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ABSTRACT 

 
Global/Regional Circulation Models (GCMs) better predict interannual climate 

variability than they predict the absolute values of meteorological variables, usually 
overestimating number of rainfall events and amount of rain. Statistical bias correction methods 
increase the quality of daily model predictions of incoming solar radiation, maximum and 
minimum temperatures, and rainfall frequency and amount. However when bias corrected data 
are used as inputs to dynamic crop simulation models, dry spell distributions within the cropping 
season create large variations among crop yield ensemble members. In this study we used twenty 
ensemble members of 18-year periods provided by the Florida State University/Center for 
Ocean-Atmospheric Prediction Studies (FSU/COAPS) that were outputs from a regional spectral 
model coupled to the National Center for Atmospheric Research Community Land Model 
(CLM2). After bias correcting daily weather outputs, we estimated annual simulated crop yields 
by using principal components obtained from crop yield ensemble members. For three locations 
in Florida, Alabama, and Georgia, statistically significant correlations were found between the 
cross-validated crop yield estimations based on principal components and the simulated crop 
yields using observed meteorological data. From 37 to 71% of interannual crop yield variability 
was explained by one principal component, and estimated yields were in the correct tercile by 
margins of 30 to 50% beyond chance. No differences were found between the convective 
schemes used by the GCM. Predictability of corn yield using principal components was 
improved relative to the use of bias-corrected daily hindcasts produced by GCMs and directly 
used as inputs to the CERES-Maize model. Bias corrections of incoming solar radiation, 
maximum and minimum temperatures, and rainfall increased their predictability compared with 
bias correction applied only to rainfall. 
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INTRODUCTION 
 

Agricultural management has been improved in several regions of the world using 
seasonal climate predictions of based on El Niño-Southern Oscillation (ENSO) phase (Nnaji, 
2001; O’Brien et al., 1999; Petersen and Fraser, 2001; Podestá et al., 2002; Solow et al., 1998; 
Stahle and Cleaveland, 1992). Typically, these studies use seasonal forecasts based on the 
identification of analogues from ENSO categories. Unfortunately, in many regions ENSO signals 
are seasonal, are not clear, or do not exist, which severely limits their use for forecasts (Hansen 
et al., 1999; Phillips et al., 1998). 
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Useful alternatives for producing seasonal climate forecasts are Global/Regional 
Circulation Models (GCMs), which have been more successful in reproducing the interannual 
variation in large-scale atmospheric circulations (Martin et al., 2000; Sperber and Palmer, 1996; 
Shin et al., 2006). These simulated circulation patterns may be used directly for predicting crop 
yields as empirical relationships (Baigorria et al., 2006a; Challinor et al., 2003). However, direct 
use of forecast meteorological values deal with imperfect model specification and spatial 
averaging within GCM grid cells (Carter et al., 1994; Goddard et al., 2001; Mearns et al., 1995). 
These numerical models overestimate the number of rainfall events, creating an unrealistic 
distribution of dry spells during the cropping season (Shin et al., 2006). These frequent rainfall 
events lead to high yields and decreased interannual variability of predicted yields in rainfed 
agricultural systems (Dubrovský, 2000). To overcome such inaccuracies in forecasts, different 
statistical correction methods have been developed. Some methods are applied to monthly GCM 
ensemble members or their mean. These corrected GCM outputs are used to feed weather 
generators that produce daily weather inputs to crop models (Cantelaube and Terres, 2005; 
Feddersen and Andersen, 2005; Marletto et al., 2005). Other methodologies are applied to daily 
GCM outputs, for direct use by crop models (Baigorria et al., 2006c; Challinor, et al., 2005; Ines 
and Hansen, 2006). 

Simulating crop yields using the mean of seasonal climate hindcast ensembles results in 
smaller interannual variability than simulations that use observed data (Feddersen and Andersen, 
2005). On the other hand, simulating crop yields using each individual hindcast ensemble 
member generates a large range of possibilities, often without an apparent trend. This variability 
among the ensemble members is the result of dynamic crop model sensitivity to dry spell 
distribution during the cropping season (Baigorria et al., 2006c). Some ensemble members 
perform better than others; however, because all members have equal probability of occurrence 
there is no physical basis to select the best ones and to use them. Cantelaube and Terres (2005) 
handle this within-ensemble variability by using probability density functions and using the 
distributions to assess probabilities of occurrences for yield anomalies. However this approach is 
restricted by the number of available ensemble members. 

