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INTRODUCTION 
 

El Niño Southern Oscillation (ENSO) is a strong driver of seasonal climate variability 
that greatly impacts agriculture and regional economies (Legler et al., 1999). Advances in 
seasonal climate forecasting provide potential opportunities to reduce farm risk by tailoring 
agricultural management strategies to mitigate the impacts of adverse conditions or to take 
advantage of favorable conditions (Letson et al., 2001). Indeed, previous research has shown that 
improved ENSO forecasts could significantly impact the economic wellbeing of farmers in the 
Southeast USA by helping them to select an optimum farm plan and by assisting them in the 
selection of the best crop insurance strategy and the most appropriate federal aid program 
(Cabrera et al., 2007). Additionally, Cabrera et al. (2006a) have shown that seasonal climate 
information can be used to help dairy farmers develop management strategies that comply with 
new environmental regulations.  

Economic benefits of seasonal climate forecast information have also been reported for 
semi-arid regions in developing countries (e.g., Roncoli, 2006). Traditional agricultural 
production practices in these less-favorable areas rely on rainfed technologies making them 
extremely sensitive to variation in rainfall. Thus, improvements in the dissemination of seasonal 
rainfall forecasts have been proposed as a reliable strategy to protect and boost household and 
national food security among environmentally and economically vulnerable regions (Dilley, 
2000). 

Managing climate risk is especially important in agriculture not only for the direct impact 
that climate has on production, but also because most farmers tend to be risk averse. Risk 
aversion implies that farmers do not optimize their farm-plan for an upcoming season with 
average market and climate conditions; instead, they manage for adverse conditions (Rosenzweig 
and Binswanger, 1993). Thus, reducing uncertainties of seasonal climate forecasts may help 
farmers select more profitable farm management strategies.  

Nonetheless, climate information by itself is of little help to farmers and decision-makers 
unless it is presented in a way that it can be incorporated into managerial and policy processes. 
Cabrera et al. (2007) argue that farm decisions are also influenced by exogenous forces such as 
fixed market windows, fluctuation in market prices of inputs and outputs, and policies and 
regulations from local and federal governments that may enhance or limit the usefulness of the 
climate information. Furthermore, even in the event of a perfect forecast of an ENSO phase (i.e., 
El Niño, La Niña, or Neutral) there is still great intra-phase climate variability and uncertainty 
that significantly impacts farm risk. In addition, due to the complexity of agricultural systems, 
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non-rigorous statistical analysis may misinterpret or overweigh the impact of climate on 
agriculture.  

To address these issues, alternative methodological frameworks have been developed in 
recent years to help farmers and policy-makers cope with climate uncertainty and other risks 
(e.g., Liu et al., in press; Cabrera et al., 2007; Rubas et al., 2006; Meza et al., 2003; Letson et al., 
2001; Hammer et al., 2001; Mjelde and Hill, 1999). Also, further and faster advances expected in 
the sciences of climate and weather forecasting require the development of refined economic 
frameworks and analytical methods to help decision-makers take advantage and better assimilate 
this improved climatic information.  

Consequently, the goal of paper is to offer the scientific community a systematic review 
of how to incorporate climate information when studying agricultural production and risk 
management.  To do so, we first present some evidence of the impact of ENSO on agricultural 
production. Then, we present a comprehensive framework to use climate sensitive crop-yield 
models. Based on these models we propose a framework to account for climate risk in the 
development of optimum farm-plans. Next, we depict some thoughts on the usefulness of 
climatic information on policy making. Finally, we end this paper by presenting some ideas for 
future research.  
 

ENSO IMPACTS ON AGRICULTURE 
 
Agriculture depends on climate dependent and, because ENSO is one of the most 

important drivers of seasonal climatic variability around the world, it is expected that there 
would be correlations of different magnitudes and direction between crop yields and ENSO 
events. Furthermore, the capability of forecasting a specific ENSO phase has opened the 
opportunity of using this information to predict agriculture production with some level of skill.  

