kf
i = kb

i , bfi = bbi , ∀i ∈ {1, . . . , N}.
In this case, using the notation introduced earlier, we have

kf−b(x) = 0, bf−b(x) = 0,

The PDE (17) is simplified to:

m(x)
∂2p̃(x, t)

∂t2
=
kf+b(x)

2N2

∂2p̃(x, t)

∂x2
+
bf+b(x)

2N2

∂3p̃(x, t)

∂x2∂t
,

(24)

The proof proceeds by a perturbation method. To be con-
sistent with the bounds of the mass and control gains of
each agent, let

m(x) = m0 + δm̃(x), m̃(x) ∈ (−m0,m0]

kf+b(x) = 2k0 + δk̃(x), k̃(x) ∈ [−2k0, 2k0]

bf+b(x) = 2b0 + δb̃(x), b̃(x) ∈ [−2b0, 2b0].

whereδ is a small positive number and̃m(x), k̃(x), b̃(x) are
the perturbation profiles. And let the perturbed eigenvalue
be sℓ = s

(0)
ℓ + δs

(δ)
ℓ , the Laplace transform of̃p(x, t) be

η = η(0) + δη(δ), wheres(0)ℓ and η(0) correspond to the
unperturbed PDE (19). Eq. (49) provides the formula for
s
(0)
ℓ (actually,s±ℓ ), andη(0) is the solution to (20). Taking

a Laplace transform of PDE (24) with respect tot, plugging
in the expressions forsℓ andη, and doing anO(1) balance
leads to the eigenvalue equation for the unperturbed PDE:

Pη(0) = 0, whereP :=

(

m0(s
(0)
ℓ )2 − b0s

(0)
ℓ + k0

N2

∂2

∂x2

)

Next we do anO(δ) balance, which leads to:

Pη(δ) =
(

− 2m0s
(0)
ℓ s

(δ)
ℓ η(0) − m̃(x)(s

(0)
ℓ )

2
η(0)

+
k̃(x)

2N2

∂2η(0)

∂x2
+ s

(0)
ℓ

b̃(x)

2N2

∂2η(0)

∂x2
+ s

(δ)
ℓ

b0
N2

∂2η(0)

∂x2

)

=: R

For a solutionη(δ) to exist,R must lie in the range space
of the operatorP . SinceP is self-adjoint, its range space
is orthogonal to its null space. Thus, we have,

< R,φℓ >= 0 (25)

whereφℓ is also theℓth basis vector of the null space of
operatorP . We now have the following equation:
∫ 1

0

(

− 2m0s
(0)
ℓ s

(δ)
ℓ η(0) − m̃(x)(s

(0)
ℓ )

2
η(0) +

k̃(x)

2N2

∂2η(0)

∂x2

+ s
(0)
ℓ

b̃(x)

2N2

∂2η(0)

∂x2
+ s

(δ)
ℓ

b0
N2

∂2η(0)

∂x2

)

φℓdx = 0.

Following straightforward manipulations, we got:

s
(δ)
ℓ =

b0λℓ

m2
0N

2

∫ 1

0

m̃(x)(φℓ(x))
2dx

− λℓ

2m0N2

∫ 1

0

b̃(x)(φℓ(x))
2dx+ ℑ, (26)

whereℑ is an imaginary number whenN is large (N >
(2ℓ − 1)πb0/(4

√
m0k0)). Using this, and substituting the

equation above intosℓ = s
(0)
ℓ +δs

(δ)
ℓ , and settingℓ = 1, we

obtain the stability margin of the heterogeneous network:

S =
b0π

2

8m0N2
−δ b0π

2

4m2
0N

2

∫ 1

0

m̃(x) cos2
(π

2
x
)

dx

+δ
π2

8m0N2

∫ 1

0

b̃(x) cos2
(π

2
x
)

dx.

Plugging the bounds|m̃(x)| ≤ m0 and |b̃(x)| ≤ 2b0 , we
obtain the desired result.