This study is based on the capabilities of GCMs to predict climate interannual variability 
and not the absolute values of meteorological variables. In this approach, the hypothesis is that 
the crop yield ensemble should also inherit this ability to predict interannual yield variability 
better than it predicts absolute values. Therefore, part of the total variance among the ensemble 
members must be due to the interannual climate variability. Principal Component (PC) analysis 
was used to summarize the simulated crop yield ensemble in orthogonal linear transformations. 
Then, these PCs were used to predict the simulated crop yields obtained by using observed 
weather data. 

A number of questions arose as we were considering how to predict crop yields by 
linking GCM and dynamic crop models. For example, is it possible to predict crop yields based 
on the use of observed weather data with hindcast crop yields? Is there a PC obtained from the 
hindcast crop yield ensemble that represents the interannual variability of the observed crop 
yields? Do bias correction methods applied to all the meteorological variables used by the crop 
model increase predictability compared to its application only to rainfall? Are there differences 
between the convective schemes used by the FSU/COAPS regional spectral model? How many 
hindcast ensemble members do we need? This study was conducted to help answer these 
questions and to guide us in analyzing the possibility to develop practical crop yield forecasts in 
the southeast USA. Objectives of this study were: 1) to summarize the hindcast crop yield 



 3 

ensemble by using PCs to predict the interannual variability of simulated maize using observed 
weather in three locations of the southeast USA; and 2) to quantify the improvements of bias 
corrections to the daily hindcasts of incoming solar radiation, maximum and minimum 
temperatures, and rainfall. 

 
 

METHODS AND PROCEDURES  
 
 Study area 

The study area is in the states of Alabama, Georgia, and Florida in the southeast USA 
between 35°23’ N, 88°59’ W and 24°57’ N, 79°26’ W. This region has some of the warmest 
conditions in the USA and is characterized by widespread but discontinuous cooling periods of 1 
to 2° C over most of the region (Karl et al., 1993). Annual rainfall ranges from 1100 to 1400 
mm, with the highest amounts occurring along the Gulf of Mexico coast and in south Florida 
(USGS, 2006). Additional detailed information of rainfall in the study area is found at Baigorria 
et al. (2006b). 

Three counties where corn has been consistently cultivated during the last 18 years were 
selected for the current study and are mapped by Baigorria et al. (2006c). The counties were 
Alachua, FL (29°41’ N latitude, 82°20’ W longitude), Crossville, AL (34°28’ N latitude, 85°46’ 
W longitude), and Tift, GA (31°28’ N latitude, 83°31’ W longitude). 

 
 Ensemble of hindcast yield simulations 

One weather station located in each of the selected counties was used in this study. Daily 
data of maximum and minimum temperatures and rainfall from these weather stations were 
obtained from the National Oceanic and Atmospheric Administration - National Climate Data 
Center [http://ncdc.noaa.gov/?home.shtml]. Incoming solar radiation was estimated using the 
technique of Richardson and Wright (1984). These data were used to build the observed weather 
database with two goals: (i) to perform the bias corrections on daily GCM model outputs 
(Baigorria et al., 2006c; Ines and Hansen, 2006); and (ii) to serve as inputs for simulations using 
the CERES-Maize model (Ritchie et al., 1998) for the same period for which GCM outputs were 
available (1987-2004). 

Also, daily hindcasts of incoming solar radiation, maximum and minimum temperatures, 
and rainfall were taken from the realizations of the FSU/COAPS regional spectral model (Cocke 
and LaRow, 2000; Shin et al., 2005, 2006). Hindcast outputs corresponded to the 18-year period 
from 1987 to 2004, from April to September each year. A set of 20 ensemble members was 
generated by the FSU/COAPS regional spectral model, and each of these ensemble members 
were used in the analyses. Differences between the ensemble members were: (i) the convective 
schemes; and (ii) the initial date of simulation. Convective schemes used were the Simplified 
Arakawa-Shubert scheme (SAS; Pan and Wu 1994) and the Relaxed Arakawa-Shubert scheme 
(RAS; Rosmond, 1992). Both convection schemes had 10 different, but consecutives initial dates 
of simulation beginning from 10- to 1-day before the hindcasts. From the daily hindcasts of each 
meteorological variable, values corresponding to the location of each weather station were 
extracted to build the corresponding databases. 

