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Abstract— We study the problem of distributed control of
a large network of double-integrator agents to maintain a
rigid formation. A few lead vehicles are given information
on the desired trajectory of the formation; while every othe
vehicle uses linear controller which only depends on relatie
position and velocity from a few other vehicles, which are céed
its neighbors. A predetermined information graph defines tre
neighbor relationships. We limit our attention to information
graphs that are D-dimensional lattices, and examine the sta-
bility margin of the closed loop, which is measured by the
real part of the least stable eigenvalue of the state matrix.
The stability margin is shown to decay to0 as O(1/N?/P)
when the graph is “square”, where N is the number of agents.
Therefore, increasing the dimension of the information grgh
can improve the stability margin by a significant amount. Fora
non-square information graph, the stability margin can be nmade
independent of N by choosing the “aspect ratio” appropriately.
An information graph with large D may require nodes that are
physically apart to exchange information. Similarly, chosing an
aspect ratio to improve stability margin may entail an increase
in the number of lead vehicles. These results are useful to ¢h
designer in making trade-offs between performance and cosh
designing information exchange architectures for decenalized
control.

I. INTRODUCTION

the results is that the problem scales poorly with the number
of vehicles: as the number of vehicles increase the seitgitiv
to disturbances increases [7], [8], [9] and the stabilitygira
decays [10], [6]. The information graphs considered in the
literature are usually limited to at most two neighbors hwit
notable exceptions such as [8], [11], [12] that considerenor
general information exchange architectures.

Our goal is to examine how the stability margin scales with
the size of the formation and the structure of the infornratio
graph that specifies allowable information exchange batwee
pairs of vehicles. The real part of the least stable eigeval
is used as a measure of the stability margin. The stability
margin determines the decay rate of initial formation kegpi
errors. Such errors arise from poor initial arrangemenhef t
vehicles. In this paper we limit our attention to a specific
class of information graphs, namelf-dimensional (finite)
lattices. These are natural choices for information graphs
2D or 3D formation problems in which vehicles are arranged
in regular pattern and relative measurements are possible
among physically closest vehicles.

Each vehicle is modeled as a double integrator, and a dis-
tributed control algorithm is studied in which every vebicl

We consider the problem of formation control of vehi-(except for a few lead vehicles) use only relative positiod a

cles so that neighboring vehicles maintain a constant préelative velocity with respect to its neighbors in the infar-
specified spacing while in motion. This problem is relevanon graph. We show that when the network is homogeneous
to a number of applications such as formation flying Of;md symmetric (all vehmlt_—zs use .the ‘same control gains and
aerial, ground, and autonomous vehicles for surveillanc}formation from each neighbor is 92'\/’gn equal weight), the
reconnaissance, mine-sweeping, etc. [1], [2], [3]. A feadle §t3b|l|ty margin decays t0 asO(1/N*/") when the graph
vehicles are provided information on their desired trajges IS “Square”. Therefore, increasing the dimension (whiclyma
that they use in computing their control actions; while thé€ed nodes physically apart to exchange information) of the
rest of the vehicles are allowed to use only locally avagablinformation graph can improve the stability margin by a
information. In a distributed linear control architectyeach ~considerable amount. For non-square information gragh, th
vehicle can measure only the relative position and velocit§t@Pility margin can be “made mde_p?ndent of the number of
with respect to a number afeighbors The neighbor rela- agents by choosing the “aspect ratio” appropriately. Theat m
tionship is predefined in terms of a graph, which we call thgntail an increase m_the num_ber of .Iead vehicles that have
information graph access to the formation’s desired trajectory.

The one-dimensional version of this problem, in which The results in this paper are a generalization of the
a string of vehicles moving in a straight line have to bd®sults in [13], which showed that the stability margin
controlled to maintain a constant inter-vehicle sepanafims When the information graph is a-D lattice decays td)