The impact of ENSO forecasts has been reported by several studies. Lagos and Buizer 
(1992) reported that a forecast of the mild El Niño in 1986/87 guided farmers on the coast of 
Peru (an area directly affected by El Niño) to plant cotton and rice in ratios resulting in higher 
yields compared with previous cropping seasons without forecasts. In the western South Pacific 
Ocean, Kuhnel (1994) reported a negative effect of El Niño on sugarcane production in 
Australia, whereas Meinke and Hammer (1997) reported positive effects on peanut production. 
In western South America, Podestá et al. (1999) reported increases in maize and sorghum yield 
during El Niño and yield reductions during La Niña in the Argentine Pampas (central-eastern 
Argentina), whereas Roel and Baethgen (2006) reported the opposite response of Uruguayan rice 
production. Hansen et al. (1999) reported ENSO impacts on winter vegetable production in 
Florida, Selvaraju (2003) assessed its effects on the production of grains in India, and Phillips 
and McIntyre (2000) analyzed its effects on several crops in parts of Uganda. 

 
 

FRAMEWORK FOR ENSO-BASED CROP YIELD FORECASTING 
 

Although there is strong evidence of a relation between ENSO and crop yields, empirical 
studies on this subject must follow a rigorous scientific framework in order to reduce the risk of 
finding inaccurate, artificial, or misleading relationships between ENSO and crop yields. The 
following steps give a conceptual framework of how to perform a statistical analysis and the 
issues to take into consideration for the development of accurate ENSO-based crop yield 
forecasting. 
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De-trending crop yield data 
Examining the impact of Southern Oscillation on Texas sorghum and winter wheat 

yields, Mjelde and Keplinger (1998) found that technological changes tend to confound the 
effects of seasonal climate factors, such as ENSO. Many non–climatic factors influence crop 
yield time series, including: 1) changes in varieties; 2) soil quality, 3) technology (e.g., 
mechanization, shifts between rainfed and irrigated production); 4) and market influences. 
Therefore, when a technological trend is apparent, it is necessary to remove it from the crop yield 
series before starting looking for correlations between crop productivity and climate. Only in 
areas with unchanged traditional crop management over multiple decades can this procedure be 
omitted. 

To de-trend the crop yield time series, it is assumed that climatic influences on crop 
yields generally occur at a higher frequency than non–climatic influences (Baigorria et al., 2008; 
Podestá et al., 1999). Therefore, a low-pass spectral smoothing filter (Press et al. 1989) can be 
used to obtain the annual yield residuals. This methodology first removes the linear trend. Then 
it is necessary to apply a Fourier transformation and remove low-frequency variations. Finally, 
the inverse Fourier transformation is applied and the linear trend is added again. The choice of 
the length of the smoothing period is arbitrary, so it is recommended to try periods larger than 10 
years to avoid the removal of annual fluctuations in yield associated with climate variability. De-
trending has to be done for each location because even places close one to another could respond 
to a different smoothing period, and that the removed trend must be always go upward in time. 
 
Statistical comparisons 

After detrending crop yields, the new crop yield residual time series must be divided 
according to ENSO-phase. Timing of the crop season is an important issue during the 
categorization; the crop season must occur during or following an ENSO event. Timing is 
especially important in the case of northern hemisphere where crops are planted from March to 
July (depending mostly on the latitude and the crop) whereas ENSO events develop during 
spring and summer in the southern hemisphere (winter in the northern hemisphere). Thus, higher 
correlations between crop yields and ENSO events should be expected for summertime crops in 
the southern hemisphere (e.g. Lagos and Buizer, 1992; Podestá et al., 1999) and wintertime crops 
in the northern hemisphere (e.g. Hansen et al., 1999). However, summertime crops in the 
northern hemisphere can also be affected because changes in rainfall patterns during previous 
months can modify soil moisture conditions prior or during planting (e.g. Frassie et al., 2006). 
Apart from the well-known direct correlation, there is also a lag time effect, from weeks to 
months, between the occurrence of an ENSO event in the Tropical South Pacific and more 
distant areas as the warm (cold) water moves. This time lag could modify regional climate 
patterns affecting spring and summer cropping seasons. In the case of multiyear crops such as 
sugarcane, productivity levels must be related to ENSO events occurring up to a year before 
harvest (Kuhnel, 1994). 

