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Abstract— We study the robustness to external disturbances relative information from its immediate predecessor, fhat
of large 1-D network of double-integrator agents with dis- the agent in front of it. In the symmetric bidirectional airch
tributed control. We provide precise quantitative comparison tecture, it depends equally on the relative informationmfro

of certain H., norm between two common control architec- its | diat d d foll Th d
tures: predecessor-following and symmetric bidirection& In IS iImmediate predecessor and follower. € preaecessor-

particu|ar, we show that the Sca"ng laws of the]foo norm fOIIOWing architecture haS eXtreme|y h|gh SenSitiVity er-
for predecessor-following architecture isO(aY) (o > 1), but  nal disturbances (see [12], [13] and references therehik T
only O(N?) for symmetric bi.directional architecture, where g typically referred to as string instability [14] or slipkype
N is the number of agents in the network. The results for  gffect [15], [16]. Seileret. al. showed that string instability

symmetric bidirectional architecture are obtained by using . . - L
a PDE model to approximate the closed-loop dynamics of with the predecessor-following architecture is indepenadé

the network for large N. Numerical calculations show that the design of the controller on each agent, but a fundamental
the PDE approximation provides accurate predictions even artifact of the architecture [8]. String instability can be
when N is small. In addition, we examine the robustness of ameliorated by non-identical controllers at the agentsabut

asymmetric bidirectional architecture. Numerical simulations o expense of the control gains increasing without bound as
show that with judicious asymmetry in the velocity feedback th b f h ts | 161. 117
the robustness of the network can be improved considerably € number of the agents increases [16], [17].

over symmetric bidirectional and predecessor-following &chi- The high sensitivity to disturbance of predecessor-
tectures. following architecture led to the examination of the sym-
metric bidirectional architecture for its perceived adeae
|. INTRODUCTION in rejecting disturbances, especially with absolute \igjoc

Distributed control of vehicular formation is relevant tofeedback [12]. It was shown later that symmetric bidirec-
a wide range of app“cations such as automated h|ghwéyna| architectures also suffers from h|gh SensitiVit)dtS'
system, collective behavior of bird flocks and animal swarmgurbances when only relative measurements are used [8], [9]
and formation flying of aerial, ground, and autonomoufl8]. Indeed, such high sensitivity to disturbances pessis
agents for energy savings, surveillance, mine-sweepingVen for more general architectures, where every agent uses
etc. [1][4]. A fundamental issue in distributed control isinformation from more than two neighbors [10], [11].
that as the number of agents in the formation increases,Although a rich literature exists on sensitivity to dis-
the performance of the closed-loop degrades. Severaltrecéiffbances with predecessor-following and symmetric bidi-
works have focused on the fundamental limitations of largkectional architectures, to the best of our knowledge, a
vehicular formation with distributed control; [5], [6] hav Precise comparison of the performance between these two
studied the stability margin of the platoon, while [7]_[11]architectures- in terms of quantitative measures of rolasst
have examined the system's sensitivity to external distufS lacking. This paper addresses exactly this problem. In
bances. particular, we establish how certalfi,, norm, that quantifies

In this paper we study the robustness (sensitivity to distufh€ System’s robustness, scale with the size of the netvoork
bances) of a large 1-D network of double-integrator agenfch of these two architectures. More precisely, we examine
with distributed control, in which each agent is modeledne amplification factor which is defined as théf., norm
as a double integrator. The control objective is to makgf the transfer function from the disturbances on all the
the network track a desired trajectory while maintaining &0llowing agents to their position tracking errors.
rigid formation geometry. The desired trajectory of theirent  For the predecessor-following architecture, we show that
network is determined by a leader in front of the formationthe amplification factor scales @3(a’) for somea > 1.
and the desired formation geometry is specified as constaHius. as the size of the network increases, the amplification
inter-agent spacings between each pair of agents. of disturbance increases geometrically. We then show that

