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ABSTRACT 
 

Regional numerical climate models may be able to produce climate forecasts that would 
provide useful predictions of crop yields several months in advance. In this study, we linked 
outputs from the Florida State University/Center for Ocean-Atmospheric Prediction Studies 
(FSU/COAPS) regional spectral model to a dynamic crop model (CERES-Maize) for evaluating 
uncertainties in yield prediction  for three sites in the southeastern USA. Daily incoming solar 
radiation, maximum and minimum temperatures, and rainfall output data were obtained from an 
18-year period of retrospective forecasts (hindcasts) that contained 20 realizations created by 
using two different convective schemes in the FSU/COAPS model. These raw hindcasts were 
bias-corrected by using cumulative probability functions from the historical daily weather record. 
The raw and bias-corrected hindcasts for each realization were compared to observed data at 
each selected site. Several combinations of the four meteorological variables from raw and bias-
corrected hindcasts, as well as the climatological monthly values, were used as input in the crop 
model. Uncertainties related to all these combinations were analyzed. Mean, standard deviation 
and root mean squared error of rainfall for each ensemble member over the 18-year period were 
improved for bias-corrected daily data. Dry-spell length and frequency were also improved. The 
total squared error using the bias-corrected data mostly decreased for the other three 
meteorological variables in comparison to the raw hindcasts. Large variability in simulated 
yields among ensemble members was detected, mainly due to variability in timing of dry-spells 
during the cropping seasons. 
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INTRODUCTION 
 

The Florida State University, Center for Ocean-Atmospheric Prediction Studies 
(FSU/COAPS) regional spectral model (Cocke and LaRow, 2000; Shin et al., 2006) coupled with 
the National Center for Atmospheric Research (NCAR) Community Land Model version 2 
(CLM2; Bonan et al., 2002) may be useful for generating climate forecasts for Alabama, Florida, 
and Georgia. This coupled model improves the horizontal resolution of the seasonal surface 
climate outputs from ~200 km for the global model to ~20 km. (Shin et al., 2005, 2006). Two 
previously validated convective schemes were also included in the model in order to improve the 
simulation of the seasonal rainfall in the region (Shin et al., 2003): 1) the simplified Arakawa-
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Shubert (SAS; Pan and Wu, 1994) scheme from the National Center for Environmental 
Prediction; and 2) the relaxed Arakawa-Shubert (RAS) scheme developed in the Naval Research 
Laboratory (Rosmond, 1992). 

Availability of high resolution forecasts produced from numerical models may provide 
opportunities for decision makers. Among them, agricultural related stakeholders are highly 
affected by the interannual variability of climate. Some of the most important cropping decisions 
are made at the beginning of the season, usually based on historical records (Hansen, 2002; 
Jagtap et al., 2002). Decisions as what, how, and when to plant are decisions that can not be 
changed during the cropping season (Baigorria, 2005, 2006; Jones et al., 2000). Dynamic crop 
models have been used in the last decade as tools for supporting decision makers by evaluating 
possible scenarios of interannual climate variability (Hansen and Indeje, 2004) and climate 
change (Dubrovský, 2000). For these applications, the El Niño Southern Oscillation (ENSO) 
index has played an important role in many regions of the world (Phillips et al., 1998; Podesta et 
al., 2002; Romero et al., in press). However, periods when ENSO phenomena have predictable 
effects on seasonal climate do not always match important cropping seasons (Hansen et al., 
1999); this is why ENSO does not always have a clear effect on crop yields, especially in the 
northern hemisphere (Baigorria et al., submitted). Regional numerical models nested within 
Global Circulation Models (GCMs) have potential for improving forecasts because they predict 
large-scale circulation patterns that may influence local meteorological variables relative to use 
of ENSO phase alone. In the southeastern United States (SE USA) there is a weak predictability 
associated with ENSO during the Boreal summer growing season (Giannini et al., 2001; Higgins 
et al., 1998; Leathers, et al., 1991; Saravanan and Chang, 2000; Sutton et al., 2000). Our 
hypothesis is that the use of seasonal climate forecasts from numerical climate models in the SE 
USA will produce more reliable predictions of crop yields when coupled with dynamic crop 
models. However, it is necessary to know the uncertainties related to (i) the spatial and temporal 
downscaling of the seasonal climate forecast, and (ii) the integration effect of the crop model 
with seasonal climate forecasts treated as daily weather sequences. 