been extensively studied [4], [5], [6]. The general trend ofS O(1/N). The results in [13] were obtained by using the
PDE approximation by taking the continuum limit when the
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agent separation; the overall trajectory information isdma
available only to the lead vehicles. This makes the modekhicles and the desired formation geometry. In partigular
more applicable to practical formation control applicatian  pj (t) = p;(t) + A;; wherej is any reference vehicle, and
which the formation may be required to accelerate or deceley; (t) is its trajectory.
ate occasionally, and the decision to do so is made availableNext we define arinformation graphthat makes it con-
only to the lead vehicles. Our results have some interestinggnient to describe distributed control architectures.
connections with those in [11], which are discussed at the Definition 1: An information graphs an undirected graph
end. G = (V,E). The set of edge® C V x V specify which
The rest of this paper is organized as follows. Section pairs of nodes (vehicles) are allowed to exchange infoonati
presents the distributed formation control problem. Sede compute their local control actions. Two nodemnd; are
tion 11l describes the technical results, including one omalledneighborsif (i, j) € E, and the set of neighbors of
eigenvalues of a grounded Laplacian matrix that plays are denoted byV;. O
pivotal role on establishing the main result. The main rtesul In this paper we consider the followirdistributedcontrol
and its implications are presented in Section V. law, whereby the control action at a vehicle depends on
the relative position and velocity measurements with its

. PROBLEM STATEMENT neighbors in the information graph:

We consider the formation control 8f identical vehicles,

where the position of each vehicle is &,-dimensional ut = Z —k(p® — p§d) - AE?) —b(p\? — 15§d)) (2

vector (with Dy, = 1,2 or 3); D, is referred to as the JEN:

spatial dimensiorof the formation. Legol(.d) € R be thed-th  wherei € {1,..., N} on the left hand side ande V on the

coordinate of theé-th vehicle’s position, whose dynamics areright hand side. The positive constaritsh are the position

modeled by a double integrator: and velocity feedback gains, respectively. It is assumad th
(d d vehicle ¢ knows its own neighbors (the sgt;), and the
pz(- = ug )’ d=1,...,Ds, (1) desired spacing&l(i). If j is a reference vehiclmgd)(t) =

where u§d) € R is the control input (acceleration or de-p(,d)*(t), wherep(.d>*(t) is thed-th coordinate of its reference

celeration command). The underlying assumption is tha;t%\jectory, !

each of theD, coordinates of a vehicle’s position can be Example 1:Consider the two formations shown in Fig-

independently actuated. We say that the vehiclesfaig ure 1 (a) and (b). Their spatial dimensions dbg = 1

actuated The spatial dimensioD, is 1 for a platoon of and D, = 2, respectively. The information graph, however,

vehicles moving in a straight lind), = 2 for a formation is the same in both case&% = {1,2,...,9}, E =
of ground vehicles and), = 3 for a formation of spatial {(1,2),(1,3),---,(5,6),(6,9)}. A drawing of the informa-
vehicles (e.g. aircrafts). tion graph appears in Figure 1 (c).

The control objective is to make the group of vehicles In this paper we restrict ourselves to a specific class of
track a pre-specified reference trajectory while maintgjrd  information graphs, namely a finite rectangular lattice:
desired formation geometry. Reference trajectory infaimma Definition 2 (D-dimensional lattice):A  D-dimensional
is available only to a set dead vehiclesThis information lattice, specifically an; x ny x --- x np lattice, is a graph

is represented by introducinfictitious referencevehicles, with nins...np nodes, denoted b¥%,,, xn,...xnp - 0
one for each lead vehicle. Each reference vehicle perfectly A D-dimensional lattice is drawn iR” with a Cartesian
tracks its own desired trajectory. Each lead vehicle careference frame whose axes are denotedthyrs, ..., zp.

measure its relative position and velocity with respect tdlote that these coordinate axes may not be related to the
its corresponding reference vehicle, which is equivalent tcoordinate axes in the physical spaké&:. We also define
lead vehicles having knowledge of the desired trajectory aV,; (d = 1,..., D) as the number of real vehicles in the

the formation. Denoting the number of reference vehicledirection. Then we have the relatioy N5 ... Np = N and

by N,, the setV := {1,.... NN+ 1,...,.N+ N,.}is nny...np =N+ N,.

