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Abstract

There are many scenarios in both speech synthesis and coding in which adjacent time-frames of speech are spectrally

discontinuous. This paper addresses the topic of improving concatenative speech synthesis with a limited database by

proposing methods to smooth, adjust, or interpolate the spectral transitions between speech segments. The objective is to

produce natural-sounding speech via segment concatenation when formants and other spectral features do not align

properly. We consider several methods for adjusting the spectra at the boundaries between waveform segments. Tech-

niques examined include optimal coupling, waveform interpolation (WI), linear predictive parameter interpolation, and

psychoacoustic closure. Several of these algorithms have been previously developed for either coding or synthesis, while

others are enhanced. We also consider the connection between speech science and articulation in determining the type of

smoothing appropriate for given phoneme–phoneme transitions. Moreover, this work incorporates the use of a recently-

proposed auditory-neural based distance measure (ANBM), which employs a computational model of the auditory system

to assess perceived spectral discontinuities. We demonstrate how actual ANBM scores can be used to help determine the

need for smoothing. In addition, formal evaluation of four smoothing methods, using the ANBM and extensive listener

tests, reveals that smoothing can distinctly improve the quality of speech but when applied inappropriately can also

degrade the quality. It is shown that after proper spectral smoothing, or spectral interpolation, the final synthesized speech

sounds more natural and has a more continuous spectral structure. � 2002 Elsevier Science B.V. All rights reserved.

Keywords: Speech synthesis; Speech coding; Spectral smoothing; Spectral interpolation

1. Introduction

When speech is produced naturally by a human,
there is a measurable degree of continuity between

phone segments. This degree of continuity is re-
lated to the physical movement and placement of
the vocal system articulators. When speech is
produced artificially, such as in segment-based
synthesis or in low-bit-rate coding, the same
phone-to-phone continuity may not exist.

Speech synthesis, coding, and voice transfor-
mation can benefit from improvements in spectral
smoothing. There are a number of scenarios in
which the spectral structure of speech at adjacent
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time observations is not smooth. Listeners can
detect abrupt changes in the timbre of the speech,
that cause the speech to sound unnatural. Al-
though there are several existing techniques to
smooth or interpolate the spectral structure of
speech (Slaney et al., 1996; Conkie and Isard,
1997; Plumpe et al., 1998), most studies consider
only a single method with limited performance
comparison. Hence, there is still much room for
improvement.

Text-to-speech (TTS) systems based on con-
catenation produce continuous speech by selecting
waveform units from speech databases. Many of
these systems use databases with a large number
(e.g., over 50,000) of available segments with var-
ied characteristics. This approach can yield high-
quality speech (Hunt and Black, 1996; Hirokawa
and Hakoda, 1990), but such algorithms succeed
primarily because of their large databases. These
large-database synthesis schemes generally con-
centrate on segment choice and search algorithms
since the corpora contain enough sample units to
include a reasonably close match for each desired
phoneme. In contrast, concatenative speech syn-
thesis with a smaller database of only a few hun-
dred to thousand phone unit waveforms per
speaker will yield more discontinuities at segment
boundaries. With a smaller database, each speech
segment must be modified to fit the desired prop-
erties. The spectral characteristics of the beginning
and ending of each phone must be molded to
smooth the transition between adjoining units. It is
also important to know when spectral smoothing
is needed. For example, there should be a high
degree of continuity between /aa/ and /r/ in the
word car, but more discontinuity between /k/ and
/aa/ in the same word. While spectral smoothing
can benefit speech synthesis based on both large
and small databases, smoothing is more valuable
for smaller databases.

In this paper, our emphasis is on small database
size concatenative synthesis, with a focus on con-
trasting the strengths and weaknesses of spectral
smoothing algorithms. We point out, however,
that spectral smoothing algorithms are useful in
other scenarios as well such as LP based speech
coding and voice transformation. The basic
waveform unit used here is the phone, with mul-

tiple adjacent phones used when appropriate
matches are found in the speech database.

The paper outline is as follows. First, we con-
sider relevant background on topics in concate-
native speech synthesis, spectral smoothing, and
articulation. We also review a recently-proposed
auditory-based distance measure that can aid the
smoothing process. Next, we present several spec-
tral smoothing algorithms. Each algorithm’s
description is accompanied by a discussion and
evaluation. In Section 4, we describe the method
used to determine which approach to spectral
smoothing to use for various phone-to-phone
concatenation cases. Finally in Section 5, we pre-
sent formal listener tests to evaluate the quality of
the various spectral smoothing algorithms con-
sidered. We also describe algorithm results and
discuss our findings on the proper use of spectral
smoothing methods.

2. Background

This section provides background on several
topics important to the research discussed within
this paper. Several sources discuss these topics in
more detail (e.g., Deller et al., 2000; Flanagan,
1972; O’Shaughnessy, 1990; Witten, 1982).

2.1. Concatenative synthesis overview

There are a number of different techniques for
synthesizing speech. The technique used in this
work, concatenative synthesis, starts with a col-
lection of speech waveform signals and concate-
nates individual segments to construct a new
utterance. The concatenation process itself is
straightforward, though large databases may re-
quire complex search algorithms, and signal pro-
cessing may be used to modify the constructed
signal to achieve some desired speaker character-
istics. The final speech is more natural and the
speaker is more recognizable than with other
forms of synthesis since concatenative synthesis
begins with a set of natural speech segments.

The database of recorded waveform segments is
typically in one of two forms. Many concatena-
tive speech synthesis systems produce continuous
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speech by selecting waveform segments from
databases with a large number (i.e., +50,000) of
segments with varied characteristics (Hirokawa
and Hakoda, 1990; Hunt and Black, 1996; Huang
et al., 1997; Breen and Jackson, 1998). These large
databases are usually not recorded with concate-
native synthesis in mind but instead are generic
speech corpora. Direct concatenation of segments
from such a large database can yield high speech
quality since the database contains enough sample
segments to include a close match for each desired
segment; however, such a technique is costly in
terms of database collection, search requirements,
and segment memory storage and organization.
For databases that contain multiple instances of
each speech unit, synthesizers commonly select
segments based upon two cost functions: the target
cost compares available segments with a theore-
tical ideal segment, and the concatenation cost
measures the spectral continuity between poten-
tially concatenated segments (Hunt and Black,
1996). A recent study has compared several spec-
tral distance measures to determine which mea-
sures best predict audible discontinuities when
used as concatenation costs (Klabbers and Vel-
dhuis, 1998).

In comparison, other concatenative synthesis
systems use a set of specially selected diphones
with boundaries set at the phoneme centers where
formants are stable. These databases are much
smaller and contain only one example of each di-
phone in the language (about 1200 in English).
Such diphone databases are typically recorded
specifically for concatenative synthesis. In both
database styles – generic corpora and diphone
databases – the formants of concatenated speech
segments may not align perfectly, but the spectral
alignment is generally reasonable.

The limited amount of speech in any given
database is unlikely to include segments that pre-
cisely match the desired reference segment, given
the existence of any knowledge of reference seg-
ment characteristics. While most synthesizers
simply take the nearest matching segment as it
stands without additional processing, some sys-
tems will modify the segment before concatena-
tion. Pitch-synchronous overlap and add (PSOLA)
is often used to adjust the segment pitch and du-

ration to match the desired reference. By ma-
nipulating pitch-synchronous analysis windows,
PSOLA provides a simple mechanism for prosodic
adjustment (Moulines and Charpentier, 1990;
Moulines and Laroche, 1995). While a perfectly
matched segment is desirable, modifying the
available data is a practical method of achieving
similar results. Modifying the three prosodic
characteristics – pitch, duration, and power –
allows a limited database to produce a wider range
of speech segments for concatenation. Many im-
plementations of PSOLA do not include spectral
smoothing in order to minimize the computational
complexity, but we have expanded upon the basic
time domain PSOLA algorithm to incorporate
smoothing.

2.2. Spectral smoothing

In both speech synthesis and audio coding,
there are circumstances where subsequent data
segments have audibly different spectra at their
adjoining boundaries. Signal processing can be
used to smooth the existing waveform or create
new data to bridge the gap between segments
resulting from compression or coding errors.
Straightforward linear interpolation in the fre-
quency domain does not yield acceptable results,
and therefore alternative algorithms (see Section 3)
are needed to provide more natural transitions. It
is noted that spectral smoothing generally indicates
modification of existing audio frames and spectral
interpolation means the addition of frames; here we
emphasize the addition of frames but do not dis-
tinguish between the two terms.

In the absence of spectral smoothing, unnatural
spectral transitions will arise. Studies have shown
that smooth changes in frequency are perceived as
changes within a single speaker, whereas sudden
changes are perceived as being a change in speaker
(Moore, 1997). Other research has shown that
formant discontinuities are audible in TD-PSOLA
synthesis (Donovan, 1996). Spectral smoothing
can eliminate these audibly unnatural transitions.
Therefore, the goal of this study is to explore
several spectral-based smoothing and adjustment
algorithms to address spectral discontinuity for
segment-based concatenative synthesis and to
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explore ways to determine when and where the
smoothing should be applied.

At present, spectral smoothing is most com-
monly used for speech and audio coding. Similar
methods are sometimes used for speaker transfor-
mation (Savic and Nam, 1991; Mizuno and Abe,
1995; Slifka and Anderson, 1995). In comparison,
spectral smoothing is only sometimes used for
speech synthesis (Mizuno et al., 1993). Even
though our experiments have focused on TD-
PSOLA synthesis, other researchers have success-
fully applied spectral smoothing to other synthesis
algorithms such as the Harmonic/Stochastic (H/S)
model and multi-band resynthesis PSOLA (MBR-
PSOLA or MBROLA) (Dutoit and Leich, 1993;
Dutoit, 1994) as well as the harmonic plus noise
model (HNM) (Syrdal et al., 1998). In some cases,
spectral smoothing of concatenated speech can
degrade synthesis quality rather than yield im-
provement (i.e., produce various artifacts such
as suddenly appearing/disappearing narrowband
peaks, spectral peaks fading and rising versus
shifting in frequency, and nonlinear peak fre-
quency shifts (Goncharoff and Kaine-Krolak,
1995)). Spectral smoothing tends to perform best
when the original spectra are similar to each other;
such as in speech coding and concatenative syn-
thesis with large or specially-designed databases.