Due to imperfect model specification and spatial averaging within GCM grid cells (Carter 
et al., 1994; Mearns et al., 1995; Goddard et al., 2001), numerical climate models overestimate 
the number rainfall events and do simulate short dry-spells during the simulated cropping season 
(Shin et al., 2006). This characteristic leads to an under-prediction of water stress and over-
prediction of yields thus reducing interannual variability of yields (Dubrovský, 2000). Ines and 
Hansen (2006) proposed a method to correct biases in rainfall events and amounts using 
cumulative distribution functions. A two-step method adjusts the cumulative distribution 
functions of hindcast daily rainfall events and amounts outputs. There were also biases in 
hindcast incoming solar radiation, and maximum and minimum temperatures from the 
FSU/COAPS model (Shin et al., 2006). 

This research was conducted to help answer several questions related to linking daily 
hindcast data from a regional climate model to a crop model. First, how much uncertainty is 
produced by feeding crop models with daily FSU/COAPS hindcast data of incoming solar 
radiation, maximum and minimum temperatures and rainfall? Is it possible to increase skill of 
crop yield predictions by using bias-corrected outputs from the FSU/COAPS model during the 
main corn growing season in the SE USA? How much uncertainty in crop yield forecasts is 
associated with each hindcast variable? Can daily climate forecast outputs be used as seasonal 
daily weather sequence forecasts? Objectives of this study were: 1) to quantify the uncertainty 
caused by using raw and bias-corrected hindcasts in dynamic crop model; and 2) to quantify 
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improvements in skill of applying bias corrections to daily hindcasts of the four selected daily 
meteorological variables. 
 
DATA AND M ETHODS 

 
 Study area 

The study area consists of the states of Alabama, Florida and Georgia in the SE USA 
between 35°23’ N, 88°59’ W and 24°57’ N, 79°26’ W. This region has some of the warmest 
conditions in the United States. The annual rainfall ranges from 1100 to 1400 mm, with the 
highest annual precipitation occurring along the Gulf of Mexico coast and in south Florida 
(USFS, 2006). Rainfall occurs throughout the year caused by two different processes. During 
most of fall and winter months, rainfall occurs mainly by fronts coming from the northwestern 
USA. During this frontal rainy season, spatial correlations among rainfall are characterized by a 
widely spread pattern in a northeast-southwest direction, perpendicular to the usual weather front 
paths (Baigorria et al., in press). During most of spring and summer months, rainfall occurs 
mainly by convective processes and tropical storms. During this convective rainy season spatial 
correlations among rainfall are characterized by small concentric patterns in which correlations 
decrease rapidly over short distances from each weather station (Baigorria et al., in press). 

For the entire area, three counties with available weather and soil data, and where corn 
has been consistently cultivated during the last 18 years were selected for the current study 
(Figure 1). The counties were Alachua, FL, De Kalb, AL, and Tift, GA. 

 

 
Figure 1. Locations of weather stations used in this research. 
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 Data 
Weather stations. One weather station located at each of the selected counties was used in this 
study: Gainesville in Alachua (29°42’ N latitude, 82°17’ W longitude, 38 m a.s.l.), Crossville in 
De Kalb (34°17’ N latitude, 85°58’ W longitude, 364 m a.s.l.), and Tifton in Tift (31°27’ N 
latitude, 83°29’ W longitude, 116 m a.s.l.). Daily data of maximum and minimum temperatures, 
and rainfall from these weather stations were obtained from the National Climate Data Center 
[http://nndc.noaa.gov/?home.shtml]. Incoming solar radiation was estimated using the technique 
of Richardson and Wright (1984). Monthly climatology values for these weather stations are 
shown in Table 1. 

 
Table 1.  Summary of climatic conditions observed at the three weather stations. 

 
Month 

Incoming 
solar 

radiation 
(MJ m-2 d-1) 

Maximum 
temperature 

(°C) 

Minimum 
temperature 

(°C) 

Total rainfall 
(mm) 

Number of 
rainy days 

Gainesville, Alachua, Florida 

Mar 17.2 23.9 10.1 97.0 8.0 
Apr 21.4 27.1 12.9 56.0 5.3 
May 22.4 30.6 17.0 68.9 6.9 
Jun 20.9 32.0 19.6 175.9 14.4 
Jul 20.4 32.5 21.9 178.2 16.7 

Aug 18.9 32.2 21.8 186.9 16.8 
Sep 16.7 30.5 20.6 144.4 12.0 

Crossville, De Kalb, Alabama 

Mar 14.5 17.1 4.2 200.9 14.7 
Apr 18.5 21.8 8.8 159.1 12.5 
May 21.6 25.7 13.4 149.1 13.0 
Jun 22.7 29.2 17.4 140.0 12.4 
Jul 22.3 30.9 19.2 144.3 13.2 