To correct daily rainfall amount and frequencies, bias correction was applied to rainfall 
by using the cumulative probability function of the two-parameter gamma distribution described 
by Ines and Hansen (2006). To correct daily incoming solar radiation bias corrections were 
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applied using the beta cumulative probability function, and for maximum and minimum 
temperatures, the Gaussian distributions. All bias corrections were applied daily to each 
ensemble member and for each month from March to September across the 18-year period. 
Detailed descriptions of the procedures are found in Baigorria et al. (2006c). Finally, twenty 18-
year bias-corrected ensemble members of daily meteorological data were created and formatted 
for input to the crop model. 

The CERES-Maize model (Ritchie et al., 1998) was selected for this study as crop 
simulator because of the economical importance of corn in the region and because this crop is 
more sensitive to soil moisture deficit than other crops (Sadras and Calviño, 2001). Thus, 
impacts of rainfall forecasts on crop yields can be evaluated relative to impacts of total rainfall 
amount and frequency. 

Soil profile characteristics needed for crop simulations were obtain from the Natural 
Resources Conservation Service [www.nrcs.usda.gov]. The soil in Crossville was characterized 
by a silt loam soil of 1.8 m depth, in Tift by a loamy sand of 2.0 m depth, and in Alachua by a 
sandy soil of 2.5 m depth. The highest field capacity was for the Crossville soil (0.244 cm3 cm-3) 
followed by Tift (0.183 cm3 cm-3) and Alachua (0.103 cm3 cm-3). Soil organic carbon content 
followed the same trend among locations with 15.3, 11.4 and 5.7 g kg-1 respectively. Detailed 
descriptions of chemical and physical properties from the soil profile used in this study can be 
found in Baigorria et al. (2006c). 

With the exception of planting date, crop management was set according to previous 
research in Gainesville, FL (Jones et al., 1986). The simulated corn variety was McCurdy 84AA, 
planted at a density of 7.2 plants m-2. Planting was on same date every year depending on 
location: 15 May in Alachua and Tift and 1 April in Crossville. Rainfed conditions were 
simulated with a total amount of 255 kg N ha-1 N fertilizer split into 5 applications every 14 
days. We did not attempt to evaluate the representativeness of the scenarios, or account for 
heterogeneity of soils or weather within each county. 

The three evaluated bias correction scenarios were: (i) bias correction applied to all 
meteorological variables from the hindcast, (ii) rainfall bias-corrected hindcast and raw hindcast 
of the remaining variables, and (iii) rainfall bias-corrected hindcast and climate monthly average 
of the remaining variables. For each bias correction scenario and each ensemble member yearly 
simulated crop yields (crop yield ensembles) were correlated with the yearly realizations using 
observed weather data (observed crop yields). 

 
 Summarizing crop yield ensemble by principal components 

Considering our hypothesis that part of the total variance among the ensemble members 
is the result of interannual climate variability, PC analysis was applied to summarize the 
ensemble members based on their variance. The software used was the Climate Predictability 
Tool3 developed by the International Research Institute for Climate Prediction and Society. 

 
Principal component analysis.  Principal component (PC) analysis is an effective way of 
summarizing correlated multivariate data. PCs are orthogonal linear transformations of a 
multivariate data set that successively maximize the residual variance that remains after higher-
order PCs are removed. The transformation matrix consists of eigenvectors of the covariance 
matrix where the sum of the squared annual weights is 1 (Hair et al., 1998; Wilks, 2006). 

                                                 
3 http://iri.columbia.edu/outreach/software 
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For each location, PC analysis was applied to summarize the 20 ensemble members of 
each bias correction scenario in new variables based on explaining most of their total variance. 
After calculating and removing the first PC from the ensemble, the 20 ensemble members were 
now constituted by residuals, not by simulated yields. From this ensemble of residuals, a second 
PC was calculated and removed. This procedure was applied iteratively until the maximum 
number of PCs was obtained. Each PC was constituted by 18 annual weights, each of these 
weights representing one year from the 18-year period. 