2.3. Spectral distance measure

In a previous study, an auditory-neural based
measure (ANBM) was proposed which aids in the
selection of speech units for speech synthesis via
segment concatenation (Chappell and Hansen,
1997; Hansen and Chappell, 1998). The ANBM
measures the ‘‘distance’’ between the spectral
characteristics of two adjacent time-slices in the
speech signal. It differs from other spectral dis-
tance measures in being based upon a model of
mammalian auditory perception.

The ANBM uses the output of a computational
auditory model to generate one feature vector for
each frame of speech. First, a computational
model generates the average firing rates of syn-
apses of auditory nerves. We use Carney’s non-
linear auditory model, which is based upon and
closely approximates measurements of auditory

nerve (AN) fibers in cats (Carney, 1992). The au-
ditory model calculates the time-varying spike rate
for the synapse between an inner hair cell and an
AN. Next, the analysis stage locates the primary,
or modal, frequency at which each AN fires. To
find the primary firing frequency for an AN
channel, we first calculate the spectrum and then
find the frequency for the corresponding peak
absolute value. This dominant frequency is stored
in the feature vector for that frame of speech. Both
the auditory model and the measure’s analysis
stage operate on each AN channel separately; for
each channel k for a given frame, the analysis stage
stores the primary firing frequency value xk within
the feature data vector ~xx. Finally, the feature
vectors are compared via the city-block metric
shown below to estimate the perceived mismatch
between frames of speech,

d1ð~xx;~yyÞ ¼
XN
k¼1

jxk � ykj: ð1Þ

A lower ANBM score implies less perceived au-
ditory difference, while a larger score implies
greater perceived discontinuity.

This measure can therefore provide information
on the amount of perceptual segment mismatch to
direct additional signal processing to smooth any
discontinuities or disfluencies. Here, we consider
its use for determining whether a concatenated
segment boundary is sufficiently smooth, though it
may also be useful for determining the degree to
which a speech signal sounds natural or concate-
nated.

While the original formulation of the ANBM
did not specify the number of auditory-nerve
channels, we chose to use 32. Using the known
characteristic frequencies for cat inner hair cells, 32
channels cover characteristic frequencies from 100
Hz to 3587 Hz (Liberman, 1982). Phase locking,
which is the mechanism assumed in the technique
of finding the modal firing frequency, is known to
occur only below 4–5 kHz (Moore, 1997).

2.4. Articulation

Articulation is rarely considered in spectral
smoothing. Nonetheless, knowledge of manner of
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articulation and its acoustic correlates can aid in
spectral smoothing. Speech articulation and its
connection to acoustics are well-understood and
described in several texts (e.g., Coker, 1976; Deller
et al., 2000; Ladefoged, 1975; Moore, 1997;
O’Shaughnessy, 1990; Pickett, 1980).

The effects of coarticulation on formant move-
ment represent a major cause for the need for
spectral smoothing. This influence represents a
serious challenge for segment-based synthesis
when segment codebook sizes are small since seg-
ments are more likely to be individual phones. To
overcome these problems, many speech synthesis
systems use diphone units, which are bordered at
the relatively stable positions in the center of
phonemes, rather than phones, which are bordered
at the unstable transition positions.

Coarticulation is caused by articulators moving
smoothly into position and gradually returning to
neutral positions over the course of one or more
phones. When an articulator’s motion is not di-
rectly involved in the production of a phone, it is
free to move according to previous and subsequent
phonemes. For example, labial phonemes allow
the tongue to move freely while lingual phonemes
allow the lips to move. The limits of motion of the
articulators used for speech production are at
different rates of speed (O’Shaughnessy, 1990;
Zemlin, 1968), which implies that the transition
periods between different phonemes should have
different durations. Research using an articulatory
model has demonstrated the effects of movement
of articulatory organs on segmental duration
(Shiga et al., 1998).

Acoustics and articulation are important for
spectral smoothing as well as general synthesis due
to the effects of coarticulation on formant posi-
tions. Some phonemes can yield similar steady-
state spectra but differ in phone transitions (e.g.,
/d/ and /g/ versus /b/) (Parthasarathy and Coker,
1992). In nasalization and rhotacization, a conso-
nant colors the spectrum of adjacent vowels in a
predictable way.

In English, the first three formants largely de-
termine the phoneme. F1 is high when the tongue
constriction is nearer the glottis and when the
mouth opening is large and unrounded. F2 gener-
ally increases as the point of constriction moves

forward from the glottis, as the tongue constricu-
tion narrows, and as the size of the mouth opening
increases. F3 increases as the constriction moves
forward from the glottis and also as the mouth
opening increase in size and becomes less rounded.
Moreover, formant bandwidth depends upon the
degree of constriction: open vowels have narrower
formants than constricted vowels (Stevens and
House, 1955). Fig. 1 illustrates the correlation be-
tween articulation and the first three formant
positions for vowels (Ladefoged, 1981). Several
sources (e.g., Fant, 1960; Witten, 1982; Deller
et al., 2000; Ladefoged, 1975; O’Shaughnessy, 1990)
cite average formant frequencies for various vowels
and describe the spectral structure for consonants.

Table 1 summarizes the relationships between
articulation and acoustic features (Ladefoged,
1975). The described acoustic features are intended
only as rough guides, and the actual acoustic
correlates depend on the exact combination of
articulatory features.

3. Spectral smoothing algorithms

Four approaches to spectral smoothing are
considered here, with details provided for only
those methods which show encouraging results.

Fig. 1. Acoustic (formant) correlates of articulatory features

for vowels.
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Although several researchers have studied smooth-
ing techniques (e.g., audio morphing (Slaney et al.,
1996), HMM-based smoothing (Plumpe et al.,
1998)), the field is emerging and typically only
common existing speech processing algorithms (e.g.,
linear prediction techniques) are employed. Several
of these processing techniques were originally de-
veloped for other purposes, including interpolation
for audio coding and voice transformation, and
in general are not typically applied for spectral
smoothing in concatenative synthesis. Here we fo-
cus only on their application to spectral smoothing.

One approach to smoothing is to interpolate
between boundaries of adjoining segments. There-
fore, these anchor frames should be good repre-
sentatives of the sound. The approach taken here is
to perform linear interpolation in different domains
between the two anchor frames, though we also
suggest cubic spline interpolation as an alternative.
The frames are pitch-synchronous where one frame
is two pitch periods long; this synchronization is
important for some interpolation methods.

One important issue in spectral smoothing is
to determine for which circumstances smoothing
should be performed. If two segments have a
sufficiently close spectral match, then distortion
introduced by smoothing may negate the per-
formance gain. Moreover, many smoothing tech-
niques are inappropriate for use with unvoiced
speech.

Another issue is to determine the best time span
over which to interpolate. The pitch will remain

continuous if data is inserted equal to an integer
number of pitch periods. Our experiments have
shown that three to five periods generally works
well; however, further study is needed to determine
the proper number of pitch periods for different
circumstances.

The remainder of this section describes the
smoothing algorithms in detail. We focus on LP
algorithms since they are commonly used and can
yield good results. We also devote special attention
to the continuity effect since it is a new approach
for smoothing. In addition, we mention other
spectral smoothing algorithms to complete the
discussion. The smoothing algorithms we examine
are (i) optimal segment coupling, (ii) waveform
interpolation, (iii) LP techniques (pole shifting and
LSF interpolation), and (iv) the continuity effect.

In the following four sections, we illustrate ex-
amples of spectral smoothing using speech spec-
trograms at the end of each section. Fig. 18
summarizes all sample speech spectrograms for the
phrase ‘‘carry an oily rag’’. Fig. 18(a) represents
the phrase produced naturally by a male speaker.
Fig. 18(b) reflects the results from segment syn-
thesis with no spectral smoothing from a code-
book with a nominal size of 380 segments.

3.1. Optimal coupling

It is standard in concatenative synthesis that the
boundaries of speech segments be fixed, but the
optimal coupling technique allows the segment

Table 1

Acoustic correlates of articulatory features

Articulation Acoustic features

Vowel formant frequencies typically contained in each of freq. bands: 0–500, 500–1500, 1500–2500 Hz, etc.

Bilabial F2 and F3 comparatively low

Alveolar F2 around 1700–1800 Hz

Velar F2 usually high; common origin of F2 and F3 transitions

Retroflex general lowering of F3 and F4
Stop sharp beginning of formant structure

Fricative random noise pattern dependent on point of articulation

Nasal formant structure similar to vowels with formants around 250, 2500, 3250 Hz; F2 low amplitude; distinct

antiresonance

Lateral formant structure similar to vowels with formants around 250, 1200, 2400 Hz; higher formants reduced in

amplitude

Approximant formant structure similar to vowels; usually changing

Dental F2 around 1600–1800 Hz; F3 around 2900–3050 Hz
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boundaries to move in order to improve the
spectral match between adjacent segments (Conkie
and Isard, 1997). At its simplest, the optimal
coupling technique is rather straightforward.
During synthesis, each segment’s boundary for
concatentation is chosen in order to fit best with
the adjacent segments in the synthesized utterance.
An objective measure of spectral mismatch is used
to determine the level of spectral fit between seg-
ments at various possible boundaries. The measure
of spectral mismatch is tested at a number of
possible segment boundaries, and the minimum
measure score indicates the location of the closest
spectral match.

If two segments are to be concatenated, where
the end frame of the first segment is in the range
xi; . . . ; xf , and the start frame of the second seg-
ment is in the range yi . . . yf , then the distance
measure function dð Þ is evaluated at all possible
boundary positions to find mina;b dðxa; ybÞ. For
concatenation of this segment pair, the boundary
frames xa and yb of the segments are selected such
that the measured mismatch between frames is
minimal. Fig. 2 shows an example scenario where
moving the segment boundaries will noticeably
change the spectral alignment of formants.

While any form of measure may be used to
determine the amount of mismatch, for the sake
of improving spectral quality, using a spectral
discontinuity measure is appropriate. Measures
considered here include the difference of mel-
frequency cepstral coefficients (MFCC) and the
auditory-neural based measure (ANBM) (Hansen
and Chappell, 1998).