the set of allnodesin the formation, includingN real We assume that there is at least one boundary every node
vehicles andN, fictitious reference vehicles. The desiredof which is a reference vehicle. Reference vehicles are only
formation geometry is specified by a desired relative pmsiti placed on the boundaries; this typically corresponds td lea
vector A, ; for every pair of vehicles(i,j) € V x V, vehicles being the outermost vehicles in a formation. We cal
whereA, ; is the desired value qf;(t) — p;(¢). The desired such a boundary ®irichlet boundary A boundary of the
inter-vehicular spacings have to be specified in a mutualipformation graph is either a Dirichlet boundary, in which
consistent fashion, i.e., we must hatde ; = A; , + A, ; case all nodes on it are reference vehicles, or none of the
for every triplei,j,k € V. Since we are interested in nodes on it are reference vehicles.

rigid formations that do not change shape over tifg,’s For different configuration of Dirichlet boundarie$, and

are constants. To maintain a rigid formation, the contraok; has a slightly different but straightforward relation. For
must make every vehicle track its desired trajectory. Thexample, in Figure 1 (c)N1 + 1 = ny since the boundary
desired trajectory of a real vehicle denoted byp(¢) can perpendicular to the positive, axis is a Dirichlet boundary,

be uniquely determined from the trajectories of the refeeen while N> = n, since both boundaries perpendicular to the



5 93 91 69199 g eg ey To facilitate analysis, we define the following trackingaerr

Ay 1T a0
1 ‘Aélg pi(t) = pi(t) — p; (t), (4)

i P () wherep? (t) is thei-th agent's desired trajectory. Note that
1o) X for a rigid formation to be possible, the desired trajeesri
(a) The desired formation geometry of a 1D spatial mUSt Sa“SfW* ]'?J =0for everyi, j, which meang; — pJ -
platoon with6 vehicles and3 reference vehicles. Di — p;. Therefore, substituting (4) into (3), we have

Ny -
vy 3 =Y —k(p — b(pi — By)- )
JEN;

Since the trajectory of a reference vehicle is assumed to be
equal to its desired trajectory; = 0 if ¢ is a reference ve-

an < hicle. To express the closed-loop dynamics of the formation
< compactly, we define the following state:
F/ } "ﬂ‘i? 7777777 ~ ~ ~ < ~ <
§£ i s’q':i 9 € :[plaplap21p27"' 7PN7PN]T

PO (1) Using (5), the state-space model of the vehicle formation ca
1 now be written compactly as:
0] X
(b) The desired formation geometry of a 2D spatial vehi- T = Az (6)

cle formation with6 vehicles and3 reference vehicles. . .
where A is the closed-loop state matrix.

2 Definition 3: The stability marginis the absolute value of
the real part of the least stable eigenvalue of the statebmatr
A in (6). O
To facilitate analysis, we define the matricéds, A, and
L,, where
0 1 0 0
0 x1 A= {O 0} A= {—k —b] ' (7)
gﬂdﬂﬂi 'ngﬁ’gfrﬂgﬂo%rasﬂﬁjv"; 5’1"}2)”;?“} |(3b§ latoon and L, is the grounded (or Dirichlet) Laplacianmatrix

of the information graph with reference nodes defining the

Fig. 1. (a, b): Two distinct spatial formations that have shene associated grounded nodes. To premsely define this matrix recall that
information graph (c). Red (filled) circles represent refee vehicles and )

black (unfilled) circles represent "real” vehicles. Dastiegs (in (a), (b)) th€ Laplacian matrix of a graptr = (V,E) with n nodes

represent desired relative positions, while solid lingzresent edges in the is defined as
information graph.

deg(i) 1=
axis are not Dirichlet boundaries. For a givAh the choice [Lixn)ij = ¢ —1 (i,7) e E (8)
of D, Ny andny (d =1,..., D) specifies the choice of the 0 otherwise.

information graph and its boundary condition.

Remark 1:The dimensionD of the information graph is Wheredeg(i) is the number of neighbors of nodein the
distinct from the spatial dimensiof,. Figure 1 shows an 9raph. ThegroundedLaplacianL, matrix of G with respect
example of two formations in space, one with = 1 and 0 & set of grounded nodég, C V is the submatrix of
the other withD, = 2. The information graph for both the L obtained by removing front. those rows and columns
formations is the samd x 3 two-dimensional lattice, i.e., corresponding to the grounded nodes¥h. This matrix
D = 2. On account of the fully actuated dynamics ancpccurs in the numerical solution of PDEs with Dirichlet
independence of control gains ah the spatial dimension Poundary conditions and analysis of electrical networks.[1
D, plays no role in the results of this paper. The dimensiof©r example, the grounded graph Laplacian of the informa-
of the information graplD, on the other hand, will be shown tion graph shown in Figure 1 (c), with nod&s3, 9 as the

