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Abstract— The thermal storage potential of Thermostatically
Controlled Loads (TCLs) is a tremendous flexible resource
for providing various ancillary services to the grid. In this
work, we study aggregate modeling, characterization, and
control of TCLs for frequency regulation service provision. We
propose a generalized battery model for aggregating flexibility
of a collection of TCLs. A theoretical characterization of
the aggregate power limits and energy capacity of TCLs is
provided. Moreover, we propose a priority-stack-based control
strategy to manipulate the power consumption of TCLs for
frequency regulation, while preventing short cycling on the
units. Numerical experiments are provided to show the accuracy
of the proposed model and the efficacy of the developed control
method.

I. INTRODUCTION

A sustainable energy future requires vastly greater penetra-
tion of renewable resources than the current level. Economic,
environmental and political requirements have motivated
many states in the United States as well as countries around
the world to setup aggressive renewable portfolios [1]. As
an example, the state of California has established a target
by introducing 33% of renewables by 2020 [2]. The proper
functioning of an electric grid requires continuous power
balance between supply and demand, in spite of the random-
ness of system loads and the uncertainty of non-dispatchable
generation.

However, increasing introduction of renewable energy
supplies into the power grid imposes a challenge to maintain
the power balance due to the volatility, intermittency, and
uncontrollability of renewable resources. To ensure the func-
tionality and reliability of the grid, more ancillary service
procurements are required [3]–[5]. Among different ancillary
services, regulation reserve and load following are the key
services that have been considered for normal operating
conditions of the grid. While load following handles more
predictable and slower changes in load, regulation mitigates
faster and unpredicted fluctuations in system load and uncon-
trolled generation. It was shown that if California achieved
its 33% renewable penetration target, the regulation reserve
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and load following requirements would triple [6], [7]. If
these additional ancillary service procurements are provided
by fossil fuel generators, it will increase undesired carbon
emission and will be economically untenable. To this end, it
is essential to explore the potential of the cleaner demand-
side flexibility for ancillary service.

Residential Thermostatically Controlled Loads (TCLs)
such as air conditioner, heat pump, water heater, and re-
frigerator contribute to about 20% of the total electricity
consumption in the United States [8], [9]. The large thermal
storage capabilities of TCLs present an enormous potential
for providing various ancillary services to the grid.

A. Related Work

The study of aggregate behavior of a large population
of TCLs can date back to the 1980s. In [10], a physically
based modeling was proposed to study the cold load pickup
and payback phenomena of TCLs after a power outage.
Malhame and Chong used a system of coupled Fokker-
Planck equations to model the probability density of the
temperature evolution of a large population of TCLs [11].
The aggregation of TCLs has also received a lot of attention
more recently. Several papers have studied modeling and
control of residential TCLs for load following, secondary
regulation control, and energy arbitrage [12]–[18]. Provision
of ancillary service by residential pool pumps was also
considered in [19].

In fact, some utility companies have already harnessed
the flexibility of TCLs for demand response. For exam-
ple, the SmartACTM program initiated by PG&E (Pacific
Gas and Electric Company) gathered 147, 600 residential
customers for peak load shaving and managing emergency
situations [20]. However, these load control mechanisms
implemented in utilities are primarily concerned with low
frequency changes in demand, i.e., the changes occur over
hours timescale. There is an enormous additional potential
for fast ancillary service (such as regulation) that is virtually
not exploited.

In this paper, we study aggregating the flexibility in
the deployment of residential TCLs to provide regulation
service to the grid. Frequency regulation is one of the most
important ancillary services to maintain the power balance.
It is deployed on the fastest time scales (seconds to one
minute) to compensate the power imbalance between system-
side generation and load. Moreover, frequency regulation is
a capacity service; the regulation signal is typically a zero-
mean signal [21], with little energy requirement [22]. This
makes flexible loads with circumscribed storage capabilities



such as TCLs the perfect demand-side resource for providing
regulation service.