In simple frame mismatch, distance measures
are calculated for frames ending at various possi-
ble segment boundaries. The distance measures
take into account only the single audio frame from
each speech segment which lies next to the
boundary under consideration. More advanced
variations of optimal coupling also consider the
direction of spectral parameter motion. Although
our studies used only a simple frame mismatch,
more complex proposals include use of regression
coefficients and linear coefficient fit (Conkie and
Isard, 1997).

There are a number of advantages to the opti-
mal coupling technique. The algorithm is concep-
tually simple and easy to implement. It can be
combined with other spectral smoothing tech-
niques and need not stand alone. Optimal coupling
can successfully complement other smoothing
techniques because it causes formants to be natu-
rally closer to each other at segment boundaries.
Since coupling does not modify the existing
speech, it does not introduce additional artifacts.
For spectral matching purposes, it effectively ex-
pands the number of speech segments in the data-
base.

Despite these advantages, there are also several
disadvantages to optimal coupling. Finding the
optimal coupling point requires a search for each
segment joint, and an exhaustive search is required
for full optimal coupling. Moving the segment
boundaries carries the risk of accidentally cutting
an important part of a sound or adding an inap-
propriate sound. Errors often occur by leaving out
too much of a sound, though heuristic rules can

Fig. 2. Optimal segment coupling.
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reduce or eliminate this effect. More importantly,
optimal coupling is limited in its effectiveness since
it only works with existing speech and does not
actually modify formant positions.

In summary, optimal segment coupling is a
relatively simple approach for a reasonable benefit.
It is easy to use either by itself or in combination
with a more direct smoothing algorithm. In some
forms of concatenative synthesis, segments are
specifically designed or pre-selected from a data-
base such that formants match smoothly at their
edges, and in these cases optimal coupling will
provide little if any gain. In comparison, optimal
coupling clearly has no application to spectral
smoothing for speech coding since the original
signal is already naturally smooth.

Fig. 18(c) shows a spectrogram of the phrase
‘‘carry an oily rag’’ with optimal coupling between
segments. In Section 5.4 we discuss this spectro-
gram and compare it with similar spectrograms
resulting from other spectral smoothing algo-
rithms.

3.2. Waveform interpolation

Waveform interpolation (WI) is a speech-cod-
ing technique which takes advantage of the grad-
ual evolution of the shape of pitch-period
waveforms. The WI coder operates on a frame-by-
frame basis. In each segment, the pitch track is
calculated and characteristic waveforms are ex-
tracted. Each characteristic waveform is typically
one pitch period long, but the length may be an
integer number of periods. In coding, characteris-
tic waveforms are extracted from the original sig-
nal at regular time intervals. In order to conserve
space in coding, a WI-coded signal is typically
transmitted as quantized frequency coefficients
for separate rapidly and slowly evolving compo-
nents. On reconstruction, intermediate pitch-cycle
waveforms between transmitted waveforms are
approximated by interpolation. To produce an
interpolated waveform, both the pitch period and
waveform signal are interpolated in either the time
domain (at a common period of 2p radians) or the
frequency domain (Kleijn et al., 1996; Kleijn and
Haagen, 1995). WI is essentially a form of
smoothing intended for speech and audio coding.

Though developed for coding purposes, WI can
also be adapted for use in spectral smoothing. In
this case, the waveform is interpolated between
frames at the edges of speech segments to create
new inserted smoothed data. The concept is the
same as for coding, but the end goal is different.
For synthesis, the original waveform can be kept
intact for interpolation rather than compressing
the data via quantization. When the original
waveforms are available, interpolating in either the
time or the frequency domain yields identical re-
sults. A new pitch period of the desired length is
constructed by averaging the amplitudes of the
periods of natural speech at the same relative po-
sitions within the waveforms. Such a scheme has
been used on frames with constant pitch in
MBROLA synthesis (Dutoit and Leich, 1993).

Fig. 3 shows an example of WI with two natural
frames of speech (/aa/ and /ae/) and one interpo-
lated frame. In addition, a performance example is
shown in Fig. 18(d), which shows an example
spectrogram of a phrase with smoothing per-
formed via waveform interpolation.

We conclude that WI is generally better than no
smoothing, but has difficulty producing consistent
results. In the simplified version, WI is concep-
tually simple, computationally fast, and easy to
implement in the time domain. When spectral
envelopes are similar, WI can give good results.
However, it does not perform actual formant
smoothing and thus yields only small improve-
ments. WI generally produces smoother results for
a large number of interpolated pitch periods, and
works best on vowel-to-vowel transitions. Al-
though the results often sound smoother than with
no interpolation, there are artifacts, and the gen-
eral quality is not as good as smoothing techniques
that directly manipulate formant positions.

In addition to direct use for calculating
smoothed speech frames, WI can also be applied
for residual interpolation in the linear prediction
(LP) methods (Kleijn and Haagen, 1995). LP
methods concentrate on interpolating the spectral
envelope, but the residual signal must also be
generated. Rather than using a generic pulsed ex-
citation or a single residual appropriate for the
speaker, we use WI to interpolate between the re-
siduals of the bordering frames of natural speech.
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Fig. 4 illustrates the application of WI to the re-
sidual in LP smoothing. This use of WI with LP
follows a recent trend in speech synthesis towards
mixing deterministic and noise components.

We performed evaluations using WI with LP on
regions of speech. WI generated the residual to go
along with the original LP spectrum. The resyn-
thesized speech was in some cases practically in-
distinguishable from the original, while there were
usually some small artifacts. With longer interpo-
lated regions, the level of noticeable distortion was

greater. When the interpolated region differs from
the speech on either side (e.g., near silence or a
short phone in the interpolated region), then the
distortion is more noticeable. As expected, the
frames differ more from the original natural speech
in the center of the interpolated region. The most
common distortion was that the timing of pitch
pulses was off from the original, giving a somewhat
artificial quality to the speech. It is believed that
this artifact is due at least in part to using a con-
stant-length frame size for this test, and that a

Fig. 3. Example of waveform interpolation for a single inserted frame from /aa/ (anchor Frame 1 on top) to /ae/ (anchor Frame 2 on

bottom).

Fig. 4. Waveform interpolation applied to residual of LP coding.
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pitch-period-based frame size would improve the
resulting speech quality. Despite occasional dis-
tortion, the interpolated region was generally ac-
ceptable. Thus, WI is an appropriate way to
generate the residual for LP interpolation tech-
niques.

3.3. LP techniques

LP interpolation techniques are often used to
smooth LP-filter coefficients in LP coding (LPC)
and sometimes also for speech synthesis (Shadle
and Atal, 1979). The basic strategy is to model
the speech signal as separate spectral and resid-
ual (filter and source) components and to adjust
each component separately. Here, we perform LP
spectral parameter interpolation in one of several
domains, while the residual is interpolated using
WI.

If the LP spectra are directly interpolated, for-
mants will rise and fall in the interpolated frames
of speech rather than move smoothly in frequency,
amplitude, and bandwidth as is desired. Fig. 5
shows an example of improper results from inter-
polating LP spectra (two anchors with four inter-
polated frames); for comparison with a more
sophisticated interpolation algorithm, the anchor-
frame spectra are the same as for Fig. 6. Thus,
rather than LP spectra interpolation, we strongly
recommend interpolating LP parameters in a do-
main where the parameters are closely linked to
formant location. To perform spectral smoothing,
the LP parameters should be interpolated and re-
combined with a separately-interpolated residual.

LPC analysis yields less frame-to-frame varia-
tion and smoother evolution of the coefficients
when analysis is performed on pitch-synchronous
windows (Paliwal and Kleijn, 1995). Thus, it
works well in PSOLA-based systems.

LP interpolation has a number of advantages
but also some disadvantages. Most importantly,
LP methods allow direct manipulation of the
spectral envelope and thereby indirect manipula-
tion of formants in a way desirable for smoothing.
On the downside, it is difficult to determine which
parameters control which formants and how to
match parameters between frames. Also, in some
domains, the inherent ordering of parameters does
not give the best matching of parameters. Addi-
tional algorithm processing is required to translate
the signal into the desired LP domain and back
unless the data is already LP-encoded. Since LP
analysis is based on an all-pole model, it does not
adequately model nasal consonants and nasalized
vowels. Despite these limitations, we have found
that LP interpolation techniques can provide good
results which exceed those of the other algorithms
tested in this study.

LP interpolation was examined in two different
domains. The following two subsections give de-
tails on these approaches and discuss their indi-
vidual strengths and weaknesses.

3.3.1. LP pole shifting
In speech coding, the LP poles are rarely shifted

directly in the z-plane because the parameters are
usually stored and transmitted in another repre-
sentation. Nonetheless, LP poles are a useful rep-

Fig. 5. Example of directly interpolating LP spectra.
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resentation for interpolation. The two major
problems involved with pole shifting are (1)
matching the poles between the two anchor frames
and (2) performing the interpolation.

Pole matching is not a simple problem, and it is
related to the problem of finding formants based
upon LP poles (Snell and Milinazzo, 1993). For
coding natural speech, poles are unlikely to move
very far between known values, and thus the
matching problem is easier than for concatenative
synthesis where poles may be at widely different
positions in adjacent segments. The obvious solu-
tion of simply aligning poles by frequency order
fails to consider several situations, such as the
presence of real poles or other poles that do not
directly correspond to formants but instead con-
tribute to overall spectral shape. Moreover, there
may be cases where formants split or merge, or
arise in such a way that there is not a one-to-one
correspondence between poles in different frames.