Aug 20.4 30.8 18.5 116.2 11.9 
Sep 16.9 27.8 15.3 156.1 11.2 

Tifton, Tift, Georgia 

Mar 16.2 21.0 8.3 130.0 9.1 
Apr 19.3 24.9 11.9 76.3 6.7 
May 20.7 29.0 16.7 84.6 7.5 
Jun 21.0 31.7 20.3 113.0 10.1 
Jul 22.0 32.8 21.8 139.9 12.9 

Aug 19.4 32.3 21.4 119.7 11.1 
Sep 17.1 30.1 19.0 93.9 8.5 

 
 
Retrospective forecast data (hindcasts).  Daily output hindcasts of incoming solar radiation, 
maximum and minimum temperatures, and rainfall were taken from the realizations of the 
FSU/COAPS regional spectral model.  Hindcast outputs corresponded to the 18-year period from 
1987 to 2004, from April to September each year. A set of 20 realizations (ensembles members) 
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was generated by the FSU/COAPS model, and each ensemble was used in the analyses. These 
data were used to create the data files in the format used by the CERES-Maize corn model (Jones 
et al., 2003). 

 
Soil data.  Soil profile characteristics needed for crop simulations were obtained from the 
Natural Resources Conservation Service [www.nrcs.usda.gov]. Complete descriptions of 
chemical and physical properties from each soil profile by soil horizon used in this study are 
shown in Table 2. 
 
 Bias Correction  

To correct daily rainfall amount and frequency, we used the bias-correction method based 
on the gamma cumulative probability function described by Ines and Hansen (2006). We 
extended this method to correct incoming solar radiation using the beta cumulative probability 
distribution and to correct minimum and maximum temperatures using the Gaussian cumulative 
probability distribution. Mathematical formulations used to bias-correct each meteorological 
variable are given below. The bias-correction method was applied to each ensemble member and 
for each month from March to September across the 18-year period.  Table 3 describes variables 
used in this section. 
 
Incoming solar radiation. The probability density function for the beta distribution can be 
written (Wilks, 2006): 
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Because values of incoming solar radiation ranged from 0 to 33 MJ m2 d-1 and the beta 
distribution is limited to the interval [0,1], a transformation is needed before its application by 
using: 
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( )λΓ is defined as the incomplete gamma function, and is estimated by: 
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The cumulative probability that a random variable x will be no larger than a specific incoming 
solar radiation value H is given by: 
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Table 2.  Soil profile description in the simulated counties 
Base 
layer 
depth 
(m) 

Master 
Horizon 

Wilting 
point 

(cm3 cm-3) 

Field 
capacity 

(cm3 cm-3) 

Max. water 
holding 
capacity 

(cm3 cm-3) 

Root 
growth 
factor 

Saturated 
hydraulic 

cond. 
(cm h-1) 

Bulk 
density 
(g cm-3) 

Organic 
C 

(g kg-1) 

Clay  
(g kg-1) 

Silt  
(g kg-1) 

pH 
(water) 

CEC 
(cmol 
kg-1) 

Alachua, Florida: Sand 
0.25 Ap 0.054 0.103 0.422 1.000 21.00 1.46 5.7 24 13 5.6 3.1 
1.12 B1 0.044 0.085 0.404 0.100 21.00 1.52 1.6 28 18 5.1 1.8 
1.57 B2 0.043 0.082 0.400 0.010 21.00 1.53 1.2 28 15 5.0 2.0 
2.08 B3 0.060 0.102 0.390 0.001 21.00 1.56 1.2 61 20 5.1 3.4 
2.21 B4 0.041 0.084 0.401 0.001 21.00 1.53 1.1 24 37 5.0 2.1 
2.54 Bt 0.084 0.130 0.285 0.001 6.11 1.85 1.3 109 23 4.7 5.8 

De Kalb, Alabama: Silt Loam 
0.15 Ap 0.083 0.244 0.514 1.000 0.68 1.21 15.3 53 514 5.7 4.5 
0.33 B21t 0.116 0.282 0.506 0.670 0.68 1.23 4.5 181 557 4.8 5.6 
0.61 B22t 0.132 0.296 0.503 0.390 0.68 1.24 3.4 224 534 4.7 6.3 
0.94 B23t 0.129 0.281 0.467 0.060 1.32 1.34 1.2 214 471 4.7 7.1 
1.78 B24t 0.162 0.308 0.456 0.001 0.23 1.37 0.2 288 402 4.6 8.0 