B. Main Contributions

One of the main contributions of this paper is that we pro-
pose a generalized battery model for aggregating flexibility
of a collection of TCLs. Based on the proposed generalized
battery model, we provide a theoretical characterization
of the aggregate power limits and energy capacity for a
collection of TCLs. We show that the aggregate flexibility of
a population of heterogeneous TCLs can be bounded by two
battery models, where the gap between the two battery mod-
els diminishes as the amount of heterogeneity goes to zero.
This model provides a simple and convenient framework for
system operators to allocate power and dispatch energy for
ancillary service provision. To the best of our knowledge,
our work is the first paper to analytically characterize the
flexibility of TCLs. A simulation based estimation on the
potential of TCLs was reported in [18].

Another contribution is that we propose a priority-stack-
based control strategy to control a population of TCLs for
frequency regulation. In each of the two priority stacks (one
stack is considered for the ON units and one for the OFF
units), the unit that is closer to its lower (upper) temperature
bound is assigned with a higher priority to be switched OFF
(ON) for service provision. A similar temperature-based pref-
erence control approach, and a time-based priority control
method were also independently developed in [14], [17].
Moreover, the priority-stack-based control strategy prevents
short cycling on each unit, and reduce the wear and tear
on the equipment. The developed control method presents
an excellent tracking performance and high robustness to
uncertainties.

C. Paper Organization

The remainder of the paper is organized as follows. The
mechanism by which TCLs are aggregated to provide regu-
lation reserve is presented in Section II. Section III describes
the thermal dynamics of an individual TCL. In Section IV,
we propose a generalized battery model for a collection of
TCLs, and characterize their aggregate flexibility. Priority-
stack-based control of TCLs is presented in Section V.
Section VI is devoted to numerical experiments. The paper
ends with conclusions and future work in Section VII.

II. CONTROL ARCHITECTURE FOR AN AGGREGATION OF
TCLS

In this paper, we study how to provide frequency regu-
lation service to the grid via control of an aggregation of
TCLs. The regulation signal or AGC (Automatic Generation
Control) command, which is denoted by r(t), is typically a
sequence of pulses at 4-second intervals. The magnitude of
the regulation signal indicates the amount of power asked by
the system operator.

Thanks to the large thermal storage capabilities of TCLs, a
significant amount of flexibility potential can be exploited for
regulation service provision. The TCLs provide the function
of keeping their internal temperature within specific bounds.
Under the nominal, local control, there is a specific average
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Fig. 1. Control architecture of TCLs for regulation service provision.

power that is required to achieve this function. For a large
collection of TCLs that is uncoordinated, the instantaneous
power drawn by this collection will be very close to the
combined average power requirement, because any specific
TCL will be at a random point along its operating cycle.
However, if the TCLs can respond to the signals of a system
operator, the aggregate instantaneous power can be made
to be quite different from the average. For example, if
the system operator requires more power in the grid, the
aggregation of TCLs can ”discharge” power by turning OFF
some of the ON units. Similarly, an aggregation of TCLs
can also absorb power from the grid by turning ON some of
the OFF units. The difference between the instantaneous and
average power is thus available to provide regulation reserve
to the grid.

In this paper, we adopt a centralized control architecture,
in which each TCL receives signals from a control authority
who has the ability to override their local control actions.
To provide frequency regulation service, at each sample
time (every 4 seconds), the system operator compares the
regulation signal r(t) with the power deviation of a popu-
lation of TCLs, e(t) = Pagg(t) − P0, where Pagg(t) is the
instantaneous power drawn by the coordinated aggregation,
and P0 is the average power that would have been drawn by
the uncoordinated aggregation. If r(t) > e(t), the population
of TCLs needs to ”discharge” power to the grid, which means
some of the units will be turned OFF. On the contrary, if
r(t) < e(t), then the population of TCLs needs to absorb
more power from the grid by turning ON some of the OFF
units. A priority-stack-based control strategy (that will be
described in Section V) is used to determine the appropriate
switching action of each TCL to prevent short-cycling and
reduce wear and tear of the mechanical equipment. The
overall control architecture is depicted in Fig. 1.