A good approach is to search for the optimal pole
match using an appropriate distance measure
formula such as the following (Goncharoff and
Kaine-Krolak, 1995):

Dðp0; p1Þ ¼
ln p1

p0

� ����
��� lnðð1�r2

0
Þ=ð1�r2

1
ÞÞ

lnðr1=r0Þ

n o
; r0 6¼ r1;

ln p1
p0

� ����
��� 2r2=1� r2f g; r ¼ r0 ¼ r1;

8<
:

ð2Þ

where pi are complex pole positions and ri are pole
radii. Our experiments have shown that this dis-
tance formula gives insufficient weight to the ra-
dius and thus may match a formant-connected
pole with an overall spectral shaping pole nearby
in frequency. This distance measure has this
weakness because it was derived from equations
for frequency and bandwidth which are based on a
single pole rather than a multi-pole system. An
improved distance measure could lead to better

Fig. 6. Example of a successful LP pole shifting scenario.
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automatic pole matching and thereby better spec-
tral smoothing.

In pole matching, a common problem arises
when one frame of speech has more real poles than
the adjoining speech segment frame. Fig. 6 illus-
trates this scenario, where four frames of speech
are interpolated between Frames 1 and 2 pole
plots. One solution to the pole-matching problem
is to convert the pole constellation to a domain
where each pole has a complex conjugate and then
use a distance measure to match poles (Goncharoff
and Kaine-Krolak, 1995). Another approach is to
first match conjugate pairs that result in the min-
imum overall distance between matched pairs. For
each remaining unmatched conjugate pair, the
nearest single real pole is selected as a match.

Fig. 7 shows an important pole-matching sce-
nario where improper matching yields poor re-
sults. Whether the poles are matched between
Frames 1 and 2 by frequency ordering or by using
Eq. (2), the first two poles become inappropriately

criss-crossed over the four interpolated frames.
With user assistance, the proper pole match could
easily be made, but both automatic algorithms fail.
As a result, the movement between Frames 1 and 2
is smooth for F2 and F3 and the overall spectral
slope, but F1 (ca 550 Hz) suddenly drops in am-
plitude for the interpolated frames and then sud-
denly rises in amplitude.

Once poles have been appropriately matched
between anchor frames, their positions must
be interpolated. This should not be performed
directly in the complex plane, but instead the
magnitude and phase of the poles should be
interpolated separately. Separate interpolation of
real and imaginary components in the z-plane can
produce values which are not truly intermediate,
but interpolating in the magnitude-phase domain
produces more reasonable results. It is known that
the magnitude of a pole relates to formant band-
width, while the angle relates to formant fre-
quency. While the pole radii can be interpolated

Fig. 7. Example of a failed LP pole shifting scenario from Frame 1 to Frame 2 with four interpolated frames.
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directly, bandwidth can be directly interpolated by
using the standard formulae that relate frequency
F and bandwidth BW of a single pole pi to its angle
hi and radius ri and the sampling period Ts,

Fi ¼
hi

2pTs
; BWi ¼

� lnðriÞ
pTs

: ð3Þ

Thus, to linearly interpolate with the frequency
and the bandwidth, the angle should be interpo-
lated linearly while the radius is interpolated geo-
metrically. Specifically, if the new pole pi ¼ ri\hi

is a fraction k1 from a known pole p1 ¼ r1\h1,
and a fraction k2 from pole p2 ¼ r2\h2, where
k1 þ k2 ¼ 1, then the components of pi should be
generated by the equations

hi ¼ k1h1 þ k2h2 and ri ¼ rk11 þ rk22 : ð4Þ

Ideally, each LP pole pair would correspond to a
single formant, but in practice multiple poles will
affect the location and bandwidth of each formant
and some poles will contribute to overall spectral
shape. Thus, although pole shifting does modify
formants, it can have undesired effects such as
formant bandwidth spreading. Quite often, the LP
model order is selected with the notion that
smoothing will be applied (i.e., for fs ¼ 8 kHz,
studies will select an order of P ¼ 9, corresponding
to approximately four formant pole-pairs and one
real overall shaping pole). Other research on
waveform synthesis has been successful in sepa-
rating individual formants based on poles for
formant frequency modification (Mizuno et al.,
1993). Key points of that work are that (1) for-
mants are connected with only those poles with a
low value of BWi divided by Fi and (2) pole ex-
traction is checked by comparing the target and
calculated spectral intentions in an iterative pro-
cedure.

Fig. 18(e) shows an example spectrogram of
a segment concatenated phrase with smoothing
performed via LP pole shifting.

In summary, LP pole manipulation has excel-
lent spectral smoothing potential, yet several
weaknesses are present. Shifting pole location
gives the ability to shape the desired interpolated
speech spectral structure. When each pole corre-
sponds to a formant and the poles move little be-

tween anchor frames, then the interpolation is
simple and of high quality. In more complex sit-
uations, the relationship between pole location and
spectral envelope must be considered to ensure
that pole matching and interpolation gives the
desired results. The results can be quite good, but
even more recent techniques are not sufficient to be
applied in a completely unsupervised manner. In a
minority of cases, pole interpolation can yield re-
sults which are worse than no smoothing. Future
efforts should consider ways to automatically as-
sess the success of the interpolated pole shifted
frames.

3.3.2. LSF interpolation
The line spectral frequency (LSF) representa-

tion, also known as line spectrum pair (LSP), is
often used for speech coding (Papamichalis, 1987).
Interpolation between LSFs has been used not
only for coding but also for synthesis and even
spectral smoothing. LSFs are calculated from the
LP poles in a technique that yields two sets of
interleaved zeros on the unit circle. Representing
the LPC filter in the LSF domain ensures its sta-
bility and is thus appropriate for coding and in-
terpolation.

For coding, the LSF representation is generally
accepted as giving the best performance in terms of
spectral distortion, and it always yields stable fil-
ters after interpolation (Paliwal and Kleijn, 1995;
Paliwal, 1995). Some comparative studies have
shown that LSF interpolation gives better results
than other representations when used for inter-
polation in coding as measured by spectral dis-
tortion (Paliwal and Kleijn, 1995; Paliwal, 1995) or
prediction error (Erkelens and Broersen, 1994).
Other comparison studies showed no inherent
advantage for LSFs (Atal et al., 1989).

LSFs can also be interpolated for speech syn-
thesis. For waveform synthesis, however, there is
limited benefit from the compression and quanti-
zation advantages which LSFs offer for coding.

The two major problems of pole shifting are
trivial for LSF interpolation. Unlike pole shifting,
LSF interpolation provides an inherent order for
parameter matching. When LSF pairs are matched
in the obvious sequence of increasing frequency,
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however, this sequence is not always in the order
which yields the best results. As with pole match-
ing, there are cases where a parameter that corre-
sponds to a formant will be matched with a
parameter that corresponds to general spectral
slope. The interpolation process is also straight-
forward since there is only one dimension (fre-
quency) involved. The two major interpolation
methods are to either interpolate each P and Q
zero separately or to first interpolate the P (po-
sition) zeros and then interpolate the difference
parameters. Since the position parameters cor-
respond to formant position while difference
parameters roughly correspond to bandwidth, the
latter approach is more intuitive. Specifically, if a
new zero pair Pi;Qi is a fraction k1 from known
zero pair P1;Q1 and fraction k2 from zero pair
P2;Q2, where k1 þ k2 ¼ 1, then this form of inter-
polation yields Pi ¼ k1P1 þ k2P2 and Qi ¼ Pi þ
k1ðQ1 � P1Þ þ k2ðQ2 � P2Þ.

Fig. 8 shows a scenario where LSF interpola-
tion succeeds, while Fig. 9 shows an example
where it performs poorly. In each figure, the z-
plane plots for anchor Frames 1 and 2 show both
the LP poles and the LSF zeros, while the plot of
interpolated zeros shows the transition from the
first frame zeros (outermost ring) to the last frame
zeros (innermost ring). In Fig. 8, all formant peaks
have moved smoothly across frequency as desired
on the spectral envelope plot. In Fig. 9, the for-
mants located near 800, 1400, and 1800 Hz do not
move in frequency as desired but instead shift only
in amplitude. As another example of performance,
Fig. 18(f) shows a spectrogram of a phrase with
smoothing performed via LSF interpolation.

Despite some obvious strengths, the use of
LSFs for interpolation can also display some in-
herent drawbacks. The interpolation technique
itself is simple: the zeros have an inherent order for
matching, and the interpolation is in a single di-

Fig. 8. Example successful LSF interpolation scenario. Note that the two circles for interpolated zeros are used only for imaging

purposes; all zeros for all frames are actually on the unit circle.
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mension. The zeros’ inherent order does not
always match between frames in the manner that
could yield the best results after interpolation.
More importantly, little can be done to improve
the basic algorithm. As with LP pole manipula-
tion, there are a small but noticeable number of
scenarios in which LSF interpolation yields results
which are worse than no smoothing. Although
LSF interpolation is simple and can give good
results, it does not hold the potential to be uni-
versally successful for direct LP pole interpolation.

3.4. Continuity effect

The fourth smoothing approach does not per-
form audio signal interpolation but instead masks
discontinuities. The continuity effect is a psy-
choacoustic phenomenon that is suggested here as
a possible method for spectral smoothing. When
two sounds are alternated, a less intense masked

sound may be heard as continuous despite being
interrupted by a more intense masking sound. The
sensory evidence presented to the auditory system
does not make it clear whether or not the obscured
sound has continued. Psychologists call this effect
‘‘closure’’ (Bregman, 1990; Moore, 1997). Fig. 10
illustrates the phenomenon.

Perceptual closure occurs when a missing sound
gap is filled by a noise or other sound that masks
the missing sound. The visual counterpart to au-
ditory closure is looking at a scene while moving
past a picket fence; the observer assumes that the
scene continues uninterrupted behind the fence
boards even though only part of the scene is visible
at any one time. In auditory perception, illusory
continuity requires either that the masking sound
contain the frequency content of the missing, the-
oretically masked sound or that the masking
sound be near enough in frequency or time to the
missing sound for simultaneous masking to occur

Fig. 9. Example failed LSF interpolation scenario. Note that the two circles for interpolated zeros are used only for imaging purposes;

all zeros for all frames are actually on the unit circle.
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according to the neural response of the peripheral
auditory system.