After dividing the time series according to the three ENSO-phase categories, these 
datasets must be statistically compared in order to test the hypothesis of the influence of ENSO 
on crops yields. To perform this, an analysis of variance F-statistic (ANOVA) gives the result if 
at least one of the ENSO-based crop yield categories is statistically different from the others. If 
statistical significance is found, a multiple range test such as Duncan’s multiple range test or 
Tukey’s test can be applied in order to identify which ENSO-based crop yield categories 
significantly differ from the others (Baigorria et al., 2007a; Hansen et al., 1999). 
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Use of dynamic crop models 
Whether or not a significant difference are found among the ENSO-based crop yield 

categories, previously calibrated and validated dynamic crop models can support efforts to 
identify alternative crop management strategies for using categorical ENSO forecasts. Dynamic 
crop models are mathematical representations describing growth and development of a crop 
interacting with a soil profile (Wallach 2006) under a given sequence of atmospheric conditions. 

Crop models have been calibrated and validated in different regions of the world (e.g. 
Fraisse et al., 2001; Jones et al., 2003; Lizaso et al., 2003) and used for studying impacts of 
climate variability and change in several regions around the globe (e.g. Adams et al., 2003; 
Baigorria et al., 2007b; Dubroský et al., 2000; Hansen and Indeje, 2004; Legler et al., 1999; 
Meinke and Hammer, 1997). Furthermore, crop models have been used to find best management 
practices by testing different crop management practices under different ENSO-phases (Cabrera, 
et al., 2006b; Paz, et al., 2007; Podestá et al., 2002; Steele, et al., 2001). Changing crops, crop 
cultivars, planting dates, and nitrogen fertilizer ammount, among others, are farm-feasible 
alternatives for responding to an ENSO-phase change. Because crop models can simulate crop 
responses to alternative management options, they constitute an efficient tool to evaluate the 
different seasonal climate scenarios provided under different ENSO-phases.  

 
Uncertainty 

Although El Niño and La Niña events are well defined by spatial (El Niño Regions), 
temporal (6 months), and thermal (± 0.5°C using 5-month running mean) thresholds in the 
Tropical South Pacific, intensity and volume of the total amount of oceanic water that is involved 
in the temperature anomaly differ among events within each ENSO-phase. This internal 
variability within categories creates uncertainties in the interpretation of how an ENSO event 
affects crop yields in a given location. The best way to introduce this uncertainty in the analysis 
is to simulate crop production using all the available years of meteorological information for 
each ENSO-phase and not only one representative year. In this way, probability distributions of 
expected yields under each ENSO-phase are obtained. One problem of this approach is the 
limited historical record of meteorological data and issues related to the errors and missing 
values. Weather generators are statistical tools that produce daily synthetic meteorological values 
that reproduce the main statistics of the historical record (e.g. Richardson and Wright, 1984; 
Schoof et al., 2005). The versatility of these weather generators opens the possibility to modify 
the analysis in order to be driven by specific climate events such as ENSO-phase (Grondonda et 
al., 2000) and climatic change (Dubroský et al., 2000). By using these tools it is possible then to 
generate hundreds of realizations consistent with a specific ENSO phase, thus making it possible 
to generate probability distributions of expected values that can be used as inputs for other 
applications, such as those described in following sections of this paper. The following section 
focuses on the impact of climate risk on farm decision making. First we present the foundation of 
farm-risk analysis. Then we describe a framework for incorporating seasonal climate risk in an 
optimal farm-plan model.   