A. Numerical comparison

We now present numerical computations that corrobo-
rates the PDE-based analysis. We consider the following
mass and control gain profile:

kf
i = kb

i = 1 + 0.2 sin(2π(N − i)/N),

bfi = bbi = 0.5 + 0.1 sin(2π(N − i)/N),

mi = 1 + 0.2 sin(2π(N − i)/N). (27)

In the associated PDE model (24), this corresponds to
kf (x) = kb(x) = 1 + 0.2 sin(2πx), bf(x) = bb(x) = 0.5 +
0.1 sin(2πx), m(x) = 1+0.2 sin(2πx). The eigenvalues of
the PDE, that are computed numerically using a Galerkin
method with Fourier basis, are compared with that of the
state space model to check how well the PDE model
captures the closed loop dynamics. Figure2 depicts the
comparison of eigenvalues of the state-space model and
the PDE model. It shows the eigenvalues of the state-
space model is accurately approximated by the PDE model,
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Fig. 2. Numerical comparison of closed-loop eigenvalues with symmetric
control predicted by the state-space model (SSM) (12) and PDE model (24)
with mixed Dirichlet-Neumann boundary conditions. Eigenvalues shown
are for a network of50 agents, and the mass and control gains profile are
given in (27). Only a few eigenvalues are compared in the figure.
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Fig. 3. The stability margin of the heterogeneous formationwith
symmetric control as a function of number of agents: the legends of SSM,
PDE and lower bound, upper bound stand for the stability margin computed
from the state space model, from the PDE model, and the asymptotic lower
and upper bounds (5) in Theorem1. The mass and control gains profile
are given in (27).

especially the ones close to the imaginary axis. We see
from Figure3 that the closed-loop stability margin of the
controlled formation is well captured by the PDE model. In
addition, the plot corroborates the predicted bound (5).

V. A SYMMETRIC CONTROL

We’ll now develop the necessary tools to prove The-
orem 2. With symmetric control, one obtains anO( 1

N2 )
scaling law for the stability margin because the coefficient
of the ∂3

∂x2∂t term in the PDE (24) is O( 1
N2 ) and the

coefficient of the ∂2

∂x∂t term is0. Any asymmetry between

the forward and the backward velocity gains will lead
to non-zerobf−b(x) and a presence ofO( 1

N ) term as
coefficient of ∂2

∂x∂t . By a judicious choice of asymmetry,
there is thus a potential to improve the stability margin from
O( 1

N2 ) to O( 1
N ). A poor choice of control asymmetry may

lead to instability, as we’ll show in the sequel.
We begin by considering the forward and backward

feedback gain profiles

kf (x) = k0, kb(x) = k0,

bf(x) = b0 + εb̃f(x), bb(x) = b0 + εb̃b(x), (28)

whereε > 0 is a small parameter signifying the percent of
asymmetry and̃bf (x), b̃b(x) are functions defined over[0, 1]
that capture velocity gain perturbation from the nominal
valueb0. Define

b̃s(x) := b̃f (x) + b̃b(x), b̃m(x) := b̃f (x) − b̃b(x). (29)

Due to the definition ofkf+b, kf−b, bf+b andbf−b, we have

kf+b(x) = 2k0, kf−b(x) = 0,

bf+b(x) = 2b0 + εb̃s(x), bf−b(x) = εb̃m(x).

The PDE (17) with homogeneous massm0 now becomes

m0

( ∂2

∂t2

)

p̃(x, t) =
( k0

N2

∂2

∂x2
+

b0
N2

∂3

∂x2∂t

)

p̃(x, t)

+ ε
( b̃s(x)

2N2

∂3

∂x2∂t
+
b̃m(x)

N

∂2

∂x∂t

)

p̃(x, t).