Tift, Georgia: Loamy Sand 
0.25 Apc 0.093 0.183 0.432 1.000 6.10 1.42 11.4 72 130 5.6 2.6 
0.51 Btc1 0.119 0.182 0.330 0.550 2.59 1.72 3.4 167 67 5.3 3.7 
0.74 Btc2 0.149 0.212 0.353 0.200 0.43 1.66 2.4 232 62 5.7 3.6 
1.02 Btcv 0.138 0.209 0.325 0.001 0.43 1.74 1.3 217 115 5.6 3.6 
1.27 Btv1 0.177 0.245 0.339 0.001 0.43 1.70 1.8 292 74 5.3 4.6 
1.63 Btv2 0.194 0.261 0.345 0.001 0.43 1.68 2.5 322 50 5.0 4.0 
2.03 C 0.144 0.196 0.272 0.001 0.43 1.89 0.7 232 24 4.9 2.4 

Bulk density estimated according to Rawls and Brakensiek (1985). Lower limit and Upper limit drained estimated according to Saxton et al. 
(1986). Upper limit saturated estimated according to Dalgliesh and Foale (1998) and Baumer and Rice (1988).  CEC = cation exchange capacity.
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Table 3.  Variable descriptions. 
 Symbol Definition  Units 

 x Daily value MJ m2 d-1, °C, or mm 
 x  Mean MJ m2 d-1, °C, or mm 
 n Sample size unitless 
 p, q Parameters of the beta distribution unitless 
 s Standard deviation  
 a, b Minimum and maximum possible values of  MJ m2 d-1 
  incoming solar radiation to truncate the beta  
  distribution to the range [0,1] 
 x’ Transformed value MJ m2 d-1 
 H Incoming solar radiation MJ m2 d-1 
 T Temperature °C 
 G Incomplete gamma distribution unitless 
 r Rainfall mm 
 α Shape parameter of the gamma distribution unitless 
 β Scale parameter of the gamma distribution unitless 
 Xi Monthly hindcast value  MJ m2 month-1, °C, or 

  mm month-1 

 obsX  Monthly observed value at weather station mm month-1 

 obsX  Monthly observed mean value at MJ m2 month-1, °C, or 
 weather station mm month-1 

 cliX  Monthly observed climatological value mm month-1 

 p(y1,o1) Join probability of hits unitless 
 p(y2,o2) Join probability of correct rejections  unitless 
 p(oi) Marginal distributions of the observations  unitless 
 p(yi) Marginal distributions of the forecasts unitless 
 F(x), Fo(x) Cumulative probability of a hindcast (raw or 
   corrected) and observed variable respectively  unitless 

 
The inverse of the beta cumulative distribution was used to solve for specific x values by an 
iterative search technique. After bias correction, values of incoming solar radiation were checked 
to avoid values out of range. Values with less than 5% of the extraterrestrial radiation were 
replaced by this assumed minimum amount. 

 
Maximum and minimum temperatures. The probability density function for the Gaussian 
distribution can be written (Wilks, 2006): 
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To avoid minimum temperature values larger than maximum temperatures after applying the 
bias-correction, data from both variables were combined before fitting the Gaussian distribution.  
The cumulative probability that a random variable x will be no larger than a specific temperature 
value T is given by: 

 ∫=≤
T

dxxfTxP
0

)()(  [7] 

The inverse of the Gaussian cumulative distribution was used to solve for specific x values by an 
iterative search technique. 

 
Rainfall frequency and amount.   The correction of frequency of daily hindcast rainfall was 
performed by fitting a threshold value to truncate the cumulative distribution function of the raw 
daily hindcast rainfall. The threshold is calculated from the observed cumulative rainfall 
distribution function (Ines and Hansen, 2006). 

The probability density function for the 2-parameter gamma distribution can be written as 
(Wilks, 2006): 
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Where α is the shape parameter and β  is the scale parameter; both calculated based on the mean 
( x ) and variance (s2) as: 
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The cumulative probability that a random variable x will be no larger than a specific rainfall 
value r is given by: 

 ∫=≤
r

dxxfrxP
0

),;()( βα  [10] 

The inverse of the gamma cumulative distribution was used to solve for specific x values by an 
iterative search technique. 

 
 Measuring bias correction performance 
Incoming solar radiation and temperatures.  The total squared error (TSE) was used as accuracy 
measurement to compare cumulative probabilities of the raw and bias-corrected hindcast (F[x]) 
in relation to the observed cumulative probability (Fo[x]; Equation 11). To do so, we integrated 
the areas between the observed and hindcast curves across the range of cumulative probabilities 
and variable values. 