 
 

AGRICULTURAL CLIMATE RISK DECISION MAKING 
 
Not only is agricultural production very sensitive to climate variability, it is also affected 

by many other factors, such as rural policies, prices of inputs and outputs, and international trade. 
That is, an agricultural decision-making process is performed under risky conditions. Anderson 
et al. (1977) state that any risky decision may be examined for the following five components: 1) 
alternatives, 2) conditions, 3) probabilities, 4) consequences, and 5) value. For an agricultural 
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scenario under seasonal climate variation, alternatives are all potential actions the decision 
maker can select to reduce risk (e.g., crop variety, planting date, irrigation schemes, etc.). 
Ambient conditions include seasonal climate variability that affects agricultural production (e.g., 
wetter and colder summer conditions during El Niño, or drier and warmer winter conditions 
during La Niña in Florida). Prior probabilities are the chances of historical occurrences of each 
of the possible conditions (e.g., ENSO neutral years have a historical probability of once every 
two years). These probabilities are associated with their conditions under a set of selected 
alternatives leading to particular consequences in the outcomes. The consequences include the 
relative chances of all potential occurrences (e.g., better than usual yield due to increased 
precipitation during a predicted El Niño year will be offset by the alternative chances of not 
occurring in an El Niño year.). Finally, the value represents the measurable outcome, usually as 
a monetary value, of the alternative selected under the risky conditions. For example, the net 
revenues of selecting a pest control management because of a seasonal climate forecast needs to 
be weighed against the decision of not using the climate information.  

Dijkhuizen et al. (1997, p. 136) add that based on the complexities of the agricultural 
sector, five extra elements should be considered. These new elements adapted to climate risk 
decision making are: 1) opportunity of using the climate information; 2) defining actions to be 
taken with the climate information; 3) gathering, synthesizing and analyzing the information; 4) 
making and implementing the decision; and 5) evaluating the results of the decision of using or 
not the climate information.  

To model the farm decision-making process under climate uncertainty researchers have 
used four major alternative methodologies (Rubas et al., 2006): 1) decision theory, 2) 
equilibrium modeling, 3) game theory, and 4) mechanism design theory. Among this group, 
decision theory has dominated the literature on climate forecast applications in agriculture. 
Decision theory assumes that a single decision agent (i.e., a farmer) makes a decision that will 
have consequences on the farmer’s enterprise. However this method does not account for the 
effect on other farms or surrounding enterprises. This assumption limits the decision theory 
approach to be farm-specific and cannot be used for large scale studies, in which case the other 
three methods would be more appropriate. Nonetheless, it is important to indicate that the other 
three alternative methods are highly theoretical frameworks and, consequently, less suitable for 
developing practical advice for farmers and decision makers. The rest of this section focuses 
only on decision theory. 

Decision theory implies the solution of an optimization problem that involves a utility 
function. Specifically, the model maximizes the expected utility subject to the expected returns 
based on a seasonal climate forecast obtained from prior knowledge.  

Decisions in this context include the risk preference of the decision maker. Farmers, as 
do most people, tend to be risk-averse decision makers. There have been several attempts to 
characterize farmers’ preferences on risks. The most widely used model to characterize risk 
decision preference in agriculture using climate information has been the expected utility 
function (EU). The EU weighs the probability of each potential outcome generating a 
comparable index to help in the decision. In order to implement an EU model it is necessary to 
have the risk preferences of the farmers. The concept of certainty equivalent (CE) or, in other 
words, the willingness of a decision maker to trade a lower value, more secure enterprise for a 
higher value, less secure enterprise. The CE function has proven useful to characterize farmers’ 
risk preferences. Several studies on climate decisions have used Hardaker (2004) farmers’ risk 
aversion typology to classify farmers as risk neutral, hardly averse, rather averse, very averse or 
almost paranoid.  

A relatively new method adapted to agricultural climate decision making is the 
conditional value at risk (CVaR). The CVaR has been widely used to assess financial risks and 
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was introduced recently to agriculture (Liu et al., in press). Different from the utility function, 
CVaR does not assign risk preferences to the decision makers per se. Instead, CVaR finds the 
optimal frontier curve and characterizes risk proposals according different levels of risk of 
success or failure. 