Linear regression analyzes were performed between annual weight of each PC and annual 
observed crop yields. Only one PC, the one which gave the best predictability for each location, 
was selected as predictor. Cross-validation analyzes (Efron and Tibshirani, 1993) were 
performed leaving three years out from the 18-year period and performing a linear regression 
analysis with the remaining years. Next, the three removed years were estimated by the linear 
model using the annual weights of the other years as predictors. This procedure was performed 
iteratively after all the years were simulated. This procedure tested the ability of using this 
approach to predict crop yields using independent data. 

 
Predictability analyses.  Two types of measures were used to analyze predictability between PC-
predicted yields and observed crop yields. Measures based on continuous predictands were 
Pearson’s correlation (ρ), statistical significance level, Spearman’s correlation (ρrank), and root 
mean square error (RMSE). Measures based on categorical predictands were the hit score and hit 
skill score based on terciles (Murphy, 1993). The hit score was defined as the percentage of 
times the forecast tercile category corresponded with the observed tercile category (Equation 1). 
The hit score can be interpreted as the probability of forecasting terciles. The hit skill score was 
defined as the percentage of times, beyond that expected by chance, the forecast tercile category 
corresponded with the observed tercile category (Equation 2). 

 %100
forecasts ofnumber  #

forecastscorrect  #
scoreHit ×=  [1] 

 %100
correct expected # - forecasts #

correct expected # -correct  #
score skillHit ×=  [2] 

Hit scores range from 0 to 100% and are directly related to the predictability skill. Hit skill 
scores range from -100% (total lack of predictability beyond chance) to 100% (maximum 
predictability). 

Predictability analyses were compared among the cross-validated PC-predicted crop 
yields from the three bias correction scenarios at each evaluated place. 

 
Convection schemes.  To address the question whether there were differences in crop yield 
predictability between convection schemes (SAS and RAS), the ensemble of the best bias 
correction scenario was split into two sub-ensembles of ten ensemble members each. The split 
was based on the convection schemes. The same continuous and categorical predictability 
measures described in section 2.3.2 were applied to each 10-member sub-ensemble to compare 
the convection schemes. 

 
Minimum number of ensemble members.  To address the question of how many ensemble 
members were needed to predict crop yields, several sub-ensembles containing different number 
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of ensemble members were generated from the best bias correction scenario. Each sub-ensemble 
had an equal number of ensemble members from each convection scheme. 

Because initial dates in the original ensembles were chosen in a logical manner, we 
constrained the sub-ensembles to only possible logical combinations of these initial dates based 
on: (i) consecutive dates with a total number of ensemble members less than or equal to 10 and 
more than or equal to 4; and (ii) initial dates of beginning the simulations ranging from 10- to 1- 
day before the hindcasts. The largest number of ensemble members was established according to 
the maximum number of available realizations for each convection scheme. The minimum 
number of ensemble members was established to have a sample size large enough for the cross-
validation analyzes. 

PCs were computed for each sub-ensemble, and omit-one cross-validation analyzes were 
performed between the observed crop yields and each crop yield sub-ensemble. From each set of 
sub-ensembles containing the same number of ensemble members, the sub-ensemble with the 
smallest predictability skills was selected. Predictability values of this sub-ensemble represented 
the predictability baseline obtained from different sub-ensembles randomly selected by a GCM 
operator. 

 
 

RESULTS AND DISCUSSION 
 
 Predicting observed yields 

Table 1 shows Pearson’s correlations between observed crop yields and each of the crop 
yield ensemble members using the bias correction method applied to all meteorological 
variables. Few ensemble members showed significant correlations, and according to results 
shown in Figure 1, there was no apparent trend among the ensemble members. All ensemble 
members equally predicted corn yields in the three locations and there was neither physical- nor 
physiological-based reasons to select any particular member for use as predictors. 