 [ ]∫
+∞

∞−

−= dxxFxFTSE o
2)()(  [11] 

Rainfall occurrence.  To evaluate the performance of the bias-correction method on the daily 
rainfall occurrence in comparison with observed data, 2×2 contingence tables were used. 
Contingence tables were created for each ensemble member and for the entire season. Four 
possibilities were evaluated in the contingence tables: (i) hit – a rainfall event occurred and the 
hindcast was for a rainfall event; (ii) false alarms – a rainfall event was hindcast but did not 
occur; (iii) misses – a rainfall event occurred despite not being hindcast; and (iv) correct 
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rejections – no rainfall event occurred and the hindcast called for no rain. The Peirce Skill Score 
(PSS; Peirce, 1884) was used to summarize the square contingency tables. The PSS is interpreted 
as an improvement over a reference forecast, which in this case corresponds to the climatology. 
The PSS is calculated as: 
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Perfect forecasts receive a score of one, random forecasts receive a score of zero and forecasts 
inferior to the random forecasts receive negative scores (Wilks, 2006). 

 
Monthly rainfall amounts and number of rainy days.  To evaluate the performance of the bias-
correction method on total monthly rainfall and number of rainy days, mean and standard 
deviation across the 18-year hindcast period were calculated individually for each ensemble 
member. These statistics were calculated for both the raw and the bias-corrected hindcasts, and 
compared with data from the historical record. Root mean squared errors (RMSE) were 
calculated monthly for each ensemble member by using Equation 13. 

 ( )∑ −=
21

obsii XX
n
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A skill score (SScli; %) constructed using the mean squared error as the accuracy statistics 
was used. The SScli was computed using the climatological values as the reference forecast. In 
doing so, the SScli is the percentage improvement over climatology (Wilks, 2006).  The range of 
SScli is from -100%, which indicates total lack of predictability in comparison with climatology, 
to 100%, which indicates maximum predictability relative to climatology. 
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Dry-spell length frequencies.  Dry-spell length frequencies for the entire season were calculated 
for each ensemble member and compared graphically with observed and uncorrected data. 
 
 Linking crops and RNC models 
Crop model.  We selected the CERES-Maize model (Ritchie et al., 1998) because of the 
economical importance of corn in the region and because this crop is more sensitive to soil 
moisture deficit than other crops (Sadras and Calviño, 2001). Thus impacts of rainfall forecasts 
on crop yields can be evaluated relative to impacts of total rainfall amount and rainfall 
frequency. 

The CERES-Maize model was used to simulate corn yield response under the different 
weather data sets. With the exception of planting date, crop management was set according to 
previous research in one of our study areas (Jones et al., 1986). The corn variety simulated was 
McCurdy 84AA, planted in a density of 7.2 plants m-2. Planting date was the same every year, on 
1 April in Crossville, AL and on 15 May in Gainesville, FL and Tifton, GA.  Corn crops were 
simulated with no irrigation and with a total of 255 kg N ha-1 fertilizer split into 5 applications at 
14-day intervals.  

Each crop simulation used a single weather input level, soil profile (Table 2) and 
management practices. We did not evaluate the representativeness of the scenarios or account for 
heterogeneity of soils or weather. 
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The six evaluated weather input levels were: (i) raw hindcasts of all variables; (ii) bias-
corrected hindcast of incoming solar radiation and raw hindcast of the remaining variables; (iii) 
bias-corrected hindcast of maximum and minimum temperatures and raw hindcast of the 
remaining variables; (iv) bias-corrected hindcast of rainfall and raw hindcast of the remaining 
variables; (v) bias-corrected hindcast of rainfall and climate monthly average of the remaining 
variables; and (vi) bias-corrected hindcast of all variables. 

 
Measuring yield prediction performance.  After crop simulations for all realizations were 
performed, yearly simulated dry matter yields were evaluated to measure the uncertainty of using 
different weather scenarios. Pearson’s correlation and RMSE were computed for simulations 
using each weather scenario in comparison to the simulated results using observed weather data. 
Variability in annual yields for each hindcast ensemble member was analyzed for each weather 
scenario. 

Results for one location and year were selected to analyze the effects of daily rainfall 
amounts and events in the crop simulation. To perform this analysis, the water stress factor 
affecting growth was used as a variable from the daily crop simulation outputs. The water stress 
factor affecting growth is a unitless index that ranges from 0 (no stress) to 1 (maximum stress; 
Hoogenboom et al., 2003). Daily values of water stress were transformed to binary data by 
assigning 1 to all values greater than 0 and 0 to the remaining values. This was done to analyze 
the temporal relationship between dry-spell distributions and crop yields. 