An additional concept of importance in agriculture decision making is the Bayes’s 
theorem that goes one step further on the probabilities of outcomes when using climate 
information. Whereas an initial analysis of the historical outcomes will rely on historical chances 
of outcomes (e.g., El Niño occurs 25% of the years and during an El Niño year there will be 30% 
chance of above average precipitation) and consequently analyze only what these probabilistic 
outcomes would be, the Bayesian approach includes, in addition, the probability of the actual 
outcomes related to those predicted with the historical data. Consequently, under a Bayesian 
framework, there will be a distinction of ‘prior’ (historical) and ‘posterior’ (observed) 
probabilities. The Bayesian method has proven useful in several areas of agriculture (e.g., pest 
control and herd health) and has also been applied on climate use in agriculture (Stern and 
Easterline, 1999). By logical deduction, decision makers would make ‘better’ decisions if they 
knew how good the prediction has been in recent past years. 

However, we argue that the Bayesian approach is not the best choice for ENSO based 
seasonal climate prediction as applied to agricultural production for the following reasons: 1) 
even with a perfect ENSO forecast, variability inside the phase will make trivial the use of 
posterior probabilities; 2) information to characterize ENSO phases is limited, there have been 
fewer than 20 El Niño occurrences documented to date so new information is more valuable to 
complete historical distributions than to create new distributions; and 3) introduction of a 
Bayesian factor into the analyses introduces another source of uncertainty that is difficult to 
account for by the decision-maker. Many recent studies on agriculture decision-making in 
response to climate information have better used Monte Carlo techniques to account for missing 
information in the distribution of ENSO phases (Cabrera et al., 2007; Letson et al., 2005). 

Although different scientific articles have used the methodologies presented above to 
control for climate variability on agricultural studies, a thorough analysis of the impact of 
climate on agriculture requires the implementation of a formal framework. In the following 
section we describe a framework to introduce climate information in farm optimization analyses.  

 
 

SEASONAL CLIMATE INFORMATION FOR FARM OPTIMIZATION 
 
The introduction of seasonal climate information when analyzing farm risks must follow 

a rigorous framework to avoid biased results. Based on the literature and on our experience we 
propose the following framework to incorporate seasonal climate information when studying the 
farm decision-making process. This framework is composed of the following steps: 1) Identify 
the problem and the opportunity of using ENSO-based climate information: 2) Gather adequate 
data; 3) Synthesize, organize, analyze, and expand the data; 4) Set up the optimization model and 
the risk preferences; and 5) Assess the value of climate information in agricultural production.  

 
Identify the problem and the opportunity of using seasonal climate information 

Agriculture is a climate vulnerable enterprise and there are easily identifiable potential 
opportunities to use seasonal ENSO-based climate information to improve agricultural 
production. Some examples are land allocation, variety and crop selection, and planting dates. 
For instance, rainfall in Florida is highly sensitive to ENSO phases with an average excess of 
about 40% of the normal rainfall during an El Niño year and with deficits of about 30% during a 
La Niña year (Jagtap et al., 2002). Thus, most of the crops raised in Florida are influenced by 
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ENSO conditions (Hansen et al., 1999). An analysis of 40 years of crop yield historical data 
(http://AgroClimate.org) indicates that on average peanut would yield more than the overall 
average during both La Niña and El Niño years (4.4 and 3.3% above average, respectively). 
Conversely, cotton would yield 9.1% less La Niña. Corn yields decrease 17% below average 
during El Niño years. 

A closer look at this information suggests that farmers potentially have a many 
alternatives to adapt to climate variability and to avoid the economic consequences of an 
abnormal climate year. However, current research offers limited information on the impact of 
ENSO on production. Thus, further analysis of the impact of ENSO on all available crops in a 
specific area is much needed to offer farmers the necessary tools to establish sustainable long-run 
farm-plans. 
 