Table 2 shows the predictability measures after selecting the PC that best predicted 
observed corn yields. These cross-validated results were performed for the three locations and 
for the three bias correction scenarios. According to the results, bias correction applied to all 
variables explained more variability than the other two scenarios. The use of raw hindcast values 
of incoming solar radiation, and maximum and minimum temperatures, was better than using the 
monthly climatology combined with bias-corrected rainfall. Bias correction applied to all 
variables was always statistically significant. Spearman’s correlation showed that the Pearson 
correlations were not due to outliers in the cross-validated PC-predicted yields. For the best bias 
correction scenario, PC 10 was used for predicted yields in Crossville, PC 12 for Tift and PC 4 
for Alachua. 

The probability of predicting the terciles was larger than 53%, and the probability of a 
prediction in comparison to the climatology ranged from 30% in Crossville to 50% greater in 
Alachua. Figure 2 shows cross-validated PC-predicted yields versus the observed crop yields 
across years. In some locations the methodology performed better than others; however there 
was a tendency to predict crop yields better in locations where ENSO signals were strong. These 
results were compared to the predictions completely based on ENSO-phase made by Hansen et 
al. (1999), who found statistically non significant differences in maize during the summer season 
in Florida. 
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Table 1.    Pearson’s correlation (?) between simulated yields using observed 
weather data versus simulated yields of each ensemble member 
using bias-corrected hindcasts of all variables. Largest and smallest 
? for each location are bold.

 
Ensemble 
member Crossville Tift Alachua 

1 -0.2072 -0.0236 0.1103 
2 0.0462 0.2127 0.2652 
3 -0.2598 -0.2318 0.5466 
4 -0.4669 -0.1162 0.1270 
5 0.0047 -0.0768 0.0783 
6 -0.1555 -0.1036 -0.6093 
7 0.1780 0.0900 -0.1667 
8 0.0906 -0.5512 0.3734 
9 0.1491 0.1108 0.2140 
10 -0.3480 -0.0506 -0.0200 
11 0.0189 0.2827 0.1936 
12 -0.0598 0.6784 -0.0684 
13 0.1408 0.5102 0.5168 
14 -0.3971 0.2328 -0.3061 
15 0.3598 0.2804 0.4254 
16 0.4036 -0.2443 0.5610 
17 -0.1625 0.2191 0.0689 
18 -0.1059 0.0558 -0.0026 
19 0.3740 -0.3798 -0.0333 
20 -0.0944 0.5165 -0.3411 
X  -0.0649 0.2275 0.3206 

X = dry matter averaged from the 20 ensemble members. 
 
 
Predicted yields were increased using more than one PC. PCs are orthogonal, so 

predictability would not be overestimated if using more than one PC. However, we did not 
attempt to find the optimal set of these PCs for each location and to avoid complications, these 
results were not presented. 

 
 Effect of convection schemes 

According to results in Table 3, correlations were statistically non-significant between the 
convections schemes. The only exception was the SAS convection scheme applied in Crossville. 
In general terms SAS, performed better than RAS in the continuous measures of predictability 
whereas the opposite occurred in the categorical measures of predictability. However none of 
them performed better than both schemes used together (Table 2). In Tift, Pearson’s correlation 
was significantly higher than Spearman’s correlation, which is due to one outlier in the values. 

 



 8 

 
Figure 1. Comparison of the simulated harvested dry matter using observed meteorological 

variables (bold line) versus simulations using bias-corrected hindcast (thin lines). 
(a) Crossville, (b) Tift, and (c) Alachua. 
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Table 2.  Pearson’s correlation (?), Spearman’s correlation (?rank), root mean squared 
error (RMSE), hit score (HS) and hit skill score (HSS) of the PC-predicted 
crop yields for each location and bias correction scenario.

