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Abstract— We study the robustness to external disturbances
of large 1-D network of double-integrator agents with dis-
tributed control. We provide precise quantitative comparison
of certain H∞ norm between two common control architec-
tures: predecessor-following and symmetric bidirectional. In
particular, we show that the scaling laws of theH∞ norm
for predecessor-following architecture isO(αN ) (α > 1), but
only O(N3) for symmetric bidirectional architecture, where
N is the number of agents in the network. The results for
symmetric bidirectional architecture are obtained by using
a PDE model to approximate the closed-loop dynamics of
the network for large N . Numerical calculations show that
the PDE approximation provides accurate predictions even
when N is small. In addition, we examine the robustness of
asymmetric bidirectional architecture. Numerical simulations
show that with judicious asymmetry in the velocity feedback,
the robustness of the network can be improved considerably
over symmetric bidirectional and predecessor-following archi-
tectures.

I. I NTRODUCTION

Distributed control of vehicular formation is relevant to
a wide range of applications such as automated highway
system, collective behavior of bird flocks and animal swarms,
and formation flying of aerial, ground, and autonomous
agents for energy savings, surveillance, mine-sweeping,
etc. [1]–[4]. A fundamental issue in distributed control is
that as the number of agents in the formation increases,
the performance of the closed-loop degrades. Several recent
works have focused on the fundamental limitations of large
vehicular formation with distributed control; [5], [6] have
studied the stability margin of the platoon, while [7]–[11]
have examined the system’s sensitivity to external distur-
bances.

In this paper we study the robustness (sensitivity to distur-
bances) of a large 1-D network of double-integrator agents
with distributed control, in which each agent is modeled
as a double integrator. The control objective is to make
the network track a desired trajectory while maintaining a
rigid formation geometry. The desired trajectory of the entire
network is determined by a leader in front of the formation,
and the desired formation geometry is specified as constant
inter-agent spacings between each pair of agents.

Two decentralized control architectures that are commonly
examined in the literature arepredecessor-followingand
symmetric bidirectional. In the predecessor-following archi-
tecture, the control action on each agent only depends on the
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relative information from its immediate predecessor, thatis,
the agent in front of it. In the symmetric bidirectional archi-
tecture, it depends equally on the relative information from
its immediate predecessor and follower. The predecessor-
following architecture has extremely high sensitivity to exter-
nal disturbances (see [12], [13] and references therein). This
is typically referred to as string instability [14] or slinky-type
effect [15], [16]. Seileret. al. showed that string instability
with the predecessor-following architecture is independent of
the design of the controller on each agent, but a fundamental
artifact of the architecture [8]. String instability can be
ameliorated by non-identical controllers at the agents butat
the expense of the control gains increasing without bound as
the number of the agents increases [16], [17].

The high sensitivity to disturbance of predecessor-
following architecture led to the examination of the sym-
metric bidirectional architecture for its perceived advantage
in rejecting disturbances, especially with absolute velocity
feedback [12]. It was shown later that symmetric bidirec-
tional architectures also suffers from high sensitivity todis-
turbances when only relative measurements are used [8], [9],
[18]. Indeed, such high sensitivity to disturbances persists
even for more general architectures, where every agent uses
information from more than two neighbors [10], [11].

Although a rich literature exists on sensitivity to dis-
turbances with predecessor-following and symmetric bidi-
rectional architectures, to the best of our knowledge, a
precise comparison of the performance between these two
architectures - in terms of quantitative measures of robustness
is lacking. This paper addresses exactly this problem. In
particular, we establish how certainH∞ norm, that quantifies
the system’s robustness, scale with the size of the network for
each of these two architectures. More precisely, we examine
the amplification factor, which is defined as theH∞ norm
of the transfer function from the disturbances on all the
following agents to their position tracking errors.

