Name: A

Answers

Score P1 P2 Q3

P1. Grandma Mildred's Fabulous Metallic Products, LLC, produces an steel-uranium alloy that is then used to make guitar strings for melodic death metal bands. Their expected profit can be approximated by

$$P(s, u) = -s^3 - 27u^3 + 108su$$

where s is the amount of steel and u is the amount of uranium used in production. Find the combination of steel and uranium that maximizes the expected profit, and compute what that profit is.

$$P_{s}(s,u) = -3s^{2} + 108u = 0$$
 $\longrightarrow s = \pm 6\sqrt{u}$
 $P_{s}(s,u) = -81u^{2} + 108s = 0$ $\longrightarrow -81u^{2} + 108(\pm 6\sqrt{u}) = 0$
 $\longrightarrow u = 0 \text{ or } 4$, so $(s,u) = (0,0) \text{ or } (12,4)$
 $P_{ss}(s,u) = -6s$
 $A(s,u) = P_{ss}(s,u)P_{su}(s,u) - (P_{su}(s,u))^{2} = -11664 + 972su$
 $P_{uu}(s,u) = -162u$ $\longrightarrow A(0,0) = -11664$ so $(0,0)$ is a saddle point $P_{su}(s,u) = 108$
 $A(12,4) = 34942$ and $P_{ss}(12,4) = -72$ so $(12,4)$

is a local maximum. The profit is then $P(12,4) = 1728$.

P2. You just got a job working for Giant Fish Tanks for Aquariums Incorporated, a company which constructs giant fish tanks for aquariums. Your boss wants you to determine the least amount of money that can be spent to construct a rectangular manatee aquarium, open on top, with a volume of 343 square meters. Glass costs \$35 per square meter. What is the minimum cost? Hint: Find the dimensions that will minimize the surface area (and hence the cost of glass.)

Constraint: y(x,y,z) = xyz - 343minimize: y(x,y,z) = xy + 2xz + 2yz

 $F(x_{1}y_{1}\xi_{1}\lambda) = xy + 2x\xi + 2y\xi - \lambda(xy\xi - 343)$ $F_{x}(x_{1}y_{1}\xi_{1}\lambda) = y + 2x\xi - \lambda y\xi = 0$ $F_{y}(x_{1}y_{1}\xi_{1}\lambda) = x + 2\xi - \lambda y\xi = 0$ $F_{z}(x_{1}y_{1}\xi_{1}\lambda) = x + 2\xi - \lambda y\xi = 0$ $F_{z}(x_{1}y_{1}\xi_{1}\lambda) = x + 2\xi - \lambda y\xi = 0$ $F_{z}(x_{1}y_{1}\xi_{1}\lambda) = x + 2\xi - \lambda y\xi = 0$ $F_{z}(x_{1}y_{1}\xi_{1}\lambda) = xy + 2\xi - \lambda y\xi = 0$ $X = y + 2\xi = x + 2\xi - x\xi = x + 2\xi - x\xi = 0$ $X = x + 2\xi = x + 2\xi - x\xi = x + 2\xi = 0$ $X = x + 2\xi = x + 2\xi = x + 2\xi = 0$ $X = x + 2\xi = x + 2\xi = x + 2\xi = 0$ $X = x + 2\xi = x + 2\xi = x + 2\xi = 0$ $X = x + 2\xi = x + 2\xi = x + 2\xi = 0$ $X = x + 2\xi = x + 2\xi = x + 2\xi = 0$ $X = x + 2\xi = x + 2\xi = x + 2\xi = 0$ $X = x + 2\xi = x + 2\xi = x + 2\xi = 0$ $X = x + 2\xi = x + 2\xi = x + 2\xi = 0$ $X = x + 2\xi = x + 2\xi = x + 2\xi = 0$ $X = x + 2\xi = x + 2\xi = x + 2\xi = 0$ $X = x + 2\xi = x + 2\xi = x + 2\xi = 0$ $X = x + 2\xi = x + 2\xi = x + 2\xi = x + 2\xi = 0$ $X = x + 2\xi = x + 2\xi = x + 2\xi = 0$ $X = x + 2\xi = x + 2\xi = x + 2\xi = 0$ $X = x + 2\xi = x + 2\xi = x + 2\xi = x + 2\xi = 0$ $X = x + 2\xi = x + 2\xi = x + 2\xi = x + 2\xi = 0$ $X = x + 2\xi = x$