 
 

RESULTS AND DISCUSSION 
 

 Bias correction analysis 
Incoming solar radiation and temperatures.  Comparing TSE values obtained from raw and bias-
corrected hindcasts, it is apparent that the bias-correction of incoming solar radiation and 
minimum temperature reduced values of TSE for the three weather stations. However, bias-
correction of maximum temperatures reduced TSE values only in Crossville and Tifton. The 
same analyses performed at a monthly level (results not shown), showed that the bias-correction 
for both temperatures fails when it is applied in Gainesville. 

 
Rainfall.  The PSSs (Peirce, 1884) values shown in Table 4 summarize contingency tables 
created by comparing occurrence of observed with hindcast events. As expected, rainfall 
occurrences were poorly forecast. According to the values shown, predictions were of the same 
PSS rank as random forecasts. These results are not surprising because the RCM were created to 
generate season-climate forecast and they are not daily weather forecasters. However, in this 
research where we used bias-corrected daily RCM outputs in dynamic crop models, this fact will 
play an important role in the results. 

Bias-correction decreased the number of events by applying a threshold to achieve the 
historical record distribution (Ines and Hansen, 2006). Adjustments to the cumulative probability 
distributions resulted in good performance relative to correctly producing rainfall amounts across 
the studied months and to the entire season in comparison to the historical record. Over all 
ensembles, monthly and seasonal rainfall amounts averaged for the 18-year period showed 
values similar to the climatology. Standard deviations from the historical record were, in most of 
the cases, lower than those calculated from each ensemble member for the 18-year period. 
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Similar means and higher standard deviations than the climatology were due to some years being 
adjusted better than others. RMSE among the ensemble members ranged from 10.6 to 17.0% in 
rainfall amount and from 7.4 to 13.3% in number of rainy days. In most of the cases, SScli 
showed negative values. Positive values were lower than 8% for the total rainfall amount, and 
lower than 5% for number of rainy days taking into account the three weather stations and the 20 
ensembles. This means that the climatology performed better than the bias-corrected hindcast. 

Length and frequency of the dry-spells were adjusted adequately for the three weather 
stations using the bias corrections. An example for Gainesville for two different ensemble 
members is shown in Figure 2. Similar results were obtained for all of the ensemble members 
and weather stations. 

 
 
Table 4.  Peirce Skill Score (PSS) from daily bias corrected rainfall for 

three weather stations. 
 

 
 

 

 
  
 
 
 
 
 
 
 
 
 
 
 

 
  
 
Linking FSU/COAPS and CERES-Maize models 

Figure 4 shows the comparison maize yields using the raw hindcasts of all variables (a) 
versus the bias-corrected hindcasts of all variables (f), as well as the effects individual bias-
corrected variables (b to e). The lowest RMSE value was found when rainfall was bias-corrected 
in combination with raw hindcasts of incoming solar radia tion and maximum and minimum 
temperatures (Figure 3d). When these three raw hindcast variables were replaced by the 
climatological values as originally performed by Ines and Hansen (2006), RMSE values 
increased and the Pearson’s correlations decreased (Figure 3e). 

 

Member Gainesville  Crossville  Tifton 

1 0.040 -0.002 0.011 
2 0.012 0.019 -0.011 
3 0.012 0.010 0.047 
4 0.045 -0.016 -0.009 
5 0.041 0.013 0.031 
6 0.047 0.020 0.009 
7 0.064 0.026 -0.002 
8 0.082 -0.016 0.023 
9 0.055 -0.010 0.028 

10 0.025 -0.034 0.008 
11 0.041 -0.028 0.009 
12 0.033 0.034 0.015 
13 0.082 -0.008 0.002 
14 0.028 -0.042 0.010 
15 0.038 0.015 -0.011 
16 0.045 -0.010 -0.003 
17 0.039 0.013 0.016 
18 0.040 -0.044 -0.002 
19 0.008 0.011 -0.002 
20 0.018 -0.027 -0.024 
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Bias-correcting maximum and minimum temperatures increased simulated corn yields 
compared with the raw hindcast of all variables (Figure 3c and 3a respectively); RMSE increased 
and Pearson’s correlations decreased. As shown in Figure 4, the FSU/COAPS regional spectral 
model overestimated temperatures. Bias-correcting maximum and minimum temperatures 
decreased these values, decreasing the simulated evapotranspiration rates. This correction 
diminished length of dry-spells, thereby reducing the water deficit and increasing simulated 
yields. 
 Bias-correction of incoming solar radiation also increased RMSE and decreased 
Pearson’s correlations compared to the raw hindcast of all variables (Figure 3b and 3a, 
respectively). Bias-correcting incoming solar radiation slightly increased the range of variation 
among the ensemble members in comparison to the raw hindcast of all variables. 