For the predecessor-following architecture, we show that
the amplification factor scales asO(αN ) for someα > 1.
Thus, as the size of the network increases, the amplification
of disturbance increases geometrically. We then show that
with symmetric bidirectional architecture, the amplification
factor is onlyO(N3). In addition, the resonance frequency in
this architecture isO(1/N). Thus, among the two control ar-
chitectures, the symmetric bidirectional architecture performs
far better than the predecessor-following architecture interms
of sensitivity to disturbance, especially as the network size
becomes large.

The analysis for the symmetric bidirectional architecture
is carried out with a PDE approximation of the closed-



loop dynamics. A PDE approximation is frequently used in
the analysis of many-particle systems in statistical physics
and traffic-dynamics, large spring-mass systems on lattice
and synchronization of coupled-oscillators [19]–[21]. Inour
previous work [6], [22], PDE models provide an insightful
and convenient framework to study the stability margin of
large vehicular formations. The PDE models used here are
based on the PDE model derived in [22]. Although the PDE
is derived under the assumption thatN is large, numerical
results show that it makes an accurate approximation even
whenN is small (e. g.N = 10).

In this paper, we assume each agent has a double-
integrator dynamics and the network is homogeneous: each
agent in the network has the same open-loop dynam-
ics and uses the same control law. The assumption of
double-integrator dynamics comes from the fact that single-
integrator models fail to reproduce the slinky-type ef-
fects [11] and higher order dynamics will result in instability
for sufficient largeN [9], [23]. And also, heterogeneity in
agent mass and control gains has little effect on the stability
margin and sensitivity to disturbance of the network [10],
[18], [22]. However, we show by numerical simulation
that asymmetryhas a substantial effect on the robustness
of the 1-D network, whereasymmetryrefers to that the
information from the front and back neighbors are weighted
prejudicially. Judicious asymmetry in the velocity feedback
can improve the robustness of the 1-D network considerably
over symmetric control.

The rest of this paper is organized as follows. Section II
presents the problem statement. Section III describes the
PDE model of the 1-D network with symmetric bidirectional
architecture. Analysis of the amplification factor for both
symmetric bidirectional and predecessor-following architec-
tures as well as the conjecture for asymmetric bidirectional
architecture appear in Section IV. The paper ends with
summary and design guidelines in Section V.

II. PROBLEM STATEMENT

We consider the formation control ofN+1 homogeneous
agents (1 leader andN followers) which are moving in 1-D
Euclidean space, as shown in Figure 1 (a). The position of
the i-th agent is denoted bypi ∈ R. The dynamics of each
agent are modeled as a double integrator:

mip̈i = ui + wi, i ∈ {1, 2, · · · , N}, (1)

wheremi is the mass,ui is the control input andwi is the
external disturbance on thei-th agent. This is a commonly
used model for vehicle dynamics in studying vehicular
formations, and results from feedback linearization of non-
linear vehicle dynamics [11], [16], [24]. The disturbance on
each agent is assumed to bewi = ai sin(ωt+ θi).

The control objective is that agents maintain a rigid
formation geometry while following a constant-velocity type
desired trajectory. The desired geometry of the formation
is specified by constant desired inter-agent spacing∆(i−1,i)

for i ∈ {1, · · · , N}, where∆(i−1,i) is the desired value of
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Fig. 1. Desired geometry of a 1-D network of double-integrator agents
with 1 “leader” andN “followers”, which are moving in 1-D Euclidean
space. The filled agent in the front of the network representsthe leader, it
is denoted by “0”. (a) is the original graph of the network in thep coordinate
and (b) is the redrawn graph of the same network in thep̃ coordinate.

pi−1(t)−pi(t). Each agenti knows the desired gaps∆(i−1,i),
∆(i,i+1). The desired trajectory of the network is specified
in terms of a leader whose dynamics are independent of the
other agents. The leader is indexed by0, and its trajectory
is denoted byp∗0(t) = v∗t + ∆(0,N), wherev∗ is a positive
constant, which is the cruise velocity of the network. The
desired trajectory of thei-th agent, p∗i (t), is given by
p∗i (t) = p∗0(t)−∆(0,i) = p∗0(t)−