To implement such a control architecture, measurements
of power and temperature of each TCL are required at a
minimum sampling rate of 0.25 Hz to determine appropriate
control actions. This feedback control strategy has a great
advantage of dealing with modeling errors and external dis-
turbances from occupancy, solar radiation, and so on. While
the temperature is readily available from the thermostat,
measuring the power consumption of each TCL necessitates
nontrivial capital cost. Power meters are expensive. In our
view, this is unavoidable. Other schemes have been proposed
where the aggregate power is estimated using population
models, or disaggregated from substation measurements.
These are either open-loop control strategies, or result in
unreliable tracking of the regulation signal. These schemes
also face challenges in meeting the stringent auditing and



telemetry requirements necessary to participate in the ancil-
lary service markets [23].

III. INDIVIDUAL TCL MODEL

In this section, we first present a hybrid model for TCLs, in
which the power input of each unit has ON-OFF switching
behavior. We next consider a continuous model with con-
tinuous power input to facilitate the ensuing analysis. We
conjecture that in the limit of large population, the aggregate
behavior of a collection of TCLs with the hybrid model
can be approximated by that with the continuous model.
Numerical experiments using the hybrid model will be given
to support our analysis based on the continuous model.

A. Hybrid Model
Consider a population of N TCLs. The temperature evo-

lution of each TCL (indexed by k) can be described as

Ck
dθk(t)

dt
=
θa − θk(t)

Rk
−mk(t)P kηk + wk(t), (1)

where θk(t) is the internal temperature of the k-th TCL,
Ck and Rk are respectively its thermal capacitance and
thermal resistance, θa is the ambient temperature, and mk is
a dimensionless binary variable that indicates the operating
state of each TCL (1 when it is ON and 0 when it is OFF).
In addition, P k is the rated power, and ηk is its coefficient
of performance. Without loss of generality, P k is positive
for cooling mode, and it is negative for heating mode. The
first term on the right-hand side of (1), (θa − θk(t))/Rk,
represents the heat conduction with the ambient, the second
term P kηk denotes the rate of energy transfer when it is ON,
and the last term wk(t) accounts for external disturbances
such as occupancy and solar radiation. Table I describes
the parameters and their typical values for a residential air
conditioner.

TABLE I
TYPICAL PARAMETER VALUES FOR A RESIDENTIAL AC UNIT [24].

Parameter Description Value Range Unit
C thermal capacitance 1.5− 2.5 kWh/◦C
R thermal resistance 1.5− 2.5 ◦C/kW
P rated electrical power 4− 7.2 kW
η coefficient of performance 2.5
θr temperature setpoint 18− 27 ◦C
δ temperature deadband 0.25− 1.0 ◦C

Each TCL has a temperature setpoint θkr with a hysteretic
ON/OFF local control within a deadband [θkr − δk/2, θkr +
δk/2]. In the cooling mode, the operating state mk(t) evolves
as

mk(t+ ∆t) =


0 if θk(t+ ∆t) < θkr − δk/2,
1 if θk(t+ ∆t) > θkr + δk/2,
mk(t) otherwise,

where ∆t � 1 is a small time increment. Additionally, the
aggregated power consumption of a collection of TCLs at
time t is given by

Pagg(t) =

N∑
k=1

mk(t)P k. (2)

We define T kON as the time it takes for the k-th TCL to
transport from its upper temperature bound θkr + δk/2 to its
lower temperature bound θkr − δk/2. From Model (1), it is
straightforward to show that

T kON := RkCk ln
θkr + δk/2− θa +RkP kηk

θkr − δk/2− θa +RkP kηk
.

Similarly, T kOFF is defined as the time it takes for the k-th
TCL to transport from its lower temperature bound to its
upper temperature bound,

T kOFF := RkCk ln
θkr − δk/2− θa
θkr + δk/2− θa

.

Consequently, the duty cycle of the k-th TCL is defined as

dk :=
T kON

T kON + T kOFF
.