to play a crucial role. grounded nodes, is:
[1l. STABILITY MARGIN AND GROUNDED LAPLACIAN 1 2 3 4 5 6
The dynamics of the-th vehicle are obtained by com- ; _21 _31 _01 _01 8 8
bining the open loop dynamics (1) with the control law (2), 1 0 3 -1 -1 o
which yields (suppressing the superscript L, = i 0 -1 -1 4 o -1l (9)

i = Z —k(pi —pj — Aij) — b(pi — pj). 3
JEN;

o ot
o
)
I
—_
)
[\)
I
—_




It is straightforward to show that The minimum among them is obtained by settiyg= 1 for
d=1,...,D, which gives

A=IN®A +L;® Ay, (10) o
0
T
where Iy is the N x N identity matrix and® is the Amin = 2Dg —22608 N, 1
Kronecker product. d=1
Theorem 1:The spectrum ofA is Since Ny > 1 for eachd in the summation, we usesx =
1 —2?/2 + O(2*) when|z| < 1 to obtaincos 5575 =
_ a+1
o(A) = U {o(A1 +Aeda)}, 1 ;- ™+ O(-L). Hence,
Me€a(Lgy) 8N Ng
0 1 Do 2
- U {0‘ { (12) B ( ™ 1 )
—koA —bA:|}7 Amin— —+O_ =
Ae€o(Ly) 0Ae TR0 d; AN? (N;l)
wherec(-) denotes the spectrum of a matrix. O m (L) << Dor? n O(L) (15)
is i 4N?2 N47 = 7=y N2 NA7
The proof follows the analysis in [15], please refer to [16] » p » p

for the details. _ i i It is straightforward (though tedious) to repeating these
_The next theorem, whose proof is also provided in [16]5|cylations for the other cases (when the number of Digtchl
gives an explicit formula for the eigenvalues of the grouhdey, o ngaries is not exactly one). We see from these calcula-
Laplacian for the graphs considered in this paper. tions that the asymptotic dependencendoes not change
~Theorem 2:The eigenvalues of the grounded graph Laplagom that in (15), only the coefficients differ among the
cian L, of a D-dimensional information grapB,,, «....,, a'¢  ifferent cases. This proves the result. -
positive and are given by the following formula
The next result combines the ones establishes so far to give

D .. . . .
o B by — D7 an explicit formula for the stability margin of the formatio
A= Auyip =2D =23 {IO(xd)COS N, Theorem 3:Let Ay, be the minimum eigenvalue of the
=t grounded LaplaciarL,. The stability margin of the closed
+11(zq) cos (2la =) + Iz(z4) cos bam } (13) loop with V vehicles is
1\&d 2Nd T 1 2\Ld N ¥ 1 )
. . /\minb
wherely; = 1,...,N4 (d = 1,...,D) and the indicator S = 5 (16)

function I; j = 0,1,2) is defined as: . , .
i(@a) (1=0.1.2) when N, > 1, whereN,, is defined in Corollary 1. O

1, ifthere a-lrej D|r|chlet.boundar|es Proof. From Theorem 1, it follows that the eigenvalues of
Ij(xq) = perpendicular tacy axis, (14)  state matrixA, denoted bys, satisfy:

0, otherwise. 9
5% 4 Aebs + Ak =0, a7

where A\, € o(L,). From Theorem 2, we see thay is

It follows from Theorem 2 that the minimum eigenvalue ™ = . ) - ; ) .
9 positive. Sincé: > 0 andb > 0, it follows that A is Hurwitz.

fth ded Laplacian is given in the followi ) X

ot he groun .e aplacian Is given in tne fotowing corglrtar Moreover, it follows from (17) that the least stable eigduea
Corollary 1: Consider the D-dimensional information of A denoted by is given by:

graph Z,,, «...xn, Where Dy is the number of axes in ' ¥i.159 y:

the information graph that have Dirichlet boundaries (ei- N Amind Ak

ther one or two) perpendicular to them. Without loss of S1 = —T(l +4/1-= m) (18)
generality, let these coordinates be,...,zp,. If Ny > o