Two decentralized control architectures that are commonl?/ith symmetric bidirectional architecture, the amplifioat
examined in the literature arpredecessor-followingand ~ factor is onlyO(N?). In addition, the resonance frequency in
symmetric bidirectionalln the predecessor-following archi- this architecture i®)(1/N). Thus, among the two control ar-

tecture, the control action on each agent only depends on tfaitectures, the symmetric bidirectional architectundqrens
far better than the predecessor-following architectuterims
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N N -1 1 0
loop dynamics. A PDE approximation is frequently used in - bd d .
the analysis of many-particle systems in statistical ptg/si 19) Aw-1n) | L2en | x
and traffic-dynamics, large spring-mass systems on lattice @

and synchronization of coupled-oscillators [19]-[21].dar

previous work [6], [22], PDE models provide an insightful tE]) n ] T
and convenient framework to study the stability margin of 5o oo co )
large vehicular formations. The PDE models used here are 0 1/N | LN 1

based on the PDE model derived in [22]. Although the PDE
: : ) . ; (b)
is derived under the assumption thétis large, numerical
results show that it makes an accurate approximation evéig. 1. Desired geometry of a 1-D network of double-integraigents
when  is smal (e. 9. — 10). T ecsoeer
In this paper, we assume each agent has a doublgdenoted by 0. (a) is the original graph of the network in thecoordinate
integrator dynamics and the network is homogeneous: eagfd (b) is the redrawn graph of the same network ingteordinate.
agent in the network has the same open-loop dynam-
ics and uses the same control law. The assumption of _
double-integrator dynamics comes from the fact that singl@i—1(t)—p:(t). Each agentknows the desired gaps;_1,;),
integrator models fail to reproduce the slinky-type eff(ii+1)- The desired trajectory of the network is specified
fects [11] and higher order dynamics will result in instipil N terms of a leader whose dynamics are independent of the
for sufficient largeN [9], [23]. And also, heterogeneity in Other agents. The leader is indexed (byand its trajectory
agent mass and control gains has little effect on the styabiliiS denoted byp;(t) = vt + A ), wherev™ is a positive
margin and sensitivity to disturbance of the network [10]cOnStant, which is the cruise velocity of the network. The
[18], [22]. However, we show by numerical simulationdesired trajectory of thei-th agent, pj(¢), is given by
that asymmetryhas a substantial effect on the robustnesg (t) = p5(t)— A,y = p§(t) =2 5-1 Aj-1,5)- To facilitate
of the 1-D network, whereasymmetryrefers to that the analysis, we define the following position tracking error:
information from the front and back neighbors are weighted
prejudicially. Judicious asymmetry in the velocity feedka
can improve the robustness of the 1-D network considerably In this paper, we consider the following decentralized
over symmetric control. control law, where the control on theth agent depends
The rest of this paper is organized as follows. Section Ibn the relative position and velocity measurements from its
presents the problem statement. Section Ill describes thlmmediate predecessor and possibly its immediate follower
PDE model of the 1-D network with symmetric bidirectional oy "
architecture. Analysis of the amplification factor for both % = — ki (Pi = pi1 + Diim1) = ki (pi = piss — Biv1)

Di =i — D; - (2

symmetric bidirectional and predecessor-following aet — b{'(pi — pi_1) — D2 (Pi — Pig1), 3)
tures as well as the conjecture for asymmetric bidirectiong, ~_ _ .f I :

; ; . ) =—k; —pN—1+ AN N-1) =] —PN_1),
architecture appear in Section IV. The paper ends with (Px = pn-s N.N-1) by pN} )
summary and design guidelines in Section V. wherei € {1,---, N—1} andk/, k" (respectivelyp! , 1) are

. PROBLEM STATEMENT the front ar_ld back position (_respecti\_/ely, velocity) gaais
' thei-th vehicle. Note that the information needed to compute
We consider the formation control 8f + 1 homogeneous the control action can be easily accessed by on-board sensor
agents { leader andV followers) which are moving in 1-D gjpce only relative information is used.
Euclidean space, as shown in Figure 1 (a). The position of pefinition 1: The control law (3) issymmetricif each
the i-th agent is denoted by; € R. The dynamics of each yehicle uses the same front and back control gairis=

agent are modeled as a double integrator: kb = ko,b! = b¥ = by, and is calledhomogeneousf

Pl e g F_of b _ -

M = wi +wi, i€ {1,2,--- N}, Q) k'i = ki, kf = ké’ andb; = bj, b = blj’- for every pair