Location 
Bias 

correction 
scenario 

? ?rank 
RMSE 

(kg ha-1) 
HS  
(%) 

HSS  
(%) 

I 0.6051* 0.6393 2386.2 53.3 30.0 
II 0.3458ns 0.4571 2898.4 66.7 50.0 

 
Crossville 

III 0.4140ns 0.4179 2934.1 53.3 30.0 
I 0.8451*** 0.7893 1752.6 60.0 40.0 
II 0.7442** 0.6571 2071.0 53.3 30.0 

 
Tift 

III 0.6148* 0.7036 2422.1 60.0 40.0 
I 0.8107*** 0.7964 1604.8 66.7 50.0 
II 0.7313** 0.8071 1835.0 66.7 50.0 

 
Alachua 

III 0.6931** 0.7179 1924.8 66.7 50.0 
  I =  Bias-corrected hindcast of all variables. 
 II =  Bias-corrected hindcast of rainfall and raw hindcast of the remaining 

variables. 
III =  Bias-corrected hindcast of rainfall and climate monthly average of the 

remaining variables. 
*, **, *** Significant at the 0.05, 0.01, and 0.001 probability level, respectively.  
ns Not significant. 

 
 

 
 
Table 3. Pearson’s correlation (?), Spearman’s correlation (?rank), root mean squared 

error (RMSE), hit score (HS) and hit skill score (HSS) of the PC-predicted 
crop yields for each location and convection schemes for the best bias 
correction scenario. 

 
Location Convection 

Scheme 
? ?rank RMSE 

(kg ha-1) 
HS  
(%) 

HSS  
(%) 

SAS 0.9040** 0.9286 2765.4 42.9 14.3 Crossville 
RAS 0.6350ns 0.6071 2906.0 57.1 35.7 
SAS 0.7070ns 0.6429 2170.8 42.9 14.3 Tift 
RAS 0.8266* 0.5000 1666.5 71.4 57.1 
SAS 0.6139ns 0.6429 2684.5 57.1 35.7 Alachua 
RAS 0.3903ns 0.2857 2743.6 57.1 35.7 

 SAS = Simplified Arakawa-Schubert scheme. 
 RAS = Relaxed Arakawa-Schubert scheme. 
 *, ** Significant at the 0.05, and 0.01 probability levels, respectively.  
 ns Not significant. 
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Figure 2. Comparison of the simulated harvested dry matter using observed meteorological 

variables (bold) and cross-validated predictions using principal component analysis 
(thin). (a) Crossville, (b) Tift, and (c) Alachua.  

 *, *** Significant at 0.05, and 0.001 probability level, respectively. 
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 Effect of number of ensemble members 
Predictability increased directly as the number of ensemble members increased until a 

plateau was reached (Figure 3). However, considering RMSE, this plateau was reached first in 
Alachua using 12 ensemble members, followed by Tift (16 ensemble members) and finally in 
Crossville (20 ensemble members) A trend was detected related to the strength of ENSO signal 
in the area. Large number of ensemble members was needed as the influence of the ENSO signal 
decreased from south (Alachua) to north (Crossville) locations. Some specific combinations of 
less than twenty ensemble members gave better predictability than that obtained using twenty 
ensemble members. However, due to the uncertainty created by randomly selecting initial dates 
of starting simulations, the probability to hit this specific best combination of sub-ensemble 
members was low. 

 
 

CONCLUSIONS 
 
Principal components used with the FSU/COAPS regional spectral model predicted 

observed maize yield variability with good skill levels in this study. This methodology avoided 
the problem of highly variable dry-spell within the cropping season, which has led to low skill 
when linking numerical circulation models to dynamic crop models. The use of bias correction to 
all meteorological variables used by the CERES-Maize model gave the best results in predicting 
the observed crop yields. There were no differences in the PC-predicted crop yields between 
convective schemes. The largest the number of ensemble members needed to predict observed 
yields varied from 12 to 20 in this study and was related to the ENSO signal strength among 
these locations. Principal component analysis increased skill of the CERES-Maize model to 
predict observed crop yields using bias-corrected daily outputs from the FSU/COAPS regional 
spectral model relative to the use of raw or bias-corrected outputs. 

 

 
Figure 3. Changes of Pearson’s correlation (filled symbols) and RMSE (open symbols ) 

according to the number of ensemble members used in the cross-validated 
Principal Component regression analysis. Crossville (squares), Tift (triangles), 
and Alachua (circles). 



 12 

ACKNOWLEDGEMENTS 
 

The research was supported by the National Oceanic and Atmospheric Administration – 
Applied Research Center (NOAA-ARC) through the grant No. NA16GP1365 subcontract 
FSU/UF No. 02081352-1-1 and developed under the auspices of the Southeast Climate 
Consortium (SECC). The views expressed in this paper are those of the authors and do not 
necessarily reflect the views of NOAA or any of its sub-agencies. 
 