∑i
j=1 ∆(j−1,j). To facilitate

analysis, we define the following position tracking error:

p̃i := pi − p∗i . (2)

In this paper, we consider the following decentralized
control law, where the control on thei-th agent depends
on the relative position and velocity measurements from its
immediate predecessor and possibly its immediate follower:

ui = − kf
i (pi − pi−1 + ∆i,i−1) − kb

i (pi − pi+1 − ∆i+1,i)

− bfi (ṗi − ṗi−1) − bbi(ṗi − ṗi+1), (3)

uN = − kf
i (pN − pN−1 + ∆N,N−1) − bfi (ṗN − ṗN−1),

wherei ∈ {1, · · · , N−1} andkf
i , k

b
i (respectively,bfi , b

b
i ) are

the front and back position (respectively, velocity) gainsof
thei-th vehicle. Note that the information needed to compute
the control action can be easily accessed by on-board sensors,
since only relative information is used.

Definition 1: The control law (3) issymmetric if each
vehicle uses the same front and back control gains:kf

i =

kb
i = k0, b

f
i = bbi = b0, and is calledhomogeneousif

kf
i = kf

j , kb
i = kb

j and bfi = bfj , bbi = bbj for every pair
(i, j) wherei, j ∈ {1, 2, · · · , N − 1}. �

Results in [10], [18], [22] show that heterogeneity in
vehicle mass and control gains has little effect on the
sensitivity to disturbance and stability margin of the network.
Therefore we focus onhomogeneousplatoons:

kf
i = (1 + εk)k0, kb

i = (1 − εk)k0,

bfi = (1 + εb)b0, bbi = (1 − εb)b0, (4)

mi = 1, i ∈ {1, 2, · · · , N},

where εk ∈ [0, 1] and εb ∈ [0, 1] are the amounts of
asymmetry in the position and velocity gains respectively.



Definition 2: We call the architecture corresponding to
εk = εb = 0 the symmetric bidirectional, since the control
action on each vehicle depends equally on the information
from its immediate predecessor and follower, the architecture
corresponding toεk = εb = 1 the predecessor-following,
since the control action on each vehicle only depends on the
information from its immediate predecessor, and the architec-
ture corresponding to other casesasymmetric bidirectional.

�

In this paper, we study how the sensitivity to external
disturbances scale with respect to the number of agentsN
in the network. We define the following metric.

Definition 3: The amplification factorAF is defined as
theH∞ norm of the transfer function from the disturbances
acting on all the followers to their position tracking errors.

�

To study the amplification factor, we assume there are
sinusoidal disturbances acting on all the followers but not
the leader, and study theH∞ norm of the transfer function
from the disturbancesW = [w1, w2, · · · , wN ] ∈ R

N on
all the followers to their position tracking errorsE =
[p̃1, p̃2, · · · , p̃N ] ∈ R

N , wherewi = ai sin(ωt + θi) and
p̃i is defined in (2). Since there is no disturbance on the
leader, its desired trajectory is given byp∗0(t) = v∗t+∆(0,N).
Using the position tracking error defined in (2), for the
predecessor-following architecture, the closed-loop dynamics
can be expressed as

¨̃pi = − kf
i (p̃i − p̃i−1) − bfi ( ˙̃pi − ˙̃pi−1) + wi, (5)

wherei ∈ {1, · · · , N}. For the bidirectional architecture, the
closed-loop dynamics can be written as

¨̃pi = − kf
i (p̃i − p̃i−1) − kb

i (p̃i − p̃i+1)

− bfi ( ˙̃pi − ˙̃pi−1) − bbi( ˙̃pi − ˙̃pi+1) + wi, (6)
¨̃pN = − kf

i (p̃N − p̃N−1) − bfi ( ˙̃pN − ˙̃pN−1) + wN ,

wherei ∈ {1, · · · , N − 1}.
For both architectures, the closed-loop dynamics can be

represented in the following state-space form:

Ẋ = AX +BW, E = CX, (7)

where X is the state vector, which is defined asX :=
[p̃1, ˙̃p1, · · · , p̃N , ˙̃pN ] ∈ R

2N , W is input vector (external
disturbances) andE is the output vector (position tracking
errors).