The continuity effect has also been shown to
work for speech signals alternated with noise. A
series of studies has shown that irregularly spaced
bursts of noise interrupting speech at the rate used
in phone or diphone concatenation (about 6 per
second) is near a minimum in the effect of noise on
speech comprehension. Moreover, with this inter-
ruption frequency and the desired fraction of time
spent on speech versus noise (
91%), listener tests
revealed a very high word articulation rate. In
some circumstances, interrupting noise has been
shown to actually increase intelligibility (Bregman,
1990; Moore, 1997). Similar perceptual studies
have found that replacing a phone with an extra-
neous sound results in listeners reporting the
presence of the phone, while replacing the phone
with silence results in correct detection of the gap
(Warren, 1970).

In the case of spectral smoothing, the continuity
effect can be employed by adding noise between
speech segments. Although closure has not been
previously applied to speech synthesis, the concept
is not entirely foreign: in some audio systems, large
burst errors are sometimes filled with white noise.

We extend the concept by spectrally shaping the
noise so that it contains only the spectral envelope
necessary to possibly contain any intermediate
sound. The listener’s perception fills in any gaps so
that it seems as though speech is being produced
within the noise, and the perceived speech is con-
tinuous with the preceding and following existing
speech.

Fig. 11 shows an example of how a frequency-
domain filter is obtained for inserted noise. The
spectral envelopes of the two original speech
frames are compared, and the filter is constructed
to meet the maximum of the two envelopes at all
points and to interpolate between any peaks
(presumably formants) between the two spectra.
To generate this spectral envelope for the noise, all
peaks are found and sorted by frequency for the
spectral envelopes for both of the original frames.
For each frequency range between two spectral
peaks, the anchor-frame envelopes are compared
as follows. If the amplitude of one of the original
envelopes is larger than the other at all frequencies
in the range between two peaks, then that portion
is directly used in the new envelope. Otherwise,
that frequency range will have amplitude values
constructed by interpolating between the two

Fig. 10. Illustration of the continuity effect.

Fig. 11. Example noise envelopes for continuity effect.
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peaks. Once the new spectral envelope is con-
structed, Gaussian white noise is passed through
the filter to create shaped noise that will mask any
hypothetical speech between the two natural
frames without introducing more noise than nec-
essary for auditory masking.

Although the proposed use of the continuity
effect does not provide great spectral smoothing in
all situations, we have found that it performs well
in some cases and has distinct potential for im-
provement. From our experiments, a section of
inserted shaped noise about 45–125 ms long gen-
erally yields the best results. A section of noise that
is too long gives the impression of either inserting
a stop or simply playing noise. In most cases, it is
clear that some noise is present in the signal, but it
is also feasible that the speech continues smoothly
in the background. In other cases, the shaped noise
sounds worse than nothing, but in rare cases it
sounds very good and natural. Our experiments
revealed an optimal amplitude of the noise at
about 1=4 the amplitude of the rms of the mean of
the adjacent natural frames. A lower noise ampli-
tude sounds more natural and acceptable, but it
can also sound more often like an inappropriately
inserted stop. Fig. 18(g) shows a sample spectro-
gram.

Inserting shaped noise is noticeably better than
white noise; it sounds more like the noisy signal of
the correct spectrum. When smoothing is per-
formed between concatenated speech segments,
the use of closure may fail when the formants of
the two segments are naturally too far apart.
When noise is played intermittently with natural
speech, the formants will typically be close enough
together for the continuity effect to apply, but such
situations do not always occur with concatena-
tion. Still, many concatenative databases have
segments selected such that their formants are
nearly aligned. In summary, using shaped noise
can provide perceptive spectral smoothing in some
cases, but in other cases it can be very annoying.
We have shown that application of the method is
promising, especially for phonemes with frication
where LP and WI techniques fail. Further research
is warranted in determining the perceptually opti-
mal spectral envelope for shaping the inserted
noise.

4. Determining smoothing required

Rather than blindly applying the same spectral
smoothing algorithm in the same manner at all
concatenation points, we suggest that several
methods may be necessary since it is important to
determine the proper type and amount of spectral
smoothing required. Not all segment joints benefit
from spectral smoothing, and no single smoothing
algorithm performs best in all situations. Relevant
factors – including phonemes, articulator posi-
tioning, and spectral perception – help determine
the type, amount, and duration of modification
required for smoothing. It is noted that we have
not emphasized F0 issues since standard methods
such as PSOLA can modify the pitch to the desired
frequency.

In this study we used knowledge from both
speech science and signal processing to determine
the smoothing required in different scenarios. We
have compiled this data into a table (see Section
4.2 and Table 3) for use as an aid in smoothing. In
addition, we provide further details on smoothing
for several example phone pairs (see Section 4.3).
Although we performed this analysis on phone
segments, the same concepts are applicable for
diphone concatenation.

One important issue of spectral smoothing is
determining the circumstances under which the
smoothing should be performed. If two segments
have a sufficiently close spectral match, then the
distortion introduced by smoothing techniques
may sometimes outweigh the performance gain.
On the other hand, spectral smoothing generally
performs better on segments with similar spectral
characteristics, and attempting to smooth very
different spectral envelopes can yield poor results.
Moreover, many smoothing techniques are inap-
propriate for use with unvoiced speech. The two
pieces of data used in automatically determining
whether smoothing is appropriate for a joint are
(1) knowledge of the phonemes involved and (2)
the ANBM score (see Section 2.3) for the joint.

Certain smoothing algorithms are better for
certain phonemes. For example, LP techniques are
not as successful for nasals and nasalizations be-
cause they employ all-pole models and thus do not
reflect the anti-resonances.
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Another issue is determining the best time span
over which to interpolate. The pitch will remain
continuous if data is inserted in blocks equal to an
integer number of pitch periods. Many of our ex-
periments have used a pitch-synchronous synthe-
sizer, and we have seen that inserting three to five
interpolated periods generally works well. While
we have considered experiments which range be-
tween 0 and 10 pitch periods for insertion, future
studies should be done to determine the optimal
number of frames (i.e., pitch periods) of smoothing
for specific phone-to-phone circumstances.

4.1. Method

To determine the desired spectral smoothing,
we consider aspects of both speech science and
signal processing. The articulation between pho-
nemes gives an indication of the expected formant
transitions. Analysis of the ANBM scores for
natural and concatenated phones indicates the
approximate scores for perceptively smooth
speech. Knowledge of the phonemes and smooth-
ing algorithms leads to recommendations as to
which algorithms should be used for various cir-
cumstances.

We propose using the ANBM to evaluate the
perceived spectral smoothness between segments.
In order to test the ANBM across phone bound-
aries in natural speech, we applied the measure to
phone transitions from the TIMIT database 1 re-
sampled at 8 kHz. Using the phoneme labels
supplied with TIMIT, the ANBM score was cal-
culated for each phone-to-phone transition in the
database. We recorded the measure scores and
calculated relevant statistics such as the sample
mean and the unbiased sample standard deviation.
The resulting ANBM scores are used to assess
phone-to-phone spectral transition information.

Table 2 shows the net ANBM results and sta-
tistics across all phone-to-phone transitions. It
reports the sample mean and sample standard
deviation for the entire data set. Measure analysis
was performed on only male speakers in the

training portion of the database. Fig. 12 shows a
histogram of the resulting ANBM scores at phone
transitions for the entire database.

Analyses with the ANBM have shown that
measure scores vary according to several factors:
naturalness, the specific phonemes concatenated,
the speaker, and the dialect. Subjectively, different
speakers yield different amounts of smoothness
when their phonemes are concatenated, and sta-
tistical analysis of ANBM scores confirms this
observation. Calculating the probability that the
population mean difference d is at least 0 (PdAL0)
(Berry, 1996) indicates that several of the dialect
regions have scores which are statistically signifi-
cantly different from each other even at the 99%
probability interval. Although there is no single
threshold which is equally suited to all speakers,
we have included data from speakers of different
American English dialect regions in determining
approximate thresholds for general use.

Fig. 13 shows the sample mean and sample
standard deviation for those phoneme-pair junc-
tions with 400 or more examples in the database.
The first entry shows the sample mean and sample
standard deviation for the overall dataset, and
individual transition results follow. This figure
shows that different phoneme-pairs produce shif-
ted expected measure score ranges.

In order to use ANBM scores to determine
whether smoothing is necessary, we have used a
probe listener test to connect ANBM scores with
subjective evaluations. For each possible phoneme
class junction, we generated approximately 100
concatenated examples from TIMIT. We then
used a nine-value subjective opinion score to
measure the perceived spectral smoothness of both
these concatenated examples and a small set of
natural examples. Based on the subjective scores,
we suggest using an ANBM threshold to deter-

1 Available from the Linguistic Data Consortium at http://

www.ldc.upenn.edu/.

Table 2

Net ANBM results for TIMIT

Number of speakers 326

Number of phone transitions 124,193

Sample mean 222.24

Sample standard deviation 100.27

Maximum score 732

Minimum score 6
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mine when a concatenated joint is acceptably
smooth. Joints with ANBM scores below the
threshold will be considered acceptable, while
scores above the threshold will indicate a need for
spectral smoothing. We compared ANBM scores
and opinion scores to establish relative correlation
measures. The correlation coefficients for different
phoneme class pairs varied with better values for
more strongly voiced data: the correlation coeffi-
cient for combinations of vowels (VL) is 0.21; for
combinations of VL and/or diphthongs (DT) it is
0.17; and for VL, DT, and semi-vowels (LG; liq-
uids and glides) it is 0.09.

Based on our evaluations and observations, we
recommend a threshold of the sample mean of the
natural ANBM scores for a given phoneme class
pair. This is not a clear-cut threshold, but raising
or lowering it can change the fraction of joints that
are smoothed. Fig. 14 shows ROC curves that il-
lustrate the trade-off on the probabilities of de-
tection (Pd) and false alarm (Pf ) for joints that need

smoothing for different sets of phoneme classes.
Curves are shown for junctions involving three sets
of phoneme classes: vowels and diphthongs; vow-
els, diphthongs, and semi-vowels; and all phoneme
classes. The detection in this figure means that
using the ANBM to find joints that are subjec-
tively marked in the ‘‘poor’’ to ‘‘good’’ range, with
‘‘very good’’ and ‘‘excellent’’ joints being accepted
as already sufficiently smooth.