 
REFERENCES  
 
Baigorria, G.A., J.W. Hansen, N. Ward, J.W. Jones, and J.J. O’Brien. 2006a. Regional 

atmospheric circulation and surface temperatures predicting cotton yields in the Southeastern 
USA. J. Appl. Meteorol. (Submitted) 

Baigorria, G.A., J.W. Jones, and J.J. O’Brien. 2006b. Understanding rainfall spatial variability in 
the Southeast USA at different timescales. Int. J. Climatol., Doi: 10.1002/joc.1435. (In press) 

Baigorria, G.A., J.W. Jones, D.W. Shin, A. Mishra, and J.J. O’Brien. 2006c. Assessing 
uncertainties of using daily data outputs from regional numerical climate models as inputs to 
crop simulation models. Southeast Climate Consortium Technical Report SECC-06-007. 

Cantelaube, P., and J.M. Terres. 2005. Seasonal weather forecasts for crop yield modelling in 
Europe. Tellus A, 57A: 476-487. 

Carter, T.R., M.L. Parry, H. Harasawa, and S. Nishioka. 1994. IPCC technical guidelines for 
assessing climate change impacts and adaptations. Special Report to Working Group II, 
Intergovernment Panel on Climate Change. 59 p. 

Challinor, A. J.M. Slingo, T.R. Wheeler, P.Q. Craufurd, and D.I.F. Grimes. 2003. Towards a 
combined seasonal weather and crop productivity forecasting system: Determination of the 
working spatial scale. J. Appl. Meteorol., 42: 175-192. 

Challinor, A., J.M. Slingo, T.R. Wheeler, and F.J. Doblas-Reyes. 2005. Probabilistic simulations 
of crop yield over western India using the DEMETER seasonal hindcast ensembles. Tellus 
A, 57A: 498-512. 

Cocke, S., and T.E. LaRow. 2000. Seasonal predictions using a regional spectral model 
embedded within a coupled ocean-atmosphere model. Mon. Weather Rev., 128: 689-708. 

Dubrovský, M., Z. Zalud, and M. Stastna. 2000. Sensitivity of CERES-maize yields to statistical 
structure of daily weather series. Climate Change, 46: 447-472. 

Efron, B., and R.J. Tibshirani. 1993. An introduction to the bootstrap. Number 57 in Monographs 
on statistics and applied probability. Chapman and Hall, NY. 

Feddersen, H., and U. Andersen. 2005. A method for statistical downscaling of seasonal 
ensemble predictions. Tellus A, 57A: 398-408. 

Goddard, L., S.J. Mason, S.E. Zebiak, C.F. Ropelewski, R. Basher, and M.A. Cane. 2001. 
Current approaches to seasonal to interannual climate predictions. Int. J. Climatol., 21: 1111-
1152. 

Hair, J.F., R.E. Anderson, R.L. Tatham, and W.C. Black. 1998. Multivariate data analysis. Fifth 
edition. Prentice Hall International, Inc. 799 pp. 

Hansen, J.W., J.W. Jones, C.F. Kiker, and A.W. Hodges. 1999. El Niño-Southern Oscillation 
impacts on winter vegetable production in Florida. J. Climate 12: 92-102. 



 13 

Ines, A.V.M., and J.W. Hansen. 2006. Bias correction of daily GCM rainfall for crop simulation 
studies. Agric. Forest Meteorol., In press: available on- line 11 May 2006. 

Jones, J.W., B. Zur, and J.M. Bennett. 1986. Interactive effects of water and nitrogen stresses on 
carbon and water vapor exchange of corn canopies. Agric. Forest Meteorol., 38: 113-126. 

Marletto, V., F. Zinoni, L. Criscuolo, G. Fontata, S. Marchesi, A. Morgillo, M. van Soetendael, 
E. Ceotto, and U. Andersen. 2005. Evaluation of downscaled DEMETER multi-model 
ensemble seasonal hindcasts in a northern Italy location by means of a model of wheat 
growth and soil water balance. Tellus A, 57A: 488-497. 