1 for d = 1,...,D,, then the minimum eigenvalue It follows from Corollary 1 that),;, can be arbitrarily

Amin Of the grounded Laplaciarl, is O(-), where small for sufficiently largeN,. For a large formation, more
min L . . .
. g Ny specifally, V,, is large enough so thaty;, < 4k it makes
p:=arg min_Ng. P . L .
d=1,...,Do the term inside the square root in (18) negative. Following

] ] ] the definition of stability margin, we obtain
Proof of Corollary 1. Consider the following case first: each

of the first Dy coordinates that have Dirichlet boundaries S = |Re(s{)| = /\minb.
perpendicular to them have exactly one Dirichlet boundary. 2
Thatis,I;(zq) =1, Io(wq) = I2(xq) =0ford =1,..., Dy, IV. SCALING LAWS FORSTABILITY MARGIN

andIp(zq) = 1, I1(xq) = I2(zq) = 0 for d > Dy. We get

from Theorem 2 that The main result of the paper is the following.

Theorem 4:Consider anN-vehicle formation with aD-

Do D dimensional information graptZ,,, ... with vehicle
2&1—171’ gd—lﬂ' g p niX--Xnps
Ae=2D -2 E cos (Zla—lm 2 E cos u dynamics (1) and control law (2), whei#, is the number of
2Ng+1 Ny . ) . L. .
d=1 d=Do+1 axes in the information graph that have Dirichlet boundarie



(either one or two) perpendicular to them. The closed-loop

stability margin is given by

Do

S = 7T—2b Z [Il(zd) + IQ(Id)}

2 4

d=1

N — oo Ifc< %, the resulting reduction of' with N is
slower than that obtained for a square lattice; cf. Corgpltar
This shows that within the class dd dimensional lattices

(for a fixed D), certain information graphs provide better

scaling of the stability margin than others. The price one
pays for improving stability margin by reduciny; is an
Proof. Follows from Theorem 3 and Corollary 1. B increase in the number of lead vehicles. This is because the
number of lead vehiclesy,, is related toN; (under the
assumptions in Corollary 3) by, = N/Nj. There is thus

A. Stability Margin with Square Information Graphs a trade-off between improved stability margin and cost of

In interpreting Theorem 4, it is useful to start with thehaving a large number of lead vehicles.
special case of aquareinformation graph, which has equal !t is important to stress that not all non-square graphs are
number of real vehicles/nodes along each coordinate axis &lvantageous. For exam_ple,Afl = O(N), which means
the drawing of the information graph. Ny through Np are O(1), it follows from Corollary 3 that

Definition 4: An information graph is said to bequareif ~ the stability margin isS = O(1/N?). This is the same trend

when N, > 1, whereN,, is defined in Corollary 1. O

The implication of the theorem is discussed next.

Ny =Ny=...= Np. [J asin a 1-D information graph. In this case, we can say that
For a square information graply, = N©B for every d, the D dimensional information graph effectively behaves as
which gives us the following corollary to Theorem 4. a one dimensional graph.

Corollary 2: The stability margin of a vehicle forma- Figure 2 shows a few examples of information graph that
tion with D-dimensional square information graph has thé@re relevant to the discussion above. Figure 3 provides nu-
asymptotic trendS = O(1/N?/P), when NP > 1. O merical corroboration of the discussion above. It is cleamf
This result shows that for a square information graptthe figure that the prediction from Corollary 3 and Theorem 4
stability margin approaches with an asymptotic decay of match very well with numerical computed eigenvalues of the
O(1/N?%/P), irrespective of on which boundary (boundariesptate matrixA.
the lead vehicles are present. The stability margin scales a
O(1/N?) in an 1D information graph, a®(1/N) in a 2D

information graph, and a®(1/N?/3) in a 3D information
graph. Thusfor the same control gains and arrangements . R
of lead vehicles, increasing the dimension of the informa- 10+
. . i - - s [ &~
tion grap_h improves the_stabll_lty margin significantlin _ . c~,~%~
practice, increasing the dimension of the graph may require . Ton,
a communication network with long range connections in @ 102 ""-...,
the physical space. The reason is that two nodes that are _