(30)

We now study the problem of how does the choice of
the perturbations̃bs(x) and b̃m(x) (within limits so that
the gainsbf (x) andbb(x) are within pre-specified bounds)
affect the stability margin. An answer to this question
also helps in designing beneficial perturbations to improve
the stability margin. The following result is used in the
subsequent analysis.

Theorem 4:Consider the eigenvalue problem of the
PDE (30) with mixed Dirichlet and Neumann boundary
condition (18). The least stable eigenvalue is given by the
following formula that is valid whenε→ 0 andN → ∞:

s1 = s
(0)
1 − ε

π

4m0N

∫ 1

0

b̃m(x) sin
(

πx
)

dx

− ε
π2

8m0N2

∫ 1

0

b̃s(x) cos2
(π

2
x
)

dx+ ℑ (31)

wheres(0)1 is the least stable eigenvalue of the unperturbed
PDE (19) with the same boundary conditions andℑ is an
imaginary number whenN is large (N > πb0/(4

√
m0k0)).

�

Now we are ready to prove Theorem2.

Proof of Theorem2. It follows from Theorem4 that to
minimize the least stable eigenvalue, one needs to choose
only b̃m(x) carefully. The reason is the second term involv-
ing b̃s(x) has theO(1/N2) trend. Therefore, we choose

b̃s(x) ≡ 0.



This means that the perturbations to the “front” and “back”
velocity gains satisfy:

b̃f(x) = −b̃b(x) ⇔ b̃m(x) = 2b̃f(x).

The most beneficial gains can now be readily obtained from
Theorem4. To minimize the least stable eigenvalue with
b̃s(x) ≡ 0, we should choosẽbm(x) to make the integral
∫ 1

0
b̃m(x) sin(πx)dx as large as possible, which is achieved

by setting̃bm(x) to be the largest possible value everywhere
in the interval [0, 1]. The constraint|b(·)i − b0|/b0 ≤ ε
translates tob0(1− ε) ≤ b(·)(x) ≤ b0(1 + ε), which means
‖b̃f‖∞ ≤ b0 and‖b̃b‖∞ ≤ b0. With the choice of̃bs made
above, we therefore have the constraint‖b̃m‖ ≤ 2b0. The
solution to the optimization problem is therefore obtained
by choosingb̃m(x) = 2b0 ∀x ∈ [0, 1]. This gives us the
optimal gains

b̃f (x) = b0, b̃b(x) = −b0,
⇒ bf (x) = b0(1 + ε), bb(x) = b0(1 − ε).

The least stable eigenvalue is obtained from Theorem (4):

s+1 = s(0) − εb0
m0N

− 0 + ℑ.

Sinces(0) is the least stable eigenvalue for the symmetric
PDE, we know from Theorem1 that s(0) = O(1/N2).
Therefore, it follows from the equation above that the
stability margin isS = Re(s+1 ) = εb0

m0N + O( 1
N2 ). This

proves the first statement of the theorem.
To prove the second statement, the control gain designbfi =
(1 − ξ)b0 and bbi = (1 + ξ)b0 becomesbf(x) = (1 − ξ)b0
and bb(x) = (1 + ξ)b0. With this choice, it follows from
Theorem (4) that

s+1 = s(0) +
ξb0
m0N

− 0 + ℑ.

Sinces(0) = O(1/N2), the second term, which isO(1/N),
will dominate for largeN . Since this term is positive, the
second statement is proved.

A. Comparison of stability margin computed from mistuned
SSM and PDE

Figure 4 depicts the numerically obtained mistuned and
nominal stability margins for both the PDE and state-space
models. The nominal control gains arek0 = 1, b0 = 0.5,
and the mistuned velocity gains used are the ones given
by (6) in Theorem2 with ε = 0.1. The figure shows
that i) the closed-loop least stable eigenvalue match the
PDE’s accurately, even for small values ofN ; ii) the
mistuned eigenvalues show large improvement over the
symmetric case even though the velocity gains differ from
their nominal values only by±10%. The improvement is
particularly noticeable for large values ofN , while being
significant even for small values ofN .