Comparisons of Pearson’s correlation and RMSE values between simulated yields using 
raw and bias-corrected hindcasts of all variables are shown in Table 5 for the 20 ensemble 
members and their average. Predictability among the ensemble members varied considerably. In 
Gainesville, a maximum of 33% of the interannual variability was explained by ensemble 
member 15 from the raw hindcasts of all variables. Predictability of ensemble member 15 
decreased to 18% after the application of bias-correction to all variables. However, 
 

 
Figure 2. Dry-spell length frequencies comparison among observed (+), raw 

hindcast (•), and bias corrected (X) rainfall data. 
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ensemble member 16 performed the best among the ensemble members predicting 32% of the 
interannual variability after the application of bias-correction of all variables. In Crossville, a 
maximum of 24% of the interannual variability was explained by ensemble member 15 from the 
raw hindcast of all variables. After bias-correcting all variables, ensemble member 16 explained 
16% of the interannual variability. In most of the cases, Pearson’s correlation decreased and 
RMSE increased across the ensemble members when all variables were bias-corrected. RMSE 
values ranged from 51 to 74% among ensembles members for raw hindcasts and from 56 to 80% 
for bias-corrected hindcasts. In Tifton, Pearson’s correlation increased and RMSE decreased 
after bias-correction of all variables. A maximum of 31% the interannual variability was 
explained by ensemble member 12 using raw data compared with a maximum 46% using bias-
corrected data. 

 
 

 
Figure 3.   Comparison of the crop simulation scenarios between simulated corn yield dry matter 

using observed weather in Tifton (•) and ensemble members’ quartiles of: a) raw 
hindcast of all variables; b) bias-corrected hindcast of incoming solar radiation and  
raw hindcast of the remaining variables; c) bias-corrected hindcast of maximum and 
minimum temperatures, and raw hindcast of the remaining variables; d) bias-
corrected hindcast of rainfall and raw hindcast of the remaining variables; e) bias-
corrected hindcast of rainfall and climate monthly average of the remaining variables; 
and f) bias-corrected hindcast of all variables. 
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Figure 4. Monthly variability of the parameters of the gamma (rainfall), beta (incoming solar 

radiation), and Gaussian (maximum and minimum temperatures combined) 
distributions fitting the daily data at weather station level (•) and the raw hindcast 
from the 20 ensemble members (0, 25, 75, and 100 percentile).
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Table 5.  Pearson’s correlation (?) and root mean square error (RMSE) between simulated corn dry matter yields using observed 

weather and each bias-corrected hindcast of all variables ensemble members. Highest positive correlations are bold. 
Gainesville  Crossville  Tifton 