_ _ _ _ (i,4) wherei,j € {1,2,--- ,N — 1}. O
wherem,; is the massy; is the control input andv; is the Results in [10], [18], [22] show that heterogeneity in

external disturbance on theth agent. This is a commonly vehicle mass and control gains has little effect on the
used model for vehicle dynamics in studying vehiculagensitivity to disturbance and stability margin of the netiv
formations, and results from feedback linearization of-nontherefore we focus ohomogeneouplatoons:

linear vehicle dynamics [11], [16], [24]. The disturbana® o

each agent is assumed to bg = a; sin(wt + ;). k= (1+en)ko, kb =(1—ep)ko,
The control objective is that agents maintain a rigid bzf = (14 &)bo, b? = (1 — &)bo, (4)
formation geometry while following a constant-velocitysy meo— 1 ie{1,2,---,N}

desired trajectory. The desired geometry of the formation
is specified by constant desired inter-agent spading,,) Wwheree, < [0,1] and e, € [0,1] are the amounts of
fori e {1,---,N}, whereA(,_ ;) is the desired value of asymmetry in the position and velocity gains respectively.



Definition 2: We call the architecture corresponding toDue to this special coupled structure, a closed-form teansf
er = €, = 0 the symmetric bidirectionalsince the control function can be derived, we can derive estimates for the am-
action on each vehicle depends equally on the informatiglification factor by using standard matrix theory. Howegver
from its immediate predecessor and follower, the architect for bidirectional architecture, it is in general difficuti find
corresponding te, = ¢, = 1 the predecessor-following a closed-form formula for the amplification factor from the
since the control action on each vehicle only depends on tiséate-space domain. We take an alternate route and propose a
information from its immediate predecessor, and the agchit PDE model, which is seen as a continuum approximation of
ture corresponding to other casasymmetric bidirectional the coupled-ODE model (6), to analyze and study ihg

O norms of the 1-D network of double-integrator agents.

In this paper, we study how the sensitivity to external
disturbances scale with respect to the number of agants !ll. PDE MODELS OF THE NETWORK WITH SYMMETRIC
in the network. We define the following metric. BIDIRECTIONAL ARCHITECTURE

Definition 3: The amplification factorAF' is defined as  The analysis in the symmetric bidirectional architecture
the H_, norm of the transfer function from the disturbanceselies on PDE models, which are seen as a continuum
acting on all the followers to their position tracking esor approximation of the closed loop dynamics (6) in the limit of

U largeN, by following the steps involved in a finite-difference

To study the amplification factor, we assume there argiscretization in reverse. To facilitate analysis, we a@dthe
sinusoidal disturbances acting on all the followers but najraph of the 1-D network of double-integrator agents, so tha
the leader, and study thd ., norm of the transfer function the position of the agents in the graph are always located in

from the disturbancesV’ = [wi, w2, -, wy] € RY on  the interval[0, 1], irrespective of the number of agents. The
all the followers to their DOSI'UO” tracking error8 =  j.th agent in the “original” graph, is now drawn at position
(1, P2, -+ ,pn] € RY, wherew; = a;sin(wt +6;) and (N — §)/N in the new graph. Figure 1 shows an example.

pi is defined in (2). Since there is no disturbance on the with symmetric control gaing/ = k¥ = ko, b/ = b0 =

leader, its desired trajectory is given b§(t) = v*t+A n). b, the closed-loop dynamics (6) can be written as
Using the position tracking error defined in (2), for the

predecessor-following architecture, the closed-loopedyics = _ ko (Pic1 = 2pi+Pir1) | bo (Pi—1 — 2Di + Pit1)
can be expressed as ‘N2 1/N2 N2 1/N?
- - - * L i Si t+0;). 9
pi :_sz(pi_pifl)_b{(pi_pifl)‘i‘wi, ) +aisin(wt +6;) ©)
wherei € {1,--- , N'}. For the bidirectional architecture, the Th€ starting point for the PDE derivation is to consider a
closed-loop dynamics can be written as function p(z, t) : [0,1] x [0, oo) — R that satisfies:
]51' = — sz(ﬁz — ﬁi—l) — kf(ﬁz — ﬁi+1) ﬁz(t) = ]5(1'7 t)|z:(N7i)/Na (10)
— bl (Bi — i1) — V2 (pi — Di1) + wi, (6) so that functions that are defined at discrete pointsill

be approximated by functions that are defined everywhere
n [0,1]. The original functions are thought of as samples

wherei € {1,--- N —1}. of their continuous approximations. Use the following #nit
For both architectures, the closed-loop dynamics can kffference approximations:

represented in the following state-space form:

PN =— kif(ﬁzv —PN—1) — b{(]jN —PN-1) + wn,

. Pic1 = 2pi +Piv1]  [0%p(x,t)