Recall that theH∞ norm of a transfer functionG(s) =
C(sI −A)−1B from W to E is defined as:

||G(jω)||H∞
= sup

ω∈R+

σmax[G(jw)] = sup
W

||E||L2

||W ||L2

, (8)

where σmax denotes the maximum singular value.1 For
the predecessor-following architecture, the dynamics of each
agent only depend on the information from its predecessor.

1In this paper, theL2 norm is well-defined in the extended spaceL2
e =

{u|uτ ∈ L2, ∀ τ ∈ [0,∞)}, where uτ (t) = (i) u(t), if 0 ≤ t ≤
τ ; (ii) 0, if t > τ. See [25, Chapter 5]. With a little abuse of notation,
we suppress the subscript and writeL2 = L2

e.

Due to this special coupled structure, a closed-form transfer
function can be derived, we can derive estimates for the am-
plification factor by using standard matrix theory. However,
for bidirectional architecture, it is in general difficult to find
a closed-form formula for the amplification factor from the
state-space domain. We take an alternate route and propose a
PDE model, which is seen as a continuum approximation of
the coupled-ODE model (6), to analyze and study theH∞
norms of the 1-D network of double-integrator agents.

III. PDE MODELS OF THE NETWORK WITH SYMMETRIC

BIDIRECTIONAL ARCHITECTURE

The analysis in the symmetric bidirectional architecture
relies on PDE models, which are seen as a continuum
approximation of the closed loop dynamics (6) in the limit of
largeN , by following the steps involved in a finite-difference
discretization in reverse. To facilitate analysis, we redraw the
graph of the 1-D network of double-integrator agents, so that
the position of the agents in the graph are always located in
the interval[0, 1], irrespective of the number of agents. The
i-th agent in the “original” graph, is now drawn at position
(N − i)/N in the new graph. Figure 1 shows an example.

With symmetric control gainskf
i = kb

i = k0, b
f
i = bbi =

b0, the closed-loop dynamics (6) can be written as

¨̃pi =
k0

N2

(p̃i−1 − 2p̃i + p̃i+1)

1/N2
+

b0
N2

( ˙̃pi−1 − 2 ˙̃pi + ˙̃pi+1)

1/N2

+ ai sin(ωt+ θi). (9)

The starting point for the PDE derivation is to consider a
function p̃(x, t) : [0, 1]× [0, ∞) → R that satisfies:

p̃i(t) = p̃(x, t)|x=(N−i)/N , (10)

so that functions that are defined at discrete pointsi will
be approximated by functions that are defined everywhere
in [0, 1]. The original functions are thought of as samples
of their continuous approximations. Use the following finite
difference approximations:

[ p̃i−1 − 2p̃i + p̃i+1

1/N2

]

=
[∂2p̃(x, t)

∂x2

]

x=(N−i)/N
,

[ ˙̃pi−1 − 2 ˙̃pi + ˙̃pi+1

1/N2

]

=
[∂3p̃(x, t)

∂x2∂t

]

x=(N−i)/N
.

Under the assumption thatN is large but finite, Eq. (9) can
be seen as finite difference discretization of the following
PDE:

∂2p̃(x, t)

∂t2
=
k0

N2

∂2p̃(x, t)

∂x2
+

b0
N2

∂3p̃(x, t)

∂x2∂t
+ a(x) sin(ωt+ θ(x)), (11)

wherea(x), θ(x) : [0, 1] → R are defined according to the
following stipulations:

ai = a(x)|x= N−i
N
, θi = θ(x)|x= N−i

N
. (12)

The boundary conditions of PDE (11) depend on the ar-
rangement of leader in the graph. For our case, the boundary



conditions are of the Dirichlet type atx = 1 where the leader
is, and Neumann atx = 0:

∂p̃

∂x
(0, t) = 0, p̃(1, t) = 0. (13)

The PDE model (11) is a forced wave equations with
Kelvin-Voigt damping. It is an approximation of the coupled-
ODE model in the sense that a finite difference discretization
of the PDEs yield (6) [26], [27].