Raw hindcast Bias-corrected 
hindcast 

Raw hindcast Bias-corrected 
hindcast 

Raw hindcast Bias-corrected 
hindcast 

Ensemble 
member 

? RMSE ? RMSE ? RMSE ? RMSE ? RMSE ? RMSE 
1 -0.0148 3.543 0.1103 3.012 -0.1870 5.157 -0.2072 5.625 0.1729 5.289 -0.0236 3.827 
2 0.1921 3.185 0.2652 3.154 0.1341 5.333 0.0462 5.520 0.4854 4.457 0.2127 3.497 
3 0.0494 3.232 0.5466 2.628 -0.2691 5.054 -0.2598 5.651 -0.2836 5.255 -0.2318 4.392 
4 0.0237 3.518 0.1270 4.028 -0.1731 5.576 -0.4669 6.010 -0.3862 5.477 -0.1162 3.900 
5 0.1656 3.419 0.0783 3.341 0.0409 5.500 0.0047 6.208 -0.0688 5.055 -0.0768 4.128 
6 -0.2282 3.738 -0.6093 4.092 -0.3578 5.763 -0.1555 5.833 -0.0486 5.175 -0.1036 3.694 
7 -0.1171 3.472 -0.1667 3.884 0.0256 5.082 0.1780 5.447 -0.0456 4.986 0.0900 3.874 
8 0.4392 3.086 0.3734 2.714 -0.0077 5.389 0.0906 5.313 -0.2245 5.676 -0.5512 4.500 
9 0.0078 3.327 0.2140 3.227 0.0847 5.764 0.1491 5.208 0.1473 5.239 0.1108 3.589 
10 -0.1801 4.003 -0.0200 3.224 -0.2460 5.847 -0.3480 5.323 0.0465 5.505 -0.0506 3.673 
11 0.3086 3.536 0.1936 2.876 -0.0029 4.821 0.0189 5.409 0.4552 4.821 0.2827 3.030 
12 0.1261 3.794 -0.0684 3.772 -0.0631 5.197 -0.0598 5.561 0.5528 4.489 0.6784 2.158 
13 0.3719 3.396 0.5168 2.749 0.1728 4.579 0.1408 4.799 0.3409 5.321 0.5102 2.619 
14 -0.0725 3.782 -0.3061 3.718 -0.3123 5.746 -0.3971 5.913 0.0249 5.495 0.2328 3.137 
15 0.5754 2.929 0.4254 2.583 0.4896 3.828 0.3598 4.375 0.4662 4.712 0.2804 3.462 
16 0.5437 3.451 0.5610 2.196 0.3349 4.689 0.4036 4.882 0.0785 5.283 -0.2443 4.403 
17 -0.0723 3.529 0.0689 3.023 -0.0391 4.882 -0.1625 5.510 0.1471 5.161 0.2191 3.228 
18 0.0533 3.674 -0.0026 3.418 -0.1971 5.215 -0.1059 5.415 -0.0293 5.356 0.0558 3.658 
19 0.1582 3.792 -0.0333 3.111 0.4551 4.303 0.3740 4.147 0.0941 5.788 -0.3798 4.572 
20 0.0096 3.946 -0.3411 4.023 -0.2129 5.636 -0.0944 5.195 0.3718 4.985 0.5165 2.601 
X  0.2823 3.281 0.3206 2.550 -0.0184 4.697 -0.0649 4.538 0.3853 4.821 0.2275 2.838 

X  = average dry matter from the 20 ensemble members. 
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Figure 5.   Case study comparing observed and hindcast ensemble members of simulated periods under water stress affecting growth 

and it relationship to dry matter yields and total monthly rainfall. Gainesville 1990. 
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Yields simulated by dynamic crop models were highly sensible to dry-spell 
sequences during the cropping season. Dubrovský et al. (2000) reported that increasing 
persistence of wet or dry day occurrence resulted in an increasing probability of drought, 
which was accompanied by decreased mean and increased variance of grain yields. 
According to our results, in addition to increasing persistence of wet or dry day 
occurrence was important, timing of wet- or dry-spells within the cropping season was 
especially important. Figure 5 graphically compares the total and monthly amounts of 
rainfall during the cropping season versus yields and versus the stress factor affecting 
growth during the cropping season. As an example, ensemble member 2 received most 
rain, however, it showed one of the smallest simulated yields. This result was because a 
long dry-spell occurred just before and during tasseling, the most drought sensitive 
physiological stage for producing corn. The opposite occurred in ensemble member 6 
where the total rainfall amount was in the below-normal tercile, but simulated yields were 
in the above-normal tercile. In this case, most of the water deficit occurred after the 
grain-filling phase when water did not play an important role in yield. 

As explained above, there was no apparent physical explanation for the 
observation that some ensemble members performed better than others. Moreover, these 
good-performer members varied by location, so they could not be selected for an 
operational forecast. 

Curiously, most outliers in simulated yields using observed data were produced 
during neutral years. Most of the simulated yields using observed data under the El Niño 
and the La Niña conditions were simulated within the variability of the ensemble 
members after bias-correcting the hindcasts to all the variables. This result indicates that 
the FSU/COAPS regional spectral model simulated climate better during El Niño and La 
Niña years than during neutral years when uncertainty increased. 

 
CONCLUSIONS 

 
Bias correction of climate models outputs based on cumulative distribution 

functions of historical data improved the quality of daily hindcast data provided by the 
FSU/COAPS regional spectral model. However, interannual variability was not 
adequately corrected and some years were adjusted better than others. Dry-spell length 
and frequency were also adequately corrected over the 18-year period of record by the 
method; however the dry-spell distribution within a growing season, as expected, was not 
well simulated. 

There was a large variability among the ensemble member yield predictions. 
Some ensemble members were better than others at represent ing interannual variability of 
simulated yields using observed data; however there was no physical basis to select them 
as individual predictors. Differences in dry-spell distribution within the cropping season 
were the main source of uncertainty using the bias correction method in this study. As a 
consequence, daily seasonal climate forecasts from the FSU regional spectral model 
could not be taken as an all-season weather sequence forecasts to feed dynamic crop 
models from the DSSAT crop system modeling group. 
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