Gather adequate data 

To perform an accurate study, different sources of information will be needed. It is 
critical to obtain reliable and long time series of daily weather data which contain all the 
necessary parameters for the agricultural enterprises to be studied. For instance, Cabrera et al. 
(2007) used daily data of maximum and minimum temperatures, incoming solar radiation, and 
precipitation for a 65-year period. These parameters were selected because they were needed to 
simulate process-based crop growth and crop yields. If animal production were the primary 
objective of the analysis, relative humidity would be essential to characterize thermal heat stress. 

Another important set of data is the agronomic information. This information is needed to 
find alternative management options for a specific crop. For example, in North Florida, the 
variety Georgia Green of peanut is planted between mid-April and mid-June, with a traditional N 
fertilization of 10 kg/ha at planting. This information would be used to simulate the growth and 
yield of this enterprise and compare it with other alternative management options. Crop rotation 
and land allocation are also important data to constrain the optimization model in the most 
realistic way. 

Economic information such as cost of production and commodity prices are also crucial. 
Although cost of production, including fixed and variables costs, can be accepted as constant 
throughout the analysis, commodity prices need to be introduced as probabilistic distributions. In 
the risk decision making scheme, profitability is crucial. When considering constant costs of 
production, total revenue becomes the most important factor in decision-making and this is 
calculated by multiplying the yields of the agricultural enterprises by their market prices, both of 
which are highly variable and uncertain. Therefore, a reliable source of historical commodity 
prices that allow a fair characterization of the price distributions is needed.  
 
Synthesize, organize, analyze, and expand data 

Once the different sources of information are available and before engaging in further 
analyses, quality control is required. Plotting and performing descriptive statistics help to find 
inconsistencies, missing information, and outliers that need to be examined. For weather 
information it is important to perform these analyses disaggregating the data by ENSO phases. 

A thorough assessment of climate risk and forecast value needs a more complete picture 
of the distribution of ENSO past events. For instance, during the last 64 years there have been 
only 14 El Niño events and 16 La Niña events. To obtain more robust results Letson (2005) 
expanded the historical weather data using stochastic weather generators to produce synthetic 
daily weather series with statistical resemblance to original historical data. Another solution is to 
use the available historical weather data to simulate agricultural yields and then simulate series 
of yields characterized by ENSO phases as was performed in Cabrera et al. (2007). 
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A similar dilemma is faced for commodity prices.  To give a fair analysis of each ENSO 
phase a similar matching price is needed, but there are price data available. Cabrera et al. (2007) 
and Letson et al. (2005) generated a distribution of 990 records of crop yields for each ENSO 
phase, consequently a distribution of 990 price-years were generated for each commodity. 
Commodity prices were assumed to be completely independent of ENSO climate characteristics. 
Agricultural commodity prices could have large distortions because of farm government 
programs and other non-farm controllable situations, which need to be considered during the 
generation of these price series. Lastly, different policies can be set with the model to analyze 
impacts of external forces in price distortion. 
 
Construct optimization model 

The goal of this subsection is not to give the reader a mathematical derivation of a farm 
optimization model under climate risk, which may be found in Letson et al. (2005). Rather we 
will present logical process of solving and understanding the decision problem. The objective of 
an optimization model is to find the maximum expected utility under a specific climate 
condition, such as a specific ENSO phase. Technically speaking, the optimization model 
compares expected utilities of all possible sets of management strategies within the model 
restrictions. By iteration, the model keeps the strategies that generate higher net returns and 
discards strategies with lower returns. In the end, the model presents the set of management 
options that provides the highest farm expected utility. The model can be modified so that a 
farmer can select the best management option that accommodates a specific climate scenario. 

A refinement of this analysis includes the incorporation of the level of risk aversion of 
the decision maker in the optimization process. This procedure can be performed by introducing 
a power function into the model. In doing so, the first step of the optimization will present a set 
of management practices that yields the maximum expected utility by risk aversion level. Next, 
the expected utility of all records need to be re-assembled using the optimal management. 