In some practical situations, time constraints
may prevent the use of spectral smoothing on all
segment joints. It is suggested that the ANBM
score should be used to rank-order the perceived
smoothness of joints. The ANBM score will list
the joints in the same general order that a human
listener would rank the perceived smoothness. The
spectral smoothing system can then devote more
processing resources to smoothing only the top
X% of the joints, where X is smaller for larger-
database synthesizers. There is a natural balance
between resulting speech quality and segment

Fig. 13. Sample mean and standard deviation of ANBM score for overall data set and for different phoneme pair junctions.

Fig. 12. Histogram of ANBM Scores for TIMIT.
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synthesis database size. It is therefore fair to say
that for small database size systems, larger
amounts of segment smoothing will be necessary.
It also stands to reason that very large database
size systems may require little or no spectral
smoothing. As the database size increases, so too
decreases the fraction of segment joints that re-
quire spectral smoothing.

As demonstrated by the measurements we have
reported, the ANBM score should not be taken as
an absolute scale for determining smoothness. In-
stead, the score should be considered in the con-
text of typical scores for the given phoneme
transition and the given speaker. The relative score
gives a better measurement of the perceived con-
tinuity.

The just-noticeable difference (JND) or differ-
ence limen (DL) of formant frequency, bandwidth,
and intensity should also be considered in spectral
smoothing. The JND for formant frequencies is 3–
14% of the formant frequency value. The formant
bandwidth JND is about 20–40%. For formant
amplitudes, typical JNDs are approximately 1.5

dB for F 1 and 3 dB for F 2 (Flanagan, 1972;
O’Shaughnessy, 1990; Rabiner and Juang, 1993).
The precise JND depends upon whether the speech
is natural or steady-state and whether one or more
formants are changing simultaneously.

4.2. Recommendations table

Our experience with concatenating and
smoothing various phonemes allows us to make
recommendations as to the spectral smoothing
algorithms which perform best for each case ac-
cording to the classes of phonemes joined. The
natural smoothness and expected amount of
smoothing also follow from given phoneme clas-
ses. Although each specific phoneme pair varies
slightly, practical space limitations force us to list
results by phoneme classes.

Table 3 shows our recommendations for spec-
tral smoothing according to phoneme class. We
show results only for those phoneme class pairs
that have at least 100 natural examples within

Fig. 14. ROC curves for detection of ‘‘very good’’ and ‘‘excellent’’ joints with the ANBM score for different phoneme class sets.

Pd ¼ probability of detection; Pf ¼probability of false alarm; VL¼ vowels; DT¼ diphthongs; LG¼ semi-vowels; � ¼ results from a

threshold of the mean ANBM score.

362 D.T. Chappell, J.H.L. Hansen / Speech Communication 36 (2002) 343–374



TIMIT. Although some phonemes within each
class (and certainly individual phones) may have
different results, it is reasonable to generalize to
phoneme classes. These recommendations are de-

rived not only from our objective experiments (see
Section 5) but also from our subjective experience
as reflected in the specific examples shown in
Section 4.3.

Table 3

Recommendations on spectral smoothing by phoneme classa

Phoneme Nat. ANBM score Smoothing

Pair Min. Mean Max. S.D. Alg. Amount

Stop ! stop 46 308 662 108 Closure Large

Stop ! nasal 43 253 610 107 Closure Large

Stop ! fricative 38 211 604 98 Closure Large

Stop ! semi-vowel 39 220 673 93 Closure Large

Stop ! whisper 48 181 395 72 Closure Small

Stop ! vowel 24 191 609 78 Closure Large

Stop ! diphthong 46 200 529 88 Closure Large

Stop ! affricate 54 249 565 98 Closure Small

Nasal ! stop 41 258 642 109 Closure Small

Nasal ! nasal 23 181 383 87 LP Large

Nasal ! fricative 36 228 527 90 Closure Small

Nasal ! semi-vowel 18 193 514 95 LP Large

Nasal ! whisper 40 220 510 100 Closure Small

Nasal ! vowel 16 215 604 90 LP Large

Nasal ! diphthong 37 233 531 90 LP Large

Fricative ! stop 52 233 560 81 Closure Small

Fricative ! nasal 64 221 503 80 Closure Large

Fricative ! fricative 48 179 510 73 Closure Large

Fricative ! semi-vowel 56 204 453 77 Closure Small

Fricative ! whisper 63 166 389 63 Closure Small

Fricative ! vowel 30 200 546 76 Closure Large

Fricative ! diphthong 51 209 537 78 Closure Large

Semi-vowel ! stop 51 283 662 109 Closure Large

Semi-vowel ! nasal 44 210 515 98 LP Small

Semi-vowel ! fricative 51 224 567 84 Closure Small

Semi-vowel ! semi-vowel 32 181 546 81 LP Large

Semi-vowel ! vowel 18 178 600 80 LP Large

Semi-vowel ! diphthong 27 194 515 69 LP Large

Whisper ! vowel 45 177 534 83 Closure Small

Whisper ! diphthong 58 179 441 76 Closure Small

Affricate ! stop 88 246 431 75 Closure Large

Affricate ! vowel 63 175 533 55 Closure Small

Vowel ! stop 35 260 661 103 Closure Small

Vowel ! nasal 22 216 647 92 LP Large

Vowel ! fricative 33 198 565 75 Closure Small

Vowel ! semi-vowel 9 172 596 81 LP Large

Vowel ! whisper 40 164 449 67 Closure Small

Vowel ! vowel 6 145 538 66 LP Large

Vowel ! diphthong 32 143 368 68 LP Large

Diphthong ! stop 44 243 608 101 Closure Small

Diphthong ! nasal 37 211 562 90 LP Large

Diphthong ! fricative 47 181 477 71 Closure Small

Diphthong ! semi-vowel 35 182 414 71 LP Large

Diphthong ! vowel 20 128 427 60 LP Large

aANBM scores are shown for natural joints, and suggestions are given for the algorithm and amount of smoothing to use.
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For each phoneme class pair in the table, we
show relevant statistics of the ANBM score cal-
culated for naturally-occurring examples of the
joint from TIMIT. We show the range (minimum
and maximum), sample mean, and sample stan-
dard deviation. These values can be useful in de-
termining the relative smoothness of concatenated
joints as well as establishing phone-to-phone class
thresholds for directing an appropriate smoothing
method.

In addition, we make recommendations as to
the type of smoothing appropriate for each pho-
neme class pair. Of the various algorithms con-
sidered in this study, both LP techniques (see
Section 3.3) and closure (the continuity effect; see
Section 3.4) give results that are broadly useful.
Optimal coupling can be used to supplement either
algorithm if desired.

Although it is difficult to give a quantitative
representation of the extent of smoothing neces-
sary for all situations in a category, we do give an
indication of how much smoothing is typically
needed for each class joint (i.e., large versus small
levels of smoothing). The amount of smoothing
specified indicates not only the typical perceived
spectral distance between phone segments but also
the relative amount of speech data that should be
inserted in an interpolation region. When formants
lie near each other between segments, then the
amount of smoothing is typically small, whereas
large discontinuities require a larger amount of
smoothing. The amount and duration of smooth-
ing are related since a longer duration is typically
needed to smooth a larger discontinuity, but they
are not necessarily the same. For example, despite
the large discontinuity in formant position be-
tween a nasal and a vowel, a short smoothing

duration is appropriate since the spectral change
results from the rapid motion of the velum.

4.3. Specific examples

This section considers several specific examples
of smoothing based on the previously-described
table and smoothing algorithms. We examine three
phoneme-to-phoneme combinations and consider
each smoothing algorithm to conclude which ap-
proach is most effective for each scenario. These
three scenarios are considered to be examples ra-
ther than general categories.

For each example phoneme pair, we examine
four or five sample cases from different speakers –
three male and one female – selected arbitrarily
from TIMIT. We extracted one single sample
phone for each phoneme for each speaker, and we
concatenated pairs to make continuous speech. We
then applied the previously described spectral
smoothing algorithms and examined the results.
We note that in the following examples, a frame
consists of one pitch period of speech data.

Table 4 shows the compiled data for these
specific examples. Fig. 15 shows a histogram of the
resulting ANBM scores from TIMIT for each of
the three phone-transition examples described be-
low.

4.3.1. Vowel-to-vowel joint: /iy/–/aa/
As an example of a vowel-to-vowel transition,

we considered /iy/ to /aa/. The phoneme /iy/ is a
high front vowel, while /aa/ is a low back vowel. In
this transition, articulation is due primarily to the
tongue. In /iy/, formants are expected to lie at 270,
2290, 3010 Hz, and in /aa/, they should lie near
730, 1090, 2440 Hz. Thus, the first three formants

Table 4

Specific examples smoothing table

Phoneme Nat. ANBM Score Articulation Smoothing

Pair Min. Mean Max. Movement Formants Alg. Amount Duration

/m/ ! /iy/ 42 232 463 Lips F2 LP Large 23 ms

/d/ ! /ah/ 110 214 448 Tongue F1, F2 Closure Large 38 ms

/iy/ ! /aa/ 50 144 251 Tongue F1, F2, F3 LP Small 30 ms
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are expected to be significantly offset between
segments.

Of the smoothing algorithms under consider-
ation, optimal coupling has the least noticeable
effect on this phoneme pair. While the measure
score improves with coupling, there is minimal
perceived difference after coupling and minimal
visual difference in the spectrograms.

Waveform interpolation provides some small
amount of smoothing. Although formant loca-
tions do not actually shift in the interpolated re-
gion with WI, the transition sounds smoother for
three of the four speakers. With a large number of
WI frames, the result sounds noisy, and the best
results are when around three or four frames are
used.

In comparison, LP pole shifting does yield ac-
tual formant movement as desired and thus gives
better-sounding smoothing. Results vary accord-
ing to the order of LP analysis with no one order
working best in all cases. The pole-matching
problem arises as previously mentioned, and poor
matching can yield poor results. Four or five
frames of smoothing typically works best, though
only one or two frames were appropriate in the
one sample where the formants were nearly
aligned naturally.

LSF interpolation also moved the formants
properly (in three of the four samples) and yielded
audibly acceptable results. The optimal interpola-
tion duration varies for each sample from two to
seven frames. In two cases, long interpolation re-
gions yielded noisy speech.