The average power consumed by the k-th TCL over a cycle
is defined as

P ka := P kdk =
P kT kON

T kON + T kOFF
. (3)

At steady-state, the number of TCLs that are ON is a
constant. Their aggregate baseline power is given by

P0 ≡
N∑
k=1

P ka . (4)

B. Continuous Model
As an approximation to the hybrid model, we consider

a continuous thermal model, in which each TCL has con-
tinuous power input mk(t)P k ∈ [0, P k] instead of binary
values of {0, P k}. Equivalently, the continuous thermal
model without disturbance wk(t) can be written as

θ̇k(t) = ak(θa − θk(t))−mk(t)bkP k, (5)

where ak = 1
CkRk , b

k = ηk

Ck . Note that in this model, as
common in the literature, the disturbance w is assumed to be
zero mean [11], [12], [14], and thus neglected. If a non-zero
mean existed, it could be approximated by an appropriate
change to θa. Maintaining the temperature θk(t) within the
user-specified dead-band θkr ± δk/2 is treated implicitly as a
constraint on the power input. When evaluating the trajectory
θk(t), it is assumed that θk(0) = θkr . The nominal power to
keep a TCL at its setpoint is given by

P k0 :=
ak(θa − θkr )

bk
=
θa − θkr
ηkRk

. (6)

Fig 2 compares the average power P ka given in (3) and
the nominal power P k0 given in (6) for different ambient
temperatures. We observe that the two match each other
very well. As a result, the average power consumed by the
hybrid model, P ka , can be accurately approximated by the
nominal power of the continuous model, P k0 . Consequently,
the baseline power of a population of TCLs with the hybrid
model can be approximated by the aggregate nominal power
of TCLs with continuous model, i.e., P0 ≈

∑
k P

k
0 .
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Fig. 2. Comparison of the average power Pka and the nominal power Pk0
for an air conditioner with different values of ambient temperature. The air
conditioner parameters used are taken as the mean of the values in Table I.

IV. GENERALIZED BATTERY MODEL OF AGGREGATE
FLEXIBILITY

To fully harness the flexibility benefits from TCLs, it
is essential to characterize the potential of their aggregate
power limits and energy capacity. In this section, we present
compact, intuitive models for energy storage devices that
will be very useful for expressing the capabilities of an
aggregation of TCL units. The models given here will be
expressed in the form of sets, that is, the model will be
described in terms of the set of valid power signals that could
be supported by the energy storage device. All proofs in this
section are given in the Appendix.

A. Generalized Battery Model
Definition 1: A Generalized Battery Model B is a set of

signals u(t) that satisfy

−n− ≤ u(t) ≤ n+, ∀ t > 0,

ẋ = −ax− u, x(0) = 0 ⇒ |x(t)| ≤ C, ∀ t > 0.

The model is specified by the non-negative parameters
C, n−, n+, a. �

Note that the parameters C, n−, n+, and a respectively
denote the battery’s energy capacity, its lower power limit,
its upper power limit, and its dissipation rate. The variable
x(t) defines the State of Charge (SoC) of the battery.

A single TCL unit is easily shown to be a generalized bat-
tery when the input is taken to be the difference between the
instantaneous power and nominal power, ek(t) = mk(t)P k−
P k0 . Define φk := Ck(θk − θkr )/ηk. The continuous model
(5) can be rewritten as

φ̇k(t) = −akφk(t)− ek(t). (7)

Apparently, the TCL described by model (7), supports the set
of power signals ek(t) in the set Ek = B(∆k,mk

−,m
k
+, a

k),
with

∆k =
Ckδk

2ηk
, mk

− = P k − P k0 , mk
+ = P k0 . (8)

An aggregator will have the opportunity to assign power
signals to each of the TCLs in their collection with the aim
that the sum achieves an overall power trajectory u(t). The
set of aggregate power signals that are achievable will satisfy
the model u(t) ∈ U where

U =

{
u(t) =

∑
k

ek(t)
∣∣∣ek(t) ∈ Ek, ∀ k

}
.

We wish to characterize this aggregation as a generalized
battery with power signal u. This is the subject of the next
section.

B. Characterizing the Flexibility of a collection of TCLs

We consider a population of heterogeneous TCLs with unit
generalized battery model Ek and aggregate model U. We
will find generalized battery models Bn and Bs that provide
upper and lower bounds on U, that is

Bs ⊆ U ⊆ Bn.