X =AX+BW, FE=CX, ) [ 1/N2 } = [ 022 L:(N_i)/N’
where X is the state vector, which is defined & := {]31-_1 — 2p; +]3i+1} - {83]5@ t)}
[P1,D1, -+ ,PN,Pn] € RV, W is input vector (external 1/N2 L9220t le=v—iy/N’
disturbances) and is the output vector (position tracking

Under the assumption tha{ is large but finite, Eq. (9) can

errors). - ; ; o .
Recall that theH.. norm of a transfer functior(s) — tF))eDé.een as finite difference discretization of the following
C(sI — A)~1B from W to E is defined as: '
1B 0? 0°p(a,t) _ ko 0?p 0°p(, 1) b_08313(:c,t)
1GG@)s = sup omadG(jw)] = sup =, (8 T N? 922 N2 020t
weR Wile.” + a(z) sin(wt + 0(z)), (11)

where omax denotes the maximum singular valuk.For
the predecessor-following architecture, the dynamicsache
agent only depend on the information from its predecess

wherea(z),6(z) : [0,1] — R are defined according to the
Jpllowing stipulations:
a; = a(z)|,—n_i, 0i = 0(x)]pmni. (12)

Ln this paper, theCs norm is well-defined in the extended spatg =

{ulur € L2,V 7 € [0,00)}, whereu-(t) = (i) u(t), if 0 < t < .
7; (i) 0, if ¢ > 7. See [25, Chapter 5]. With a little abuse of notation, The boundary conditions of PDE (11) depend on the ar-

we suppress the subscript and writé = £2. rangement of leader in the graph. For our case, the boundary



conditions are of the Dirichlet type at= 1 where the leader wherea,(z) = a(x) cos(6(x)) andaz(x) = a(z) sin(6(z)).

is, and Neumann at = 0: From the superposition property of linear system, the out-
o put is the sum of the outputs corresponding to inputs
5,08 =0, p(1,t) =0. (13)  ay(z)sin(wt) and az(x) cos(wt) respectively. We first con-

. _ _sider the response of the PDE with inpyf(x) sin(wt). The
The PDE model (11) is a forced wave equations WithbpE is now given by

Kelvin-Voigt damping. It is an approximation of the coupled
ODE model in the sense that a finite difference discretimatiod”p(z,t) _ ko 0%p(z,t) = by 0°p(z,t)
of the PDEs yield (6) [26], [27]. ot? N2 Qa2 N2 9x20t
To proceed, we first consider the following homogeneous
PDE with homogeneous boundaries (13)
0%*p(z,t ko 02%p(x,t by 03p(x,t
We first present the result on amplification factor for the # = —OQLQ) —02#- (19)
; . . ot N ox N2 0x20t
1-D network of double-integrator agents with symmetric .
bidirectional architecture. The at_>ove PDE can be solved _by the method of separation
Theorem 1:Consider the PDE model (11)-(13) of the 1-°f O\O/arlables, we assume solution of the forpir,t) =
D network with symmetric bidirectional architecture, the2.r=1 ¢¢(x)he(t). Substituting the solution into the above
amplification factorAF** and resonance frequency® have T DE (19), we get the following space-dependent ODE

+ a1 (z) sin(wt).

IV. ROBUSTNESS(SENSITIVITY TO DISTURBANCES
A. Symmetric bidirectional architecture

the asymptotic formula 1 d2¢)(z
3 N2 jffﬁ ) + Aeope(z) =0, (20)
AR n BN e VEoT (14) N
T kb " 2N where \, = (2¢ — 1)?72/(4N?) and ¢;(z) = cos((2¢ —

1)wx/2) are the eigenvalue and its corresponding eigenfunc-
tion of the Sturm-Liouville eigenvalue problem (20) with
Proof of Theorem 1For a multi-input-multi-output system, following boundary conditions, which come from (13),

the H,, norm is defined as the supremum of the maximum doy
singular value of the transfer function matriX(jw) over H(O) =0, $e(1) = 0. (21)
all frequencyw € RT. Equivalently, it can be interpreted ) ] ) ] L
in a sinusoidal, steady-state sense as follows (see [264). gNotice that the eigenvaluk; is the smallest eigenvalue, it is

These formulae hold for larg#’. O

any frequency, any vector of amplitudes = [ay, - - - , ax] cglled the pr_incipal mpde of the damped wave equation (19).
with [Ja]|2 < 1, and any vector of phasés= [6:, - - , 0], S_lnce_ the elgenfuncnon_s are_complete (becaqse of Sturm-
the input vector Liouville Theory), any piecewise sn_100th funlctlons can be
expanded in a series of these eigenfunctions, see [26].