The continuity effect can yield feasible results
for /iy/–/aa/, but only one of the tested cases gave
good results. Generally four to six frames of
shaped noise worked best, though the best case –
in which the formants were naturally nearly
aligned – had the best results for one to two
frames. In two cases, the noisy region gave the
false illusion of the presence of an extra phoneme.

Thus, we recommend using one of the LP in-
terpolation methods for spectral smoothing of the
/iy/–/aa/ transition. A typical good interpolation
period is equal to about four pitch periods, or
around 30 ms for a typical male speaker. While up
to three formants may have to move a fair dis-
tance, the LP algorithms can provide appropriate
smoothing.

4.3.2. Stop-to-vowel joint: /d/–/ah/
The /d/ to /ah/ transition is an example of a

stop-to-vowel phoneme pair. The phoneme /d/ is a
voiced alveolar oral stop, while /ah/ is a mid vowel.
In this transition, the articulation is primarily with
the tongue. Based on the phonemes involved, we
expect F 1 to rise in frequency in /d/ since con-
striction of front of the oral cavity lowers F 1. F 2
and F 3 should have a slight fall in frequency in /d/.
In /ah/, formants are expected to lie at 640, 1190,
2390 Hz.

Optimal coupling gave very little benefit to the
smoothness of this joint. In four of the five cases
we examined, there was no change at all from
coupling, and the fifth case gave only minimal
change with no perceived improvement in quality.

Fig. 15. Histogram of ANBM scores for examples.
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Applying waveform interpolation to /d/–/ah/
tends to overly smooth the stop consonant. The /d/
sound can become indistinct or change to be per-
ceived as /b/. Thus, WI should not be applied to
this phoneme pair.

The LP interpolation methods can produce
appropriate formant transitions as visible on
spectrograms. The audible quality, however, is
arguably worse than without interpolation. After
interpolation, the /d/ phone can lose some of its
stop qualities or sound more like /b/.

The continuity effect gives good results for this
phoneme pair. In two cases, the results are rea-
sonable, while for two others they produced suffi-
cient improvement so as to make a previously poor
concatenation sound like a perfect match.

Therefore, of all the methods examined, the
results using the continuity effect clearly outshine
the others. A typical good interpolation period is
equal to about five pitch periods, or around 38 ms
for a typical male speaker. While the stop conso-
nant loses its character under most forms of
spectral smoothing, the presence of shaped noise
can noticeably increase perceived smoothness and
quality.

4.3.3. Nasal-to-vowel joint: /m/–/iy/
As a sample nasal-to-vowel pair, we examined

/m/ to /iy/. The phoneme /m/ is a voiced bilabial
nasal stop, while /iy/ is a high front vowel. In this
transition, the articulation is primarily with the
lips, though the tongue also plays some role. In /m/,
we expect to find F1 near 250 Hz and F3 near 2200
Hz; F2 should be weak, and an antiresonance
should be around 750–1250 Hz. In /iy/, formants
are generally located around 270, 2290, and 3010
Hz. Thus, formants are not likely to be too far
apart between segments.

With several of the sample cases we examined,
the formant intensity was so much stronger in the
/iy/ phone than in the /m/ that it is difficult to de-
termine spectral smoothness via visual inspection
of spectrograms. Still, the most important judge-
ment is auditory perception of smoothness.

Applying optimal coupling to this phoneme
pair gives only slight improvement. Though the
coupling algorithm yields larger shifts in phone
boundary positions for this pair than for other

phoneme pairs examined in detail, the results were
only marginally better in formant matching and
perceived quality. In comparison, waveform in-
terpolation yields only slight improvement for this
phoneme pair. None of the test cases gave lower
performance with WI, but results ranged from no
noticeable change to slight perceived improve-
ment. The transition was sometimes smoother as
formants faded in and out.

Both LP interpolation algorithms gave some
smoothness improvement. An interpolation period
which is too long yields a buzzy, scratchy quality,
but the results otherwise generally sound smoother
and more natural. The change in formant location
and bandwidth is also noticeably smoother. LSF
interpolation yielded slightly better performance
than pole interpolation.

Using noise with the continuity effect does not
give much smoothing for this junction. In three of
the four cases, using shaped noise resulted in an
unacceptable ‘‘hollow’’ sound. Using white noise
was feasible in some cases but at times was worse
than raw concatenation. Inserting too much noise
could result in the /m/ being perceived as a frica-
tion. In general, the continuity effect results were
poor.

Therefore, the LP algorithms – LSF interpola-
tion in particular – give the best spectral smooth-
ing performance for /m/–/iy/. We found that a
typical good interpolation period is around three
pitch periods, or 23 ms for a typical male speaker.
Incorporating optimal coupling as well can yield
further improvement, but LSF interpolation pro-
vides the most useful impact.

5. Results and evaluations

The net results of the examined algorithms
showed improvement over standard techniques
applied to small databases. The final speech is
more natural-sounding than direct concatenation
of selected units with no spectral processing. Still,
even the best smoothing algorithms sometimes
yield poor results at certain joints. Thus, blind use
of a smoothing algorithm to all segment joints can
result in speech that is of worse net quality than
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direct concatenation, but proper use of smoothing
can noticeably increase the quality.

Table 5 summarizes the four major approaches
which have been considered in this study. To
evaluate these spectral smoothing algorithms, we
performed comparisons based on a perceptual
listener test and an objective quality measure. In
addition, we show and describe a set of sample
spectrograms that compare the algorithms’ per-
formance. We combine these results with our own
subjective observations from this study to draw
conclusions about the algorithms’ effectiveness.

5.1. Data tested

For these evaluations, we chose to use two
different speech databases. Our informal tests and
evaluations were primarily based on the TIMIT
database, where each speaker provides only ten

phonetically-balanced sentences with approxi-
mately 400 phones. The phoneme labels for
TIMIT include 60 distinct allophones.

In comparison, for our formal tests we used
data collected specifically for this research study.
For each speaker, the new database includes 35
phonetically balanced sentences and 114 words
for a total of approximately 2300 phones. The
corpus includes 34 continuous read sentences, of
which 18 are adapted from the TIMIT database
and 16 are adapted from the Brown text corpus. 1

There are also a large number of mono-syllabic,
isolated words: 19 words are read three times each,
and 57 words are read once each. Finally, there
is 10 s of continuous, spontaneous speech. This
database was phoneme-labeled with the RSPL
speech time-aligner (Pellom and Hansen, 1998;
Pellom, 1998), which models 46 different phoneme
units.

Table 5

Summary of interpolation algorithms

Optimal coupling

Summary Adjust segment boundaries to improve spectral match

Advantages Does not modify actual signal

Disadvantages Limited benefit gained

Results Most consistent improvement in quality

Evaluation Better than nothing but not sufficient

Recommendation Useful as is

Waveform interpolation

Summary Interpolate between two pitch periods

Advantages Simple

Disadvantages Does not consider formant locations

Results Occasionally yields good results

Evaluation Not good by itself but useful on LP residual

Recommendation Useful on LP residual

LP interpolation

Summary Interpolate between linear predictive parameters

Advantages Averages formants when parameters match formants

Disadvantages Poor matching of parameters will give poor results

Results Performance varies from good in many cases to poor

Evaluation Often quite good; warrants more work

Recommendation Useful as is; warrants more research

Closure (continuity effect)

Summary Insert noise shaped to match desired spectral envelope

Advantages Spectrally matches surrounding signal

Disadvantages Still possesses noisy quality

Results Offers improvement primarily for transitions with noise-like sounds

Evaluation Holds potential, but not good enough yet

Recommendation Warrants more research
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For the comparison of smoothing algorithms,
14 sample words were created by constructing new
words from the collected database. The first half of
one word was matched with the second half of
another word. Pitch periods were manually aligned
between segments, and the segments were chosen
so that the pitch varied by no more than 2.5 Hz at
each joint. The original prosody of each segment
was left unaltered. Spectrally smoothed frames
were inserted via overlap-add.

The concatenated words and their source con-
texts are listed in Table 6. We chose to test segment
joints that are common in English. Our work also
places an emphasis on voiced data, and therefore
all combinations included transitions to or from
vowels. The following segment joints under test
fall within seven of the nine most frequent pho-
neme-class transitions as measured from TIMIT
(Pellom and Hansen, 1998): vowel! stop, semi-
vowel (liquid/glide)!vowel, stop!vowel, frica-
tive!vowel, vowel!nasal, vowel! semi-vowel,
nasal!vowel.

5.2. Listener test

A number of informal listener tests were per-
formed – both subjective and objective – in the
various stages of examining the spectral smoothing
algorithms. The results of several of these tests
were mentioned or incorporated into the preceding

text. Here we report only the final, formal listener
test results.

In order to reach a large number of potential
listeners, the listener test was implemented across
the World Wide Web (WWW). Both the instruc-
tions and the test itself were placed on the WWW
with speech available in multiple audio file formats
to accommodate listeners on a variety of com-
puters. Although direct control of the exact lis-
tening environment was not possible, we did make
recommendations and ask listeners to report on
the equipment used in performing the evaluation.

The test included several variations on 14 dif-
ferent words concatenated from segments in the
database (see Section 5.1). Algorithm variations
included the natural speech, raw concatenation
without smoothing, optimal coupling, waveform
interpolation, LP pole shifting, LSF interpolation,
and shaped noise (continuity effect). In a brief
training phase, listeners were presented with an-
chor speech signals to exemplify the high and
low judgement categories. Listeners were asked to
make a category judgement and give an opinion
score for each word under test with nine ratings on
a 1.0–5.0 scale (Deller et al., 2000; Quackenbush
et al., 1988).