The first result gives an upper bound.
Theorem 1: Consider a collection of heterogeneous TCLs,

Ek = B(∆k,mk
−,m

k
+, a

k) with aggregate model U. Then
U ⊂ Bn = B(C, n−, n+, a), where the parameters of Bn are
given by

C =
∑
k

(1 + |1− ak

a
|)∆k,

n− =
∑
k

mk
−, n+ =

∑
k

mk
+,

and a is an arbitrary positive real number. �
This upper bound provides a necessary condition for u(t) to
be achievable by the aggregator. If u /∈ Bn, then there is no
possible assignment of ek that could achieve u =

∑
k e

k.
We next give parameters of a generalized battery such that

Bs ⊂ U.
Theorem 2: Consider a collection of heterogeneous TCLs,

Ek = B(∆k,mk
−,m

k
+, a

k) with aggregate model U. Choose
a > 0, and βk such that βk ≥ 0 and

∑
k β

k = 1. Then
Bs = B(C, n−, n+, a) ⊂ U, where the parameters of Bs are
given by

C = min
k

fk

βk
, n− = min

k

mk
−

βk
, n+ = min

k

mk
+

βk
,

and fk := ∆k/(1 + |1− a/ak|). �
The proof of this theorem utilizes the specific assignment

strategy ek(t) = βku(t). Thus, this lower bound is a
sufficient condition on u(t) for an aggregator to utilize the
assignment ek(t) = βku(t) and achieve the desired power
signal u(t) in aggregate. This result is particularly useful
because it specifies how the energy capacity and power limits
will vary with different choices of βk. This gives us the
possibility of choosing βk to optimize one or more of these
parameters.

Lemma 1: Consider the following optimization problem

max
β1,··· ,βN ,n−,n+,C

α1n− + α2n+ + α3C

subject to:

βkC ≤ fk, ∀ k,

βkn− ≤ mk
−, ∀ k,

βkn+ ≤ mk
+, ∀ k,

βk ≥ 0, ∀ k,∑
k

βk = 1.



where α1, α2 and α3 are non-negative weights that negoti-
ates the importance of n−, n+ and C. The optimal energy
capacity C and power limits n−, n+ are given by

C = (
∑
k

γk) min
k

fk

γk
,

n− = (
∑
k

γk) min
k

mk
−
γk

, n+ = (
∑
k

γk) min
k

mk
+

γk
,

where γk := α1m
k
− + α2m

k
+ + α3f

k. �

TABLE II
COMPARISON OF GENERALIZED STORAGE MODELS FOR A COLLECTION

OF HETEROGENEOUS TCLS.

Bs (sufficient) ⊂ U ⊂ Bn (necessary)

mink
fk

βk ≤ C ≤
∑
k(1 + |1− ak

a
|)∆k

mink
mk

−
βk ≤ n− ≤

∑
km

k
−

mink
mk

+

βk ≤ n+ ≤
∑
km

k
+

Since Bn and Bs are only upper and lower bounds on
U, it is of interest to examine the gap. Table II summarizes
the energy capacity and power limit gaps among U and Bs,
Bn. Note that, for a population of homogeneous TCLs, the
following corollary shows that the aggregate flexibility U is
equivalent to a generalized battery model B = Bn = Bs, i.e.,
u(t) ∈ U if and only if u(t) ∈ B. Equivalently, it implies the
gap between the battery models in Theorem 1 and Theorem
2 disappears. The proof of Corollary 1 follows immediately
from Theorem 1 and Theorem 2.

Corollary 1: Consider a collection of N homogeneous
TCLs, Ek = B(∆,m−,m+, a) with aggregate model U.
Let C = N∆, n− = Nm−, and n+ = Nm+. Then
U = B(C, n−, n+, a). �

V. PRIORITY-STACK-BASED CONTROL STRATEGY

In this section, we present a priority-stack-based control
framework to manipulate the power consumption of a popu-
lation of TCLs to provide frequency regulation service to the
grid. To track a regulation signal r(t), the system operator
needs to determine appropriate switching actions for each
TCL, so that the power deviation of TCLs, e(t), follows the
regulation signal r(t).

We construct one ON unit stack and one OFF unit stack,
as shown in Fig. 3. We assign higher priorities to the ON
(OFF) units with smaller normalized temperature difference
between its current temperature and the lower (upper) tem-
perature bound. The unit with the highest priority will be
turned ON (or OFF) first, and then units with lower priorities
will be considered. The purpose of this priority-stack-based
control strategy is to minimize the ON/OFF switching action
for each unit. We index the units available for manipulation
in the ON stack from bottom to top by {1, 2, · · · , N1}, and
the units in the OFF available unit from top to bottom by
{1, 2, · · · , N0}.