IV. ROBUSTNESS(SENSITIVITY TO DISTURBANCES)

A. Symmetric bidirectional architecture

We first present the result on amplification factor for the
1-D network of double-integrator agents with symmetric
bidirectional architecture.

Theorem 1:Consider the PDE model (11)-(13) of the 1-
D network with symmetric bidirectional architecture, the
amplification factorAF sb and resonance frequencyωsb

r have
the asymptotic formula

AF sb ≈ 8N3

√
k0b0π3

, ωsb
r ≈

√
k0π

2N
. (14)

These formulae hold for largeN . �

Proof of Theorem 1.For a multi-input-multi-output system,
theH∞ norm is defined as the supremum of the maximum
singular value of the transfer function matrixG(jω) over
all frequencyω ∈ R

+. Equivalently, it can be interpreted
in a sinusoidal, steady-state sense as follows (see [28]). For
any frequencyω, any vector of amplitudesa = [a1, · · · , aN ]
with ‖a‖2 ≤ 1, and any vector of phasesθ = [θ1, · · · , θN ],
the input vector

W = [w1, · · · , wN ]

= [a1 sin(ωt+ θ1), · · · , aN sin(ωt+ θN )] (15)

yields the steady-state response ofE of the form

E = [p̃1, · · · , p̃N ]

= [b1 sin(ωt+ ψ1), · · · , bN sin(ωt+ ψN )]. (16)

TheH∞ norm ofG(jω) can be defined as

‖G(jω)‖H∞
= sup ‖b‖2 = sup

ω∈R+,a,θ∈RN

‖E‖L2

‖W‖L2

. (17)

Therefore, in the PDE counterpart, theH∞ norm is deter-
mined by

H∞ = sup
ω∈R+,a(x),θ(x)

||p̃(x, t)||L2

‖a(x) sin(ωt+ θ(x))‖L2

, (18)

wherea(x) andθ(x) are piecewise smooth functions defined
in [0, 1].
PDE (11)-(13) is a nonhomogeneous PDE with homogeneous
boundary conditions, the solution of̃p(x, t) can be solved
by eigenfunction expansion, see [26, Chapter 8]. Before we
proceed, notice that the forcing term satisfies

a(x) sin(ωt+ θ(x)) = a1(x) sin(ωt) + a2(x) cos(ωt),

wherea1(x) = a(x) cos(θ(x)) anda2(x) = a(x) sin(θ(x)).
From the superposition property of linear system, the out-
put is the sum of the outputs corresponding to inputs
a1(x) sin(ωt) anda2(x) cos(ωt) respectively. We first con-
sider the response of the PDE with inputa1(x) sin(ωt). The
PDE is now given by

∂2p̃(x, t)

∂t2
=

k0

N2

∂2p̃(x, t)

∂x2
+

b0
N2

∂3p̃(x, t)

∂x2∂t
+ a1(x) sin(ωt).

To proceed, we first consider the following homogeneous
PDE with homogeneous boundaries (13)

∂2p̃(x, t)

∂t2
=

k0

N2

∂2p̃(x, t)

∂x2
+

b0
N2

∂3p̃(x, t)

∂x2∂t
. (19)

The above PDE can be solved by the method of separation
of variables, we assume solution of the form̃p(x, t) =
∑∞

ℓ=1 φℓ(x)hℓ(t). Substituting the solution into the above
PDE (19), we get the following space-dependent ODE

1

N2

d2φℓ(x)

dx2
+ λℓφℓ(x) = 0, (20)

where λℓ = (2ℓ − 1)2π2/(4N2) and φℓ(x) = cos((2ℓ −
1)πx/2) are the eigenvalue and its corresponding eigenfunc-
tion of the Sturm-Liouville eigenvalue problem (20) with
following boundary conditions, which come from (13),

dφℓ

dx
(0) = 0, φℓ(1) = 0. (21)