 
Assess the value of climate information for agricultural production 

The value of climate information can be calculated as the difference between the 
expected utility of a model accounting for ENSO-based forecast minus the expected utility of a 
model solved not using ENSO sensitive data. Positive values for ENSO information have been 
reported by Cabrera et al. (2007), Letson et al. (2005), and Messina et al. (1999), among others. 
However, under risky conditions of climate and prices, there is a likelihood of having negative 
values for climate information as well. A negative value of the information means that the farm 
would have been better off not using climate information, which is a possibility that the farmer 
needs to evaluate before making a final decision.  

The framework presented in this section allows farmers to make a more informed 
decision by including seasonal climate and other risks into their analysis. Depending on the 
decision-maker’s risk preference, it is possible to reduce or even eliminate the likelihood of 
negative values for climate information by trading it off with overall expected utility reduction. It 
is important to highlight that a positive or negative value for ENSO information does not mean 
that the farm will generate positive or negative net returns, but rather that farmers will be better 
or worse off using seasonal climate information in their farm decision-making process.  
 

POLICY, DECISION MAKING, AND USEFULNESS OF CLIMATE INFORMATION 
 
Our previous sections have shown that climate information can be highly valuable for 

both farmers and policy-makers. However, several factors may prevent its application to the 
development of policies and to help farmers in their decision-making process. One of the most 
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important factors affecting the implementation of seasonal climate sensitive farm and economic 
models relates to the uncertainly of accurate prediction of weather forecasts. Quiggin and 
Horowitz (2003) argue that since the predictions of long-run climate systems are highly 
uncertain; farmers will take suboptimal economic decisions based on ex post response to climate 
information. For instance, farmers facing a run of dry seasons must choose whether or not to 
continue in business without knowing if the climate has undergone a permanent change or if the 
run of dry seasons is just a temporary random fluctuation.  

In addition, routine availability of ENSO-based climate forecasts will not, by itself, 
increase agricultural incomes or lower production costs in ENSO-influenced regions. Climate 
information is but one of three parallel processes that comprise the forecasting process. In 
addition to the prediction itself, a communication process disseminates the prediction and a 
choice process reaches a decision (Pielke, 1998; Pielke, et al. 2000). The research community’s 
definition of a ‘good’ forecast does not necessarily agree with policy makers’ or society’s view 
of what is most important (Offutt 1993). The problem is partly one of communication. Fischhoff 
(1994) identifies several problems in communicating forecasts, including ambiguity regarding 
the event being predicted and what is being said about it, and the relevance of the forecast for 
users’ problems. In their review of forecasts for the 1997/98 El Niño, Barnston et al. (1999) cite 
ambiguous descriptions of magnitude, time of onset, and duration. Also, different stakeholders 
have different preferences about what a forecast should do. Thus efforts to ‘educate’ the public 
are unlikely to make them see forecasts as experts do (Freudenburg and Rursch, 1994). It is 
important to mention that in recent years major efforts have been undertaken to develop 
agricultural decision support tools with the aim of helping farmers cope with climate 
uncertainties (Breuer et al., 2008). However, this is clearly an area that merits further research. 

Another set of concerns for decision makers involves the application of seasonal climate 
forecasts. The mere existence of a technical innovation such as improved seasonal climate 
forecasts does not ensure that the innovation is refined or adaptable enough to meet potential 
users’ needs (Schultz, 1964); and thus, forecast use has advanced slowly (Trenberth, 1997; 
Changnon, 1999; Goddard et al., 2001). Whether a climate forecast can be useful depends on 
four conditions: 1) the availability of a forecast that is relevant to decisions, with appropriate lead 
time, and geographic and temporal resolution; 2) the feasibility of alternative actions that can be 
taken in response to a climate forecast; 3) the ability to evaluate the outcomes of those alternative 
actions; and 4) the willingness of decision makers to adopt climate adaptive management in an 
already complicated decision-making environment. 