Hot
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ON Stack
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Fig. 3. The ON and OFF Priority Stacks. The lower and upper temperature
bounds are given by θk = θkr − δk/2 and θ

k
= θkr + δk/2 where θkr is

the set-point temperature of the k-th unit and δk is its deadband.

The priority-stack-based control algorithm is summarized
in Algorithm 1. To perform such an algorithm, the following
information from each TCL is needed at each sample time:
(i) operating state mk(t), (ii) temperature θk(t), (iii) power
measurement P k, and (iv) temperature setpoint θkr as well
as deadband δk. Note that the temperature and its setpoint
are readily available from the thermostat, and the operating
state and deadband can be easily inferred from the past
temperature measurements. At each sample time (every 4
seconds), the control algorithm first constructs the priority
stacks based on the received information. It then reads the
regulation signal r(t) and calculates the power deviation of
the population of TCLs, e(t). If e(t) < r(t), it searches the
OFF priority stack from top to bottom such that

∑j∗

i=1 P
i ≈

r(t) − e(t), and then sends a switch (turn ON) signal to
the units in the OFF priority stack whose index is smaller
than or equal to j∗. Similarly, If e(t) > r(t), it searches the
ON priority stack from bottom to top such that

∑j∗

i=1 P
i ≈

e(t)− r(t), and then sends a switch (turn OFF) signal to the
units in the ON priority stack whose index is smaller than
or equal to j∗.

Algorithm 1 Priority Stack based Control Algorithm
loop

read mk(t), θk(t), P k, θkr , and δk;
construct priority stacks;
obtain r(t);
compute e(t) = Pagg(t)− P0;
if e(t) < r(t) then

find j∗ = min
{
j |
∑j
i=1 P

i ≥ r(t)− e(t)
}

;
turn ON units indexed by {1, 2, · · · , j∗}.

else if e(t) > r(t) then
find j∗ = min

{
j |
∑j
i=1 P

i ≥ e(t)− r(t)
}

;
turn OFF units indexed by {1, 2, · · · , j∗}.

end if
end loop

VI. SIMULATION RESULTS

In this section, we apply our priority-stack-based control
strategy to follow a one-hour long regulation signal (Reg



D) of PJM (Pennsylvania-New Jersey-Maryland Interconnec-
tion) [25]. The magnitude of the original signal is scaled
appropriately to match the power limits and energy capacity
of 1, 000 TCLs. In the simulation, we use the hybrid model
for each TCL to empirically estimate their aggregate power
limits and energy capacity, and compare them with the
corresponding analytic bounds of the generalized battery
models developed in Theorem 1 and Theorem 2, which are
developed based on the continuous model.

Since the gap between the (necessary) battery model Bn
and the (sufficient) battery model Bs grows as the amount
of heterogeneity in the TCL parameters increases, in order
to obtain tighter analytic bounds on the aggregate power
limits and energy capacity, one can consider clustering the
population [26]. In practice, for a population of highly
diverse TCLs, we can cluster the population into several
groups, in which each group has similar parameter values.
We then use the analytic bounds developed in Theorem 1
and Theorem 2 to estimate the aggregate flexibility of each
cluster. In the simulation of this work, we consider a pop-
ulation of air conditioners, whose parameters are obtained
by introducing a 10% of heterogeneity to the mean values
of the AC parameters listed in Table I. Additionally, the
ambient temperature is assumed to be 32◦C, and the initial
temperatures and operating states of the population of TCLs
are taken as the steady state values.

For the (necessary) battery model Bn, its analytic lower
power limit n−, upper power limit n+, and energy capacity
C are given by

n
(n)
− = 1.9 MW, n

(n)
+ = 3.7 MW, C(n) = 0.26 MWh.