Notice that the eigenvalueλ1 is the smallest eigenvalue, it is
called the principal mode of the damped wave equation (19).
Since the eigenfunctions are complete (because of Sturm-
Liouville Theory), any piecewise smooth functions can be
expanded in a series of these eigenfunctions, see [26].
Therefore,a1(x) can be expanded as a series in terms of
φℓ(x), i.e. a1(x) =

∑∞
ℓ=1 dℓφℓ(x). Substituting the series

into the above PDE and using̃p(x, t) =
∑∞

ℓ=1 φℓ(x)hℓ(t),
we have the following time-dependent ODEs:

d2hℓ(t)

dt2
+ b0λℓ

dhℓ(t)

dt
+ k0λℓhℓ(t) = dℓ sin(ωt), (22)

whereℓ ∈ {1, 2, · · · } anddℓ is given by

dℓ = 2

∫ 1

0

a1(x)φℓ(x) dx. (23)

Again, for each modeλℓ, the steady-state responsehℓ(t) is
given by

hℓ(t) =
dℓ

√

ω4 + (b20λ
2
ℓ − 2k0λℓ)ω2 + k2

0λ
2
ℓ

sin(ωt+ ψℓ)

= Aℓdℓ sin(ωt+ ψℓ), (24)

for some constantψℓ. Following straightforward algebra, the
maximum amplitudeAℓ and its resonance frequency for each
mode is

Aℓ =

{

8N3

(2ℓ−1)3b0π3
1√

k0−(2ℓ−1)2b20π2/(16N2)
, if ℓ ≤ ℓ0

1
λℓk0

, otherwise,
(25)



ωℓ =

{

(2ℓ−1)π
2N

√

k0 − (2ℓ− 1)2b20π
2/(8N2), if ℓ ≤ ℓ0

0, otherwise,
(26)

whereℓ0 = 2
√

2k0N+π
2π .

WhenN is large, it’s not difficult to see from (25) that, the
maximum ofAℓ is achieved atω = ω1. Therefore, for a
finite L2 norm of a1(x), to achieve the largestL2 norm of
p̃(x, t), a1(x) should be equal to the eigenfunction of the first
modea1(x) = φ1(x), i.e. the projection ofa1(x) onto other
eigenfunctions is zerodℓ = 0 (ℓ = 2, 3, · · · ). Similarly, the
following relationshipa2(x) = φ1(x) should hold for input
a2(x) cos(ωt), which impliesθ(x) = θ0 is constant, since
a1(x) = a(x) cos(φ(x)) anda2(x) = a(x) sin(φ(x)).
Consequently, the output with the maximumL2 norm is
given by

p̃(x, t) = A1φ1(x) sin(ωt+ ψ1). (27)

Therefore, theH∞ norm of the system is obtained

H∞ = A1
‖φ1(x) sin(ωt+ ψ1)‖L2

‖φ1(x) sin(ωt+ θ0)‖L2

= A1. (28)

Using the assumption thatN is large in (25) and (26), we
compete the proof.

B. Disturbance amplification with predecessor-following ar-
chitecture

In this section, we present the result of disturbance am-
plifications with predecessor-following architecture.

Theorem 2:Consider an N -agent network with
predecessor-following architecture. The amplification
factorAF pf is asymptotically approximated by

AF pf ≈ β

√

α2N − 1

α2 − 1
, (29)

whereα = |T (jωpf
r )| > 1, β = |S(jωpf

r )|, in which

T (s) =
2b0s+ 2k0

s2 + 2b0s+ 2k0
, S(s) =

1

s2 + 2b0s+ 2k0
,

andωpf
r is the resonance frequency

ωpf
r ≈

√

√

k4
0 + 4k3

0b
2
0 − k2

0

b0
.

