P1	P2	Q4

P1. Evaluate

$$
\begin{aligned}
\int_{0}^{3} \int_{\frac{1}{3} x}^{1} & \frac{1}{y^{2}+3} d y d x \\
\int_{0}^{3} \int_{\frac{1}{3} x}^{1} \frac{1}{y^{2}+3} d y d x & =\int_{0}^{1} \int_{0}^{3 y} \frac{1}{y^{2}+3} d x d y \\
& =\int_{0}^{1} \int_{0}^{3 y} \frac{1}{y^{2}+3} d x d y \\
& =\left.\int_{0}^{1} \frac{x}{y^{2}+3}\right|_{0} ^{3 y} d y \\
& =\int_{0}^{1} \frac{3 y}{y^{2}+3}-\frac{0}{y^{2}+3} d y \\
& =3 \int_{0}^{1} \frac{y}{y^{2}+3} d y \\
& =\frac{3}{2} \int \frac{1}{u} d u \\
& =\frac{3}{2} \ln (u) \\
& =\left.\frac{3}{2} \ln \left(y^{2}+3\right)\right|_{0} ^{1} \\
& =\frac{3}{2}(\ln (4)-\ln (3)) \\
& =\frac{3}{2} \ln \left(\frac{4}{3}\right)
\end{aligned}
$$

P2. The manufacturing cost of a conical canvas tent can be approximated by its surface area,

$$
S(r, h)=\pi r\left(r+\sqrt{r^{2}+h^{2}}\right)
$$

where r is the radius of the base of the tent and h is its height. Approximate the cost to manufacture a 4.083 foot tall tent that has a base radius of 2.833 .

First let's make our total differential.

$$
\begin{aligned}
S_{r}(r, h) & =\pi\left(r+\sqrt{r^{2}+h^{2}}\right)+\pi r\left(1+\frac{r}{\sqrt{r^{2}+h^{2}}}\right) \\
& =\frac{\pi\left(\sqrt{r^{2}+h^{2}}+r\right)^{2}}{\sqrt{r^{2}+h^{2}}} \\
S_{h}(r, h) & =\frac{\pi r h}{\sqrt{r^{2}+h^{2}}} \\
d S & =S_{r}(r, h) d r+S_{h}(r, h) d h \\
& =\frac{\pi\left(\sqrt{r^{2}+h^{2}}+r\right)^{2}}{\sqrt{r^{2}+h^{2}}} d r+\frac{\pi r h}{\sqrt{r^{2}+h^{2}}} d h
\end{aligned}
$$

Now, you should notice is that 4.083 is pretty close to 4 and 2.833 is pretty close to 3 . (In fact, I chose these numbers because .083 feet is very close to $1 / 12$ of a foot, otherwise known as one inch.) These are the most natural numbers to choose for the approximation. That gives us $d r=-0.167$ and $d h=0.083$. We have

$$
S(2.833,4.083) \approx S(3,4)+d S
$$

Now we calculate $S(3,4)$.

$$
\begin{aligned}
S(3,4) & =\pi \times 3 \times\left(3+\sqrt{3^{2}+4^{2}}\right) \\
& =\pi \times 3 \times(3+5) \\
& =24 \pi \\
& \approx 75.3982
\end{aligned}
$$

And finally we calculate

$$
\begin{aligned}
d S & =\frac{\pi\left(\sqrt{r^{2}+h^{2}}+r\right)^{2}}{\sqrt{r^{2}+h^{2}}} d r+\frac{\pi r h}{\sqrt{r^{2}+h^{2}}} d h \\
& =\frac{\pi\left(\sqrt{3^{2}+4^{2}}+3\right)^{2}}{\sqrt{3^{2}+4^{2}}} \times(-0.167)+\frac{\pi \times 3 \times 4}{\sqrt{3^{2}+4^{2}}} \times(0.083) \\
& =\frac{\pi(5+3)^{2}}{5} \times(-0.167)+\frac{12 \pi}{5} \times(0.083) \\
& \approx 75.398-6.090 \\
& \approx 69.308
\end{aligned}
$$