For comparison, the figure also depicts the asymptotic
eigenvalue formula given in Theorem2. The improvement
in the stability margin with mistuning is remarkable even
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Fig. 4. Stability margin improvement by mistuning design. The nominal
control gains arek0 = 1, b0 = 0.5, and the mistuned gains used are the
ones given by (6) in Theorem2 with ε = 0.1. The legends “Nominal
SSM” and “Nominal PDE” stand for the stability margin computed from
the state-space model and the PDE model, respectively, withsymmetric
control. The legends “Mistuned SSM” and “Mistuned PDE” stand for the
stability margin computed from the state-space model and PDE model,
respectively, with mistuned control.
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Fig. 5. The real part of the most unstable eigenvalues with poor
asymmetry. The nominal control gains arek0 = 1, b0 = 0.5, and the
mistuned gains used are the ones given by (8) in Theorem2 with ξ = 0.1.
The legends “Mistuned SSM” and “Mistuned PDE” stand for the stability
margin computed from the state-space model and PDE model, respectively,
with mistuned control.

the velocity gains are changed from their symmetric values
by only ±10%. Another interesting aspect of the result
in Theorem2 is that the improvement fromO(1/N2) to
O(1/N) can be achieved byarbitrarily small changesto
the nominal velocity gains.

Numerical validation that poor choice of asymmetry in
control gains can lead to instability is shown in Figure5.
Note that the real part of these eigenvalues are positive and
Eq. (8) makes an accurate prediction.



VI. SUMMARY

We studied the role of heterogeneity and control asymme-
try on the stability margin of a large1D network of double-
integrator agents. The control is decentralized; the control
signal at every agent depends on the relative position and
velocity measurements from its two nearest neighbors. It is
shown that heterogeneity does not effect how the stability
margin scales withN , the number of agents, whereas
asymmetry plays a significant role. As long as control is
symmetric, meaning information on relative position and
velocity from both neighbors are weighed equally, agent-to-
agent heterogeneity does not change theO(1/N2) scaling
of stability margin. If front-back asymmetry is introduced
in the velocity feedback gains, even by an arbitrarily small
amount, the stability margin can be improved toO(1/N).
This is a significant improvement, especially for large
N . In addition, the optimal asymmetric (mistuned) gain
profile is quite simple to implement. With a maximum
allowable variation of±10% from the symmetric velocity
gains, the optimal gains are obtained by letting the front
gains to be10 percent larger than the nominal gain and
letting the back gains to be10 percent smaller. If relative
velocity information from the back neighbor is weighed
more heavily than that from the front one, no matter how
small the asymmetry is, the closed loop becomes unstable
for sufficiently largeN .

The general case of asymmetry in both position and ve-
locity feedback gains is an open problem. Some preliminary
answers are available in the special case when equal amount
of asymmetry in both position and velocity feedback is
introduced, which is parameterized byρ. Then the closed
loop is stable for arbitraryN , but the scaling laws of the
stability margin withN is not known yet. Interestingly, it
was shown by Veermanet. al. that in this special case,
the sensitivity to disturbances is worse ifρ is other than
0. On the other hand, it was shown in [3] that asymmetry
may help in reducing sensitivity to disturbance; though the
scenario involved absolute position feedback. The effect of
control asymmetry in sensitivity to disturbance therefore
needs study.
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APPENDIX

Proof of Theorem4. The proof proceeds by a perturbation
method. Let the eigenvalues and Laplace transformation
of p̃(x, t) for the perturbed PDE (30) be sℓ = s

(0)
ℓ +

εs
(ε)
ℓ , η = η(0) + εη(ε) respectively, wheres(0)ℓ and η(0)

are corresponding to the unperturbed PDE (19). Taking a
Laplace transform of PDE (30), plugging in the expressions
for sℓ andη, and doing anO(ε) balance, which leads to:

Pη(ε) =s
(0)
ℓ

b̃m(x)

N

dη(0)

dx
+ s

(0)
ℓ

b̃s(x)

2N2

d2η(0)

dx2

− 2ms
(0)
ℓ s

(ε)
ℓ η(0) + s

(ε)
ℓ

b0
N2

d2η(0)

dx2
=: R

For a solutionη(ε) to exist,R must lie in the range space
of the self-adjoint operatorP . Thus, we have,

< R,φℓ >= 0

We now have the following equation:
∫ 1

0

(

s
(0)
ℓ

b̃m(x)

N

dη(0)

dx
+ s

(0)
ℓ

b̃s(x)

2N2

d2η(0)

dx2

−2m0s
(0)
ℓ s

(ε)
ℓ η(0) + s

(ε)
ℓ

b0
N2

d2η(0)

dx2

)

φℓdx = 0

Following straightforward manipulations, we get:

m0(s
(0)
ℓ +

b0λℓ

2m0N2
)s

(ε)
ℓ =

− s
(0)
ℓ

(2ℓ− 1)π

4N

∫ 1

0

b̃m(x) sin
(

(2ℓ− 1)πx
)

dx

− s
(0)
ℓ

(2ℓ− 1)2π2

8N2

∫ 1

0

b̃s(x) cos2
( (2ℓ− 1)π

2
x
)

dx.

(32)

Substituting the equation above intosℓ = s
(0)
ℓ + εs

(ε)
ℓ , and

set ℓ = 1, we complete the proof.

Proof of Theorem3. With the control gains specified, it’s
straightforward to see that the state matrixA can be
expressed in the following form,

A = IN ⊗A1 + L⊗A2, (33)



where IN is the N × N identity matrix and⊗ is the
Kronecker product. AndA1, A2 andL are defined as below

A1 =

[

0 1
0 0

]

, A2 =

[

0 0
−k0 −b0

]

. (34)

where k0, b0 are the nominal position and velocity gains
respectively.L is the grounded graphLaplacian, which is
specified as follows:

L =











2 −1 + ρ
−1 − ρ 2 −1 + ρ

· · · · · ·
−1 − ρ 2 −1 + ρ

−1 − ρ 1 + ρ











. (35)

From Schur’s triangularization theorem, every square matrix
is unitarily similar to an upper-triangular matrix. Therefore,
there exists an unitary matrixU such that

U−1LU = Lu,

where Lu is an upper-triangular matrix, whose diagonal
entries are the eigenvalues ofL. We now do a similarity
transformation on matrixA.

Ā :=(U−1 ⊗ I2)A(U ⊗ I2)

=(U−1 ⊗ I2)(IN ⊗A1 + L⊗A2)(U ⊗ I2)

=IN ⊗A1 + Lu ⊗A2

It is a block upper-triangular matrix, and the block on each
diagonal isA1 + λℓA2, where λℓ ∈ σ(L), where σ(·)
denotes the spectrum (the set of distinct eigenvalues). Since
similarity preserves eigenvalues, and the eigenvalues of a
block upper-triangular matrix are the union of eigenvalues
of each block on the diagonal, we have

σ(A) = σ(Ā) =
⋃

λℓ∈σ(L)

{σ(A1 + λℓA2)}, (36)

=
⋃

λℓ∈σ(L)

{σ
[

0 1
−k0λℓ −b0λℓ

]

} (37)

It follows now that the eigenvalues ofA are the rootss of:

s2 + λℓb0s+ λℓk0 = 0 (38)

The ℓ-th eigenvalueλℓ of the grounded graph LaplacianL
is given by (see [14]),

λℓ = 2 − 2
√

1 − ρ2 cos θ (39)

whereθ satisfies the following condition:
√

1 + ρ

1 − ρ
sin(N + 1)θ = sinNθ, andθ 6= mπ,m ∈ Z.