These formulae hold for largeN . �

The proof follows a similar line of attack as the work
in [8]. Interested readers are referred to Corollary1 of [29]
for an explicit proof.

C. Disturbance amplification with asymmetric bidirectional
architecture

For the asymmetric bidirectional architecture, we consider
the following control gains, which stabilize the network [22]:

1) Equal amount of asymmetry, i.e.0 < εk = εb < 1. In
this case, it was shown in Theorem3.5 of [30] that certain
H∞ norm (which is different from the amplification factor)
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Fig. 2. Numeric comparison of the amplification factorAF between the
predecessor-following and bidirectional architectures.

grows exponentially inN . We show by numerical simula-
tions that the amplification factorAF as with equal asym-
metry are approximatelyO(γN ) (γ > 1), see Section IV-
D. The asymmetric bidirectional architecture with equal
asymmetry in the position and velocity feedback thus suffers
from high sensitivity to disturbances, as the predecessor-
following architecture. However, it doesn’t imply asymmetric
bidirectional architectures is not preferable, as shown below.

2) Asymmetric velocity feedback, i.e.εk = 0, 0 < εb < 1.
It was shown in [22] that the stability margin, which is
defined as the absolute value of the real part of the least
stable eigenvalue of the state matrixA, can be improved
considerably by using the asymmetric velocity feedback over
symmetric control. We conjecture that the robustness can also
be ameliorated significantly with asymmetric velocity feed-
back, which is witnessed by extensive numerical simulations.

Conjecture 1:Consider anN -agent network with asym-
metric bidirectional architecture. When there is small asym-
metry in the velocity feedback, i.e.εk = 0, 0 < εb ≪ 1, the
amplification factorAF av asymptotically satisfies

AF av ≈ O(N2). �

D. Numerical verification

In this section, we compare the robustness of the network
with different control architectures. In addition, we verify the
analytic predictions in Theorem 1 and Theorem 2 with their
numerically computed values. All numerical calculations are
performed in Matlabc©. Figure 2 shows the comparison of
amplification factor between the predecessor-following and
bidirectional architectures. We can see that the amplifica-
tion factor grows geometrically in the predecessor-following
architecture and asymmetric bidirectional architecture with
equal asymmetry. In contrast, in the symmetric bidirectional



architecture, these amplifications grow much slower than the
two architectures aforementioned. In addition, the asymmet-
ric velocity feedback architecture gives the best robustness
performance. Besides, we see that the numerical result of
the amplification factor in the asymmetric velocity feedback
architecture coincides with our conjecture. Moreover, the
analytic predictions match the numerical results very well,
which verified our analysis in Theorem 1 and Theorem 2. In
all cases, the control gains used arek0 = 1 andb0 = 0.5. The
amounts of asymmetry in the cases of equal asymmetry and
asymmetric velocity feedback are given byεk = εb = 0.2
andεk = 0, εb = 0.2, respectively.

V. SUMMARY AND DESIGN GUIDELINES

We studied the robustness to external disturbances of large
1-D networks of double-integrator agents with two decentral-
ized control architectures: predecessor-following and bidi-
rectional. In particular, we examined how the amplification
factor scale withN , the number of agents in the network.
The analysis of the amplification factor with symmetric
bidirectional architecture relied on a PDE model, which ap-
proximates the closed-loop dynamics of the network for large
N . Numerical calculations showed that the PDE model made
an accurate prediction to the scaling laws of amplification
factor even whenN is small.

Comparing Conjecture 1 with those results in Theorem 1
and Theorem 2 as well as Theorem3.5 of [30] (equal asym-
metry), we see that asymmetric velocity feedback yields the
best robustness performance compared to other architectures.
The next preferable choice is the symmetric bidirectional
architecture. The predecessor-following and asymmetric bidi-
rectional with equal amount of asymmetry are the worst
choices for control design in terms of robustness, their
amplification factors growing extremely fast withN . In
conclusion, the asymmetric velocity feedback is the preferred
choice for control design to get a good robustness.
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