For the (sufficient) battery model Bs, without loss of gen-
erality, we consider one of the extreme optimization cases
in Lemma 1: only maximize the lower power limit n−, i.e.,
let α1 = 1, α2 = 0, α3 = 0. In this case, the analytic lower
power limit n−, upper power limit n+, and energy capacity
C,

n
(s)
− = 1.9 MW, n

(s)
+ = 2.8 MW, C(s) = 0.19 MWh.

Note that the lower power limit in the sufficient battery model
Bs is the same as that in the necessary battery model Bn.

Fig. 4 shows that if the regulation signal’s power and
capacity requirements are both within the analytic bounds
of the (sufficient) battery model Bs, the population of TCLs
can track it with high accuracy. The tracking error is less
than 1% of the maximum magnitude of the regulation signal.
Additional simulation results (not reported here) show that
even with one sampling communication delay, excellent
tracking is still achieved with a maximum tracking error less
than 5% of the maximum magnitude of the regulation signal.

On the other hand, if either of the regulation signal’s power
or capacity requirements exceeds the bounds of the (neces-
sary) battery model Bn, the population of TCLs cannot track
the regulation signal very well. Fig. 5 shows that when the
regulation exceeds the power limits of the analytic bounds,
the population of TCLs cannot track the regulation signal,
although its capacity requirement is within the corresponding
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Fig. 4. Tracking of a regulation signal that is within the power limits and
energy capacity of the (sufficient) battery model Bs.
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Fig. 5. Tracking of a regulation signal that exceeds the power limits of
the (necessary) battery model Bn.

analytic bound (Fig. 5 (b)). Additionally, Fig. 6 shows that
if the capacity required by the regulation signal exceeds
the capacity bound of the generalized battery model, the
collection of TCLs cannot accurately track the regulation
signal either, although its power requirement is within the
power limits of the battery model (Fig. 6 (a)).

VII. CONCLUSIONS AND FUTURE WORK

The enormous thermal storage potential of TCLs presents
a tremendous opportunity for providing regulation service to
the grid. In this paper, we proposed a generalized battery



500 1000 1500 2000 2500 3000 3500

−4

−3

−2

−1

0

1

2

3

4

Time (s)

P
o
w

e
r 

(M
W

)

 

 

 Regulation Signal

 Power Deviation

 Necessary Power Limits

 Sufficient Power Limits

(a) Power trajectory

500 1000 1500 2000 2500 3000 3500

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time (s)

E
n
e
rg

y
 (

M
W

h
)

 

 

 Capacity required by regulation signal

 Necessary Capacity Limits

 Sufficient Capacity Limits

(b) Capacity trajectory

Fig. 6. Tracking of a regulation signal that exceeds the energy capacity of
the (necessary) battery model Bn.

model for aggregating flexibility of a collection of Thermo-
statically Controlled Loads. Based on the proposed battery
model, we characterized the aggregate power limits and
energy capacity for a collection of TCLs. A priority-stack-
based control framework was developed to manipulate the
power consumption of TCLs to track a regulation signal. We
illustrated that (i) the generalized battery model provided
a simple, intuitive, and powerful framework to characterize
the aggregate flexibility of a population of TCLs; (ii) the
analytic power and capacity bounds matched the empirically
estimated bounds very well; (iii) the priority-stack-based
control strategy yielded near-perfect tracking performance.

There are several future directions of interest. A theoretical
justification on the approximation of a population of TCLs
with the hybrid model by using the continuous model is
under current investigation. A systematic characterization
of the aggregate flexibility of TCLs as a function of unit
participation and ambient temperature is also an ongoing
work. Aggregating flexibility of other types of loads such
as electric vehicles and residential pool pumps is a direction
of interest.
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APPENDIX

Proof of Theorem 1. The proof requires that we show that
if ek(t) ∈ Ek for all k, then u(t) =

∑
k e

k(t) ∈ Bn. Assume
ek(t) ∈ Ek. Let

φ̇k(t) = −akφk(t)− ek(t), φk(0) = 0.

Taking a Laplace transform of the above equation, we obtain

φk(s) =
1

s+ ak
ek(s).