R . . . . A N1 = 5 SSM LN
neighbors in the information graph need not be physically — N; =5 (Corollary 3).
close. Thus, one can strike a trade-off between the cost = Ny =N/5 SSMT
of long-range communication vis-a-vis the improvement in 107 %1 = J\? gg{\%'ary 3) "

e . L] 1= LN

stability margin. -~ N, = VN (Theorem 4) .
B. Stability Margin with Non-square Information Graphs 25 50 100 200 400 700

For ease of description, we describe the idea for non- N

square information graph with only one Dirichlet boundary. . . , _ o

The information araph with other boundary confiquration Fig. 3. Stability margin for a vehicle formation with infoation graphs of
! X g ¢ p T y g Rarious “shapes” as shown in Figure 2. The legend "SSM” meangputed

can be interpreted in a similar manner. The following corolfrom the "state space model” (6), which is presented in Sadii. For the

Iary is immediate from Theorem 4. first case,N1 = 5 and No = N/5. Corollary 3 predicts that in this case

Corollary 3: Suppose only one of e bouNaries of et kaus en 0L/ The e s & vt of S ioon
information graph has lead vehicles, and let this boundagyaph, Ny = N, = +/N, which leads toS = O(1/N). Corollary 3 and
be perpendicular te; axis, without loss of generality. Then, Theorem 4 predict the stability margin quite accuratelyaoteof the cases.
the stability margin is given by = ng/(&ng). [ The control gains used in all the calculations &re- 0.1 andb = 0.5.
It follows from this result that by choosing the structure of
the information graph in such a way thist increases slowly
in relation toV, the loss of the stability margin as a function
of N can be slowed down. In fact, wheN; is held at a We study the problem of distributed control of a large
constant value independent &f, the stability margin is a network of double-integrator agents with-dimensional
constant independent of the total number of vehicles! information graph. The controller used is a linear PD con-
More generally, iftN; = O(N¢), wherec € [0, 1] is afixed troller which depends on information on relative position
constant, it follows from Corollary 3 tha§ = O(1/N?¢) as and velocity from its neighbors to compute its own control.

V. CONCLUSION AND DISCUSSION



N2 = O(N)

(@) Non-square information grapl,= O(1) (b) Non-square information grapls,= O(1/N?) (c) Square information grapls = O(1/N)

Fig. 2. (a) A2D information graph in which the first dimension is held constaesulting in a stability margin that is independentf .S = O(1). (b)
A 2D information graph that is "asymptotically” 1D (a¥ — oo) since the size of the first dimension increases linearly \it, resulting in a stability
margin scaling lawS = O(1/N?), which is the same as that with an 1D information graph. (&I information graph in which both sides are of length

O(V'N), for which we haveS = O(1/N).

We showed that the stability margin scales@@d /N?/P)

for a D-dimensional square information graph. Therefore,
increasing the dimension of the information graph can im-[4]
prove the stability margin by a considerable amount. For
non-square information graph, the stability margin can be
made independent of the number of agents by choosing th[gl

“aspect ratio” appropriately. However, it should be taketoi

account that increasing the dimension of the information

graph or choosing a beneficial aspect ratio may requiréﬁ]
long range communication or entail an increase in the

number of lead vehicles. Thus, a larger stability margin

can be achieved by designing the graph (and its boundarg]
conditions) appropriately, but that may be accompanied by
the increased cost of long-range communication or largé8!
number of lead vehicles. These results are therefore useful
to the designer in making trade-offs between performance
and cost in designing information exchange architectuses f [©]

decentralized control.

Our results for squaréD-lattices are complementary to [10]
those of [11], in which the effect of graph dimension on
the response of the closed loop to stochastic disturbanges
is quantified in terms of “microscopic” and “macroscopic”

measures. It was shown in [11] that fd» > 5, these
performance measures become independe ofvhile for

smaller D, the performance becomes worse without bound
as the number of vehicles increase. In contrast, we show g
that the stability margin decays tbas N increases in every

D. Though the decay is slower for largér, it is never

independent ofN. To achieve a size-independent stability14
margin, the graph needs to be non-square. Since the analysis
of [11] is done in the spatial Fourier domain, it is not cleaf15]
if non-square lattices with boundaries can be handled in tha

framework.
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