W = [wi, -, wn] Therefore,a;(z) can be expanded as a series in terms of

= [aysin(wt +61), -, ay sin(wt + Oy )] (15) ¢e(x), i.e. ai(z) = 32, dege(x). Substituting the series
into the above PDE and usingx,t) = Yo, ¢u(z)he(t),

yields the steady-state responsefof the form we have the following time-dependent ODEs:
E=[p, - ,pn] Fhe®) s IO hot) = dysin(wt), (22)
= [by sin(wt + 1), - -+ , by sin(wt + PN )] (16) dt? dt ’
The H,, norm of G(jw) can be defined as wheref € {1,2,---} andd, is given by
1
GGl =swlbls = sw APl a7) ti=2 [ m@o) do @3)
w€ERT,a,0€RN ”W”ﬁz 0
Therefore, in the PDE counterpart, ti#&,, norm is deter- A_gam, for each mode, the steady-state resporisg() is
mined by given by
- de .
[Pz, )] 2. he(t) = sin(wt + 1¢)
Hoo - 5 18 _
ez ® o Ta@sin@t + 0@z, P VT B8N — 2kor)e” + k37
= Apdy sin(wt + ¥y), (24)

wherea(z) andf(z) are piecewise smooth functions defined
in [0,1]. for some constant,. Following straightforward algebra, the
PDE (11)-(13) is a nonhomogeneous PDE with homogeneoli#ximum amplitudei, and its resonance frequency for each
boundary conditions, the solution ¢fz,¢) can be solved mode is
by eigenfunction expansion, see [26, Chapter 8]. Before we { 8N3 1 if ¢ <0,

Ap =

proceed, notice that the forcing term satisfies (26=1)%b0m? | /kg—(26—1)263 w2 /(16N?)
. . oo otherwise,
a(x) sin(wt + 6(z)) = a1 (z) sin(wt) + az(x) cos(wt), (25)



o= VR = T PR BN, i<t
0, otherwise,
(26)

where(y = 2¥2hoNtr

When N is Iarge7,T it's not difficult to see from (25) that, the
maximum of A, is achieved atv = wi. Therefore, for a
finite £o norm of a;(z), to achieve the largest, norm of
p(z,t), a1 (z) should be equal to the eigenfunction of the firsi
modea, (z) = ¢1(z), i.e. the projection ofi; (z) onto other
eigenfunctions is zerd, = 0 (¢ = 2,3,---). Similarly, the
following relationshipas(z) = ¢1(z) should hold for input
az(z) cos(wt), which impliesf(z) = 6, is constant, since
a1(z) = a(z) cos(¢p(z)) andaz(x) = a(x) sin(p(x)).
Consequently, the output with the maximufy norm is
given by

Pz, t) = A1 1 () sin(wt + 1h1). (27)
Therefore, thel, norm of the system is obtained
H, = Al ||¢1 (‘T) Sln(Wt + wl)”['z _ Al. (28)

l¢1 () sin(wt + 6o)llc,
Using the assumption thaY is large in (25) and (26), we
compete the proof. ]

B. Disturbance amplification with predecessor-following a
chitecture

10157 e
Predecessor foll. é\synﬂmetric bidi.
(Prediction (29)) ¢, (Equal asymmetry)
PAg
10 ‘<> 4 Symmetric bidi. |
&, B Symmetric bidi (Prediction (14))
< o N \
Predecessor foll. -
ovO
\> <> PAe o o £
105 [ > @, ‘% O V—V V'V‘\Vv
@ £ O, '\7'? Conjecture 1
Asymmetric bidi. (Asymmetric velocity)
0
10 ‘ ‘ ‘ : :
10 20 50 100 250
N
Fig. 2. Numeric comparison of the amplification factd#' between the

predecessor-following and bidirectional architectures.

grows exponentially inN. We show by numerical simula-
tions that the amplification factoaA F** with equal asym-
metry are approximatel)(v") (y > 1), see Section IV-
D. The asymmetric bidirectional architecture with equal