Similarly, from ẋ(t) = −ax(t)− u(t) and x(0) = 0,

x(s) =
1

s+ a
u(s) =

1

s+ a

∑
k

ek(s)

=
∑
k

1

s+ a
ek(s) =

∑
k

s+ ak

s+ a

1

s+ ak
ek(s)

=
∑
k

s+ ak

s+ a
φk(s) =

∑
k

(1 +
ak − a
s+ a

)φk(s).

For any scalar transfer function Y (s) = H(s)U(s), we
have ‖y(t)‖∞ ≤ ‖h(t)‖1‖u(t)‖∞, where y(t), h(t) and u(t)
are the inverse Laplace transforms of Y (s), H(s) and U(s)
respectively. Therefore,

‖x(t)‖∞ ≤
∑
k

(1 + |1− ak

a
|)‖φk(t)‖∞.

Because ek(t) ∈ Ek, ‖φk(t)‖∞ ≤ ∆k, this implies that

‖x(t)‖∞ ≤
∑
k

(1 + |1− ak

a
|)∆k, ∀t. (9)

Additionally,

u(t) =
∑
k

ek(t), −mk
− ≤ ek(t) ≤ mk

+,

implies that

−
∑
k

mk
− ≤ u(t) ≤

∑
k

mk
+. (10)

Inequalities (9) and (10) verify that u(t) ∈ Bn.

Proof of Theorem 2. In this case, we must show that u(t) ∈
Bs = B(C, n−, n+, a) implies that ek(t) = βku(t) ∈ Ek =
B(∆k,mk

−,m
k
+, a

k). Now, if u(t) ∈ Bs, the following must
hold

−n− ≤u(t) ≤ n+, ∀t > 0

ẋ = −ax− u, x(0) = 0 =⇒ |x(t)| ≤ C, ∀ t > 0.

Let

φ̇k(t) = −akφk(t)− ek(t).

Let ek(t) = βku(t), where βk ≥ 0, and
∑
k β

k = 1. Taking
a Laplace transform of the above equation, we obtain

φk(s) =
1

s+ ak
ek(s) =

1

s+ ak
βku(s)

= βk
s+ a

s+ ak
u(s)

s+ a
= βk(1 +

a− ak

s+ ak
)x(s),

where we have used the fact that x(s) = 1
s+au(s). Similarly,

we have

‖φk(t)‖∞ ≤ βk(1 + |a− a
k

ak
|)‖x(t)‖∞

≤ βk(1 + |a− a
k

ak
|)C, ∀ t > 0.

Since C is chosen so that βkC ≤ fk, we have |φ(t)| ≤ ∆k.
Moreover,

βkn− ≤ mk
−, βkn+ ≤ mk

+, ∀ k,



yields −mk
− ≤ βku(t) ≤ mk

+, and the result follows.

Proof of Lemma 1. To find the maximum possible values
of n−, n+ and C, we need to find the optimal βk’s.
Since n−, n+ and C are all positive, we define ψ =

1
α1n−+α2n+α3C

. Since βkn− ≤ mk
−, β

kn+ ≤ mk
+, β

kC ≤
fk, we get

βk(α1n− + α2n+ + α3C) ≤ α1m
k
− + α2m

k
+ + α3f

k,

which implies

βk ≤ (α1m
k
− + α2m

k
+ + α3f

k)ψ.

We next solve the following linear programming problem,

min
βk,ψ

ψ

subject to:

βk ≤ γkψ, ∀ k,
βk ≥ 0, ∀ k,∑
k

βk = 1,

where γk = α1m
k
−+α2m

k
+ +α3f

k. Notice that if βk’s are
the optimal solutions to the original optimization problem,
then they are the optimal parameters to the above linear
programming problem. Since βk ≤ γkψ, ∀k, then∑

k

βk ≤
∑
k

γkψ,

and since
∑
k β

k = 1,

ψ ≥ 1∑
k γ

k
, ∀ k.

As a result, the minimum possible value of ψ is 1∑
k γ

k . The
optimal βk can now be chosen as

βk =
γk∑
k γ

k
, ∀ k.

Following straightforward algebra, the optimal solution to
the original optimization problem is given by

C = (
∑
k

γk) min
k

fk

γk
,

n− = (
∑
k

γk) min
k

mk
−
γk

,

n+ = (
∑
k

γk) min
k

mk
+

γk
.
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