Martin, G.M., K. Arpe, F. Chauvin, L. Ferranti. K. Maynard, J. Polcher, D.B. Stephenson, and P. 
Tschuck. 2000. Simulation of the Asian summer monsoon in five European general 
circulation models. Atmos. Sci. Lett., 1: 37-55.  

Mearns, L.O., F. Giorgi, L. McDaniel, and C. Shields. 1995. Analysis of daily variability of 
precipitation in a nested regional climate model: comparison with observations and doubled 
CO2 results. Global. Planet. Change, 10: 55-78. 

Nnaji, A.O. 2001. Forecasting seasonal rainfall for agricultural decision-making in northern 
Nigeria. Agric. Forest Meteorol., 107: 193-205. 

O’Brien, J.J., Zierden, D.F., Legler, D., Hansen, J.W., Jones, J.W., Smajstrla, A.G., Podestá, G., 
and Letson, D. 1999. El Niño, La Niña and Florida’s Climate: Effects on Agriculture and 
Forestry. The Florida Consortium (Florida State Univ., Univ. of Florida and Univ. of Miami). 

Pan, H.L., and W.S. Wu. 1994. Implementing a mass flux convection parameterization scheme 
for the NMC Medium Range Forecast Model. Preprints, 10th Conf. on Numerical Weather 
Prediction, Portland, OR, Amer. Meteor. Soc., 96-98. 

Petersen, E., and R.W. Fraser. 2001. An assessment of the value of seasonal forecasting 
technology for Western Australian farmers. Agric. Sys., 70: 259-274.  

Phillips, J.G., M.A. Cane, and C. Rosenzweig. 1998. ENSO, seasonal rainfall patterns, and 
simulated maize yield variability in Zimbabwe. Agric. Forest Meteor., 90: 39-50. 

Podestá, G., D. Letson, C. Messina, F. Royce, R.A. Ferreyra, J.W. Jones, J.W. Hansen, I. Llovet, 
M. Grondona, and J.J. O’Brien. 2002. Use of ENSO-related climate information in 
agricultural decision making in Argentina: a pilot experience. Agric. Sys., 74: 371-392. 

Richardson, C.W., and D.A. Wright. 1984. WGEN: A model for generating daily weather 
variables. U.S. Department of Agriculture, Agricultural Research Service. Publication ARS-
8, 88 p. 

Ritchie, J.T., U. Singh, D.C. Godwin, and W.T. Bowen. 1998. Cereal growth, development and 
yield. p. 79-98. In: G.Y. Tsuji, G. Hoogenboom, and P.K. Thornton (Eds). Understanding 
Options for Agricultural Production. Kluwer Academic Publishers, Dordrecht, the 
Netherlands. 

Rosmond, T.E. 1992. The design and testing of the Navy Operational Global Atmospheric 
Prediction System. Wea. Forecasting, 7: 262-272. 

Sadras, V.O., and P.A. Calviño. 2001. Quantification of grain yield response to soil depth in 
soybean, maize, sunflower, and wheat. Agron. J., 93: 577-583. 

Shin, D.W., J.G. Below, T.W. LaRow, S. Cocke, and J.J. O’Brien. 2006. The role of an advance 
land model in seasonal dynamical downscaling for crop model application. J. Appl. 
Meteorol., 45: 686-701. 

Shin, D.W., S. Cocke, T.E. LaRow, and J.J. O’Brien. 2005. Seasonal surface air temperature and 
precipitation in the FSU Climate Model coupled to the CLM2. J. Climate, 18: 3217-3228. 



 14 

Solow, A., R.M. Adams, K.J. Bryant, O.M. Legler, J.J. O’Brien, and co-authors. 1998. The value 
of improved ENSO prediction to US agriculture. Climatic Change, 39: 47-60. 

Sperber, K.R., and T.N. Palmer. 1996. Interannual tropical rainfall variability in general 
circulation model simulations associated with the Atmospheric Model Intercomparison 
Project. J. Climate, 9: 2727-2750.  

Wilks, D.S. 2006. Statistical methods in the atmospheric sciences. International Geophysics 
series. Second edition. Elsevier Academic Press Publications, CA. 627 p. 

 
 
 