It follows from (39) that λℓ > 0 for every ℓ, which
shows that the coefficients of the second order characteristic
equation (38) are positive. Hence, the eigenvalues of the
state matrixA are in the left half plane, and thus the closed
loop is exponentially stable.

Proof of Lemma1. With the given profiles of thms and
control gains, the PDE (17) simplifies to:

m(x)
∂2p̃(x, t)

∂t2
=

k0

N2

∂2p̃(x, t)

∂x2
+

b0
N2

∂3p̃(x, t)

∂x2∂t
, (40)

wheremmin ≤ m(x) ≤ mmax. Taking a Laplace transform
w.r.t. the variablet, we get

(m(x)s2 − b0s+ k0

N2

∂2

∂x2
)η(s, x) = 0 (41)

whereη(x, s) is the Laplace transform of̃p(x, t).
Due to the linearity and homogeneity of the above PDE
and boundary conditions, we are able to apply the method
of separation of variables. We assume solution of the form
η(s, x) = φ(x)h(s). Substituting the solution into (41) and
dividing both sides byφ(x)h(s), we obtain:

s2

k0

N2 + b0
N2 s

=
φ′′(x)

m(x)φ(x)
(42)

Since each side of the above equation is independent from
the other, so it’s necessary for both sides equal to the same
constant−λℓ. Then we have two separate equations:

φ′′(x) + λℓm(x)φ(x) = 0 (43)

s2 +
b0λℓ

N2
s+

k0λℓ

N2
= 0 (44)

The spatial part solves the following regular Sturm-
Liouville eigenvalue problem

φ′′(x) + λℓm(x)φ(x) = 0,

dφ(0)

dx
= φ(1) = 0. (45)

The Rayleigh quotient is given by

λℓ =

∫ 1

0 (dφ(x)/dx)2dx
∫ 1

0
φ2(x)m(x)dx

. (46)

Plugging the inequality form(x), we have the following
relation:

1

mmax

∫ 1

0 (dφ(x)/dx)2dx
∫ 1

0
φ2(x)dx

≤ λℓ ≤
1

mmin

∫ 1

0 (dφ(x)/dx)2dx
∫ 1

0
φ2(x)dx

Since we know the eigenvaluēλℓ corresponding to

Rayleigh quotient
R

1

0
(dφ(x)/dx)2dx
R

1

0
φ2(x)dx

is the eigenvalue ob-

tained from (45) with m(x) = 1. And λ̄ℓ is given by

λ̄ℓ =
(2ℓ− 1)2π2

4
(47)

whereℓ is the wave number,ℓ = 1, 2, . . . .
It is straight forward to see that the least eigenvalueλ̄ℓ is
obtain by settingℓ = 1, i.e. λ̄1 = π2/4. So we have the
following bounds for the least eigenvalue ofλℓ.

π2

4mmax
≤ λ1 ≤ π2

4mmin
(48)



The eigenvalues of PDE (40) turn out to be the roots of the
characteristic equation (44). The two roots of (44) are

s±ℓ :=
−b0λℓ/N

2 ±
√

b20λ
2
ℓ/N

4 − 4k0λℓ/N2

2
. (49)

We call s±ℓ the ℓ-th pair of eigenvalues. The discriminant
D in (49) is given by:

D :=b20λ
2
ℓ/N

4 − 4k0λℓ/N
2.

For largeN and small ℓ, D is negative. So both the
eigenvalues in (49) are complex, then the stability margin is
only determined by the real parts ofs±ℓ . It follows from (49)
that the least stable eigenvaluessmin (the ones closest to the
imaginary axis) among them is the one that is obtained by
minimizing λℓ over ℓ. Then, this minimum is achieved at
ℓ = 1,

smin = s±1 ,

and the real part is obtained

Re(smin) = −b0λ1

2N2
.

Following the definition of stability marginS := |Re(smin)|
as well as the bounds forλ1 given by (48), we complete
the proof.
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