Economists attempt to combine many of the concerns about forecast skill and application 
when they assume decision makers will use forecasts that are valuable. Forecast ‘value’ is based 
on the expected outcome from an improved, forecast-assisted decision compared with the 
expected outcome of the decision without the forecast. The potential value of seasonal climate 
forecasts and their application within a decision environment, such as crops grown, resource 
conditions, and production technology, have become important public policy concerns. In many 
countries seasonal climate data, forecasts, and technical assistance are provided and subsidized 
by the public sector (Glantz, 2000). Estimating forecast value can help show whether improved 
forecast provision and dissemination would offer more to society than other innovations, such as 
new or genetically modified seed varieties. Many economists have estimated the potential value 
that forecasts may have for agriculture (Mjelde et al., 1996; Hammer et al., 2001; Meza et al., 
2003). Mjelde et al. (1998) and R. Katz’s internet site (www.esig.ucar.edu/HP 
rick/agriculture.html) offer literature surveys of studies that estimate forecast value for 
agriculture. 

While the notion of a potential value for seasonal climate forecasts has been established, 
questions of when they may be most valuable have proven harder to resolve, in part, because of 
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the intricacy of many decision contexts. Seasonal climate forecast value perhaps most clearly 
depends on the accuracy of the forecast. Foremost in forecast value discussions has been its 
relationship to forecast quality measures, particularly skill (Katz and Murphy, 1997). Much 
important research has sought to link forecast skill and value (Murphy, 1997; Wilks, 1997). Once 
established for a given decision environment, the skill–value linkage allows researchers and 
users to evaluate the incremental benefits from actual or hypothetical forecast improvements. 

The close association between forecast skill and value has led to some confusion, as 
noted by Murphy (1993). While forecast value depends partly on skill, the two concepts differ in 
important ways as Hartmann et al. (2002), and Meinke and Stone (2005) clarify: a highly skillful 
forecast could have no value, and one of modest skill, if well applied, could have considerable 
value under the right circumstances. As Pielke et al. (2000, p. 366) note, “comparing a prediction 
with actual events does not provide sufficient information to evaluate its performance.” Other 
influences on forecast value warrant attention, especially those that are random and region- or 
application-specific (Wilks, 1997; Hartmann et al., 2002).  

 
 

CONCLUSION 
 
An improved basic understanding of the impact of seasonal climate variability (i.e., 

ENSO) on agriculture involves a more in-depth discussion of the value of the information as well 
as a broader knowledge of actual (or created) distinctions between adaptation, mitigation, and 
response to climate risks. Current research has shown that farmers can be better off by using 
seasonal climate information when deciding their farm plans. In addition, society would also 
gain if policy-makers adopt this knowledge when discussing rural policies, subsidies, and aid 
programs. Nevertheless, agricultural technology is highly ‘location specific’ and must be adapted 
to the cultural and resource conditions where it is to be applied (Schultz, 1964).  Although high 
quality research has been published on the impact of seasonal climate variability on agricultural 
production, the literature has focused on a handful of crops and in very limited geographic areas. 
Thus, much research is needed to expand our knowledge in this field.  

Farmers and decision makers may elect not to use seasonal climate forecasts for many 
reasons. One concern may be forecast quality, or the degree to which the forecast corresponds to 
subsequent observations. To be useful, a forecast must offer skill, or higher quality than that of a 
naïve forecasting system, such as the average conditions over many years for that location and 
time of year (i.e., climatology). Current understanding of sea surface temperature variability in 
the equatorial Pacific and its climatic impacts enables skillful forecasts of future sea surface 
temperature anomalies, although with errors (Landsea and Knaff, 2000).  

Lastly, the literature on agricultural climate risk management is highly dominated by 
studies on crops, with relatively little emphasis on other parts of the agricultural system. A 
reason for this situation may be that livestock spend part or all of their time in confinement, not 
having direct impact of the weather inclemency. However, we believe there are opportunities to 
expand and apply this area of research to livestock agriculture. Dairy cattle milk production 
alone, for example, is diminished between 68 and 2072 kg/cow per year in the US due to heat 
stress (St-Pierre et al., 2003), a condition that could be improved if ENSO-based information 
would be used to prepare actions on dairy farms.  
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