In this section, we present the result of disturbance an&'symmetry in the position and velocity feedback thus ssffer

plifications with predecessor-following architecture.
Theorem 2:Consider an N-agent

predecessor-following architecture. The

factor AFP/ is asymptotically approximated by

2N _q

AFPT ~ 3 i 5

a?—-1" (29)

wherea = |T(jwPf)| > 1, B = |S(jwr?)]|, in which

T(S) _ 2bos + 2kg S(S) _ 1

52 —|— 2b05 + 2]4307 52 —|— 2b05 + 2]4307
andw?/ is the resonance frequency

V VR AR — k3
bo ‘
These formulae hold for largd’.

pf
Wy’ =

O

The proof follows a similar line of attack as the work
in [8]. Interested readers are referred to Corollargf [29]
for an explicit proof.

C. Disturbance amplification with asymmetric bidirectibna
architecture

from high sensitivity to disturbances, as the predecessor-

network l_f‘,’v'th_ following architecture. However, it doesn’t imply asymmet
amplificationy;qirectional architectures is not preferable, as showaviae

2) Asymmetric velocity feedback, i.e, = 0,0 < g, < 1.
It was shown in [22] that the stability margin, which is
defined as the absolute value of the real part of the least
stable eigenvalue of the state matrk can be improved
considerably by using the asymmetric velocity feedback ove
symmetric control. We conjecture that the robustness can al
be ameliorated significantly with asymmetric velocity feed
back, which is witnessed by extensive numerical simulation

Conjecture 1:Consider anN-agent network with asym-
metric bidirectional architecture. When there is smallnasy
metry in the velocity feedback, i.e; = 0,0 < g, < 1, the

amplification factorAF** asymptotically satisfies
AF™ ~ O(N?). O

D. Numerical verification
In this section, we compare the robustness of the network

with different control architectures. In addition, we \fgtihe

analytic predictions in Theorem 1 and Theorem 2 with their
numerically computed values. All numerical calculations a
performed in Matlaf®. Figure 2 shows the comparison of

For the asymmetric bidirectional architecture, we consideamplification factor between the predecessor-following an

the following control gains, which stabilize the networl2]2
1) Equal amount of asymmetry, i.8.< e, = ¢, < 1. In

this case, it was shown in Theoredrb of [30] that certain

H., norm (which is different from the amplification factor)

bidirectional architectures. We can see that the amplifica-
tion factor grows geometrically in the predecessor-foitayv
architecture and asymmetric bidirectional architecturdh w
equal asymmetry. In contrast, in the symmetric bidirection



architecture, these amplifications grow much slower than th[7]
two architectures aforementioned. In addition, the asythme
ric velocity feedback architecture gives the best robisstne
performance. Besides, we see that the numerical result of
the amplification factor in the asymmetric velocity feedbac (8l
architecture coincides with our conjecture. Moreover, the
analytic predictions match the numerical results very well [9]
which verified our analysis in Theorem 1 and Theorem 2. In
all cases, the control gains used &age= 1 andby = 0.5. The [10]
amounts of asymmetry in the cases of equal asymmetry and
asymmetric velocity feedback are given by = ¢, = 0.2

ande, = 0,¢, = 0.2, respectively. [11]

V. SUMMARY AND DESIGN GUIDELINES

We studied the robustness to external disturbances of Iargg]
1-D networks of double-integrator agents with two decéntra
ized control architectures: predecessor-following andi-bi
rectional. In particular, we examined how the amplificatiorﬂlg’]
factor scale with/V, the number of agents in the network.[14
The analysis of the amplification factor with symmetric
bidirectional architecture relied on a PDE model, which ap[-15
proximates the closed-loop dynamics of the network fordarg
N. Numerical calculations showed that the PDE model made
an accurate prediction to the scaling laws of amplificatiople]
factor even whenV is small.

Comparing Conjecture 1 with those results in Theorem 1
and Theorem 2 as well as Theor&m of [30] (equal asym- [17]
metry), we see that asymmetric velocity feedback yields the
best robustness performance compared to other archigsctuif18]
The next preferable choice is the symmetric bidirectionaﬂg]
architecture. The predecessor-following and asymmeitlie b
rectional with equal amount of asymmetry are the worggo]
choices for control design in terms of robustness, their

]

amplification factors growing extremely fast with. In oy
conclusion, the asymmetric velocity feedback is the pretkr
choice for control design to get a good robustness. 22]
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