A total of 33 listeners with no history of hearing
problems performed this mean option score
(MOS) evaluation. Using a five-point MOS scale,
with half-step ratings allowed, each algorithm

Table 6

Words used for listener testa

Word Phonemes Source Context

Bear /b//eh/r/ /b/oa/t/ /hh/eh/r/

Dog /d//ao/g/ /d/eh/r/ /w/ao/g/

Fear /f//iy/r/ /f/ay/r/ /w/iy/r/

Hair /hh/eh//r/ /hh/eh/d/ /h/ay/r/

Here /hh/ /ih/r/ /hh/aa/d/ /m/ih/r/

Hide /h/ay//d/ /h/ay/r/ /hh/aa/r/d/

Make /m/ey//k/ /m/ey/n/ /w/ow/k/

Mat /m//ae/t/ /m/ao/n/ /b/ae/t/

Moon /m/uw//n/ /m/uw/n/ /m/aa/n/

Nut /n//ah/t/ /n/aw/ /b/ah/t/

Wait /w//ey/t/ /w/eh/g/ /b/ey/t/

Wine /w/ay//n/ /w/ay/k/ /m/ow/n/

Wire /w/ay//r/ /w/ay/k/ /hh/ih/r/

Wood /w//uh/d/ /w/iy/k/ /hh/uh/d/

a Phones were extracted from two source words and combined at a single concatenation point to synthesize a new word. Phoneme

labels are from the TIMIT set. In the given phonemic spellings, ‘‘//’’ indicates the point of concatenation between phones.
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received at least one vote across all nine possible
grades. This result points to the wide range of
listener preference for all methods considered (e.g.,
from raw concatenation to each of the smoothing
methods). Table 7 shows the mean opinion scores
for each of the algorithms tested.

Fig. 16 plots these same MOS results. For each
spectral smoothing technique, the mean opinion
score is shown both for the entire test set and for
each phoneme class. Each transition tested in-
cludes a vowel and a consonant (NA¼ nasal,
LG¼ semi-vowel, ST¼ stop, or FR¼ fricative).
The vertical bar indicates the sample standard

deviation (SD) of the overall opinion scores with
tick marks at 0.5 and 1.0 SD.

Note that the optimal coupling scores given
here are only for those concatenated words for
which coupling did change the final speech signal.
In 8 of the 14 words of the test, the point of con-
catenation was the same for the raw concatenation
and the optimally coupled forms. Although in-
cluding the unmodified data for these eight words
in with the coupled data decreases the MOS results
for coupling, it still leaves coupling with a higher
rating than raw concatenation without any
smoothing.

Table 7

MOS results from listener testa

Algorithm MOS Better Worse

Natural speech 4.13 N/A N/A

Raw concatenation 3.53 N/A N/A

Optimal coupling 3.82 77.0% 23.0%

Waveform interpolation 2.80 40.1% 59.9%

Pole shifting 2.69 38.4% 61.6%

LSF interpolation 3.14 39.4% 60.6%

Shaped noise (closure) 2.43 20.1% 79.9%

a Included are percent of tokens rated better than raw concatenation and percent worse than raw concatenation.

Fig. 16. Mean opinion scores from listener test. Evaluations are of transitions between vowels and specified phone classes.
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The mean scores for each category indicate the
general performance, but analysis was also per-
formed on the relative scoring of each algorithm
for each of the evaluated words. Table 7 also re-
ports the fraction of cases in which each smooth-
ing algorithm was rated better or worse than the
same word with no smoothing. With the exception
of optimal coupling, the opinion scores were gen-
erally lower after smoothing was performed. While
the focus here was on the relative performance
across the different smoothing methods, it is pos-
sible that the absolute MOS scores could change
for a larger number of tested segment joints. Still,
these results are in line with observations that
smoothing can at times be useful or harmful de-
pending upon the phoneme circumstances. Opti-
mal coupling was the only algorithm which
consistently performed well enough to receive the
recommendation of general use without consider-
ation of the situation.

5.3. Objective scoring

The ANBM (see Section 2.3) was used to pro-
vide an objective measure for assessing segment
discontinuity. ANBM scores were calculated for

40 concatenated words which were smoothed with
each of the techniques under evaluation. This
word set includes all the examples in the listener
test (see Section 5.2) in addition to other concat-
enated words. For each concatenated word, the
ANBM score was obtained at multiple points
around each joint with a comparison made for the
maximum ANBM scores.

Fig. 17 reports the ANBM measure scores in
the same format as the MOS scores in Fig. 16 (see
Section 5.2). The large standard deviations for
several of the algorithms reflect how the results
vary widely from measureably improved to mildly
degraded over pure concatenation. Note that the
ANBM scores do vary by phoneme junction, and
the standard deviation marks help indicate how
each phoneme class performs for different algo-
rithms compared with the overall test set. The
white noise results are reported for comparison
with shaped noise.

5.4. Spectrogram comparison

Fig. 18 shows one example spectrogram from
each smoothing algorithm. The phrase ‘‘carry an
oily rag’’ from TIMIT is used for these spectro-

Fig. 17. ANBM scores for smoothed joints. Examples are from transitions between vowels and specified phone classes.
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grams. The naturally-produced speech in Fig.
18(a) demonstrates that most formants have
smooth transitions between phones yet some seg-
ment joints have rougher formant transitions.

Each subsequent spectrogram in the figure
shows synthesized speech produced by concate-
nating phones with the same phone segments used
in each example. The ANBM was used as the
concatenation cost in selecting phone segments to
attempt to find good spectral alignment in seg-
ments from the database. Note that the formants
tend to be smoother and more continuous with
several of the smoothing techniques, especially
with LP pole shifting.

Fig. 18(b) does not include any spectral
smoothing; although several joints have only small
formant movement, others (e.g., at 0.62 s) have
large and unnatural jumps in formant position. In
Fig. 18(c) the /oy/ phone (0.4–0.6 s) and the /l/
phone (0.6–0.7 s) are clearly different than for the
other examples shown; one result is a smoother
formant transition at 0.6 s. In Fig. 18(d), several
segments are noticeably different at the joints due
to waveform interpolation; in the example at 0.6 s,
the widely separated formants move towards each
other compared with (b) but still show a rough
transition. In the LP pole shifting example shown
in Fig. 18(e), good spectral transitions are present
for segments in the time region (0.1–0.4 s); how-
ever, poor smoothing is present near 0.6 s. In Fig.
18(f), LSF interpolation not only provides good
smoothing for time region (0.1–0.4 s) but also
distinctly improves the formant transitions near
0.6 s. It is important to note that processing via the
continuity effect (as shown in Fig. 18(g)) is per-
ceptually motivated, and as such the standard
spectrogram will not display the perceived level of
spectral smoothness.

5.5. Discussion

The evaluations presented here show that
spectral smoothing can at times improve the
quality of speech yet at times can degrade it fur-
ther. When smoothing succeeds it can noticeably
increase the continuity of speech. In some scenar-
ios it is better to perform no processing at all.

Fig. 18. Spectrograms of the phrase ‘‘carry an oily rag’’: (a)

naturally produced and (b)–(g) concatenated speech. Solid

vertical lines mark actual phone segment boundaries.
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Moreover, which algorithm (if any) is best to use
depends upon the circumstances.

Successful spectral smoothing can reduce the
disfluency of speech. Smoothing seems to affect
naturalness more than it affects intelligibility. The
range of results from these evaluations does not
imply that smoothing as a whole is not good, but
instead it indicates that there is no single solution
that can properly smooth all spectral discontinu-
ities.

Thus, indiscriminate use of spectral smoothing
is a poor choice because the results can produce
further discontinuities. With current techniques, it
generally would be best to manually inspect each
joint after smoothing, but such user-assisted labor
is typically impractical. The results from MOS lis-
tener evaluations and ANBM scores show that no
smoothing method is clearly superior and that
more effective methods are necessary. We recom-
mend use of an existing automated quality-check-
ing procedure such as rating with the ANBM.

The evaluations presented here have emphasized
applications in concatenative synthesis with a lim-
ited data set of phonemes. Many of the concepts
described herein also apply to synthesis with di-
phone sets and large corpora, but the emphasis
shifts in such situations. When spectral smoothing
is used in speech and audio coding, the situation
differs because the speech was originally spectrally
continuous. For coding applications, smoothing is
typically simpler and does not encounter some of
the previously mentioned problems that accompany
concatenative synthesis. For example, LP parameter
matching has a higher success rate with coding ap-
plications, and the duration of smoothing is some-
times shorter. Moreover, the quality of the resulting
smoothed speech is generally higher for coding.

6. Conclusions

In this study, we have focused on a compari-
son of four algorithms for spectral smoothing of
concatenated speech. The algorithms considered
include three major existing techniques for
smoothing – optimal coupling, waveform interpo-
lation, and LP interpolation – and one technique
(application of the continuity effect) which was

considered for spectral smoothing for the first time.
In addition to performing extensive informal
comparisons of the algorithms, we have reported
results from a formal listening test and scoring with
an auditory-based objective measure. These eval-
uations have been performed in the context of a
phoneme concatenation synthesizer with a small
data set. The net results of the discussed algorithms
are that no method is clearly superiod (see Table 5)
and no single algorithm performs best in all phone
joint circumstances. Application of smoothing
methods to many of the smoothed segment joints
demonstrate noticeable improvements over direct
concatenation, while other joints are of noticeably
worse quality after applying a smoothing algo-
rithm. This study has shown that most segment
based smoothing methods are not universally suc-
cessful for all segment joints and that the use of an
objective measure of segment joint quality is nec-
essary to direct more effecting smoothing.

Although synthesis systems with smoothing
typically apply a single algorithm indiscriminately,
we recommend using a smart system. Knowledge
of the phonemes involved in each joint enables
selection of an appropriate smoothing algorithm.
Scoring with an objective measure such as the
ANBM enables automated evaluation of whether
the smoothing has improved or degraded the
perceived quality of each transition.

While using such a smart system enables im-
provements over current techniques, there is still
room for enhancement in spectral smoothing. For
example, LP pole shifting could greatly benefit
from the derivation of a better distance measure for
matching poles in the z-plane across frames. In
addition, the proposed use of the continuity effect is
novel and promising enough that there may be
ways to improve it that we have not yet considered.

When spectral smoothing is appropriately
applied, the final speech has smoother, more
continuous formants and is often more natural-
sounding than direct concatenation of segments
without processing. These improvements benefit
speech coding by enabling appropriate generation
of intermediate data between transmitted frames.
These smoothing algorithms also improve the re-
sults of concatenative speech synthesis with